1
|
Shoushtarian M, Esmaelpoor J, Bravo MMG, Fallon JB. Cochlear implant induced changes in cortical networks associated with tinnitus severity. J Neural Eng 2024; 21:056009. [PMID: 39178903 DOI: 10.1088/1741-2552/ad731d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.We investigated tinnitus-related cortical networks in cochlear implant users who experience tinnitus and whose perception of tinnitus changes with use of their implant. Tinnitus, the perception of unwanted sounds which are not present externally, can be a debilitating condition. In individuals with cochlear implants, use of the implant is known to modulate tinnitus, often improving symptoms but worsening them in some cases. Little is known about underlying cortical changes with use of the implant, which lead to changes in tinnitus perception. In this study we investigated whether changes in brain networks with the cochlear implant turned on and off, were associated with changes in tinnitus perception, as rated subjectively.Approach.Using functional near-infrared spectroscopy, we recorded cortical activity at rest, from 14 cochlear implant users who experienced tinnitus. Recordings were performed with the cochlear implant turned off and on. For each condition, participants rated the loudness and annoyance of their tinnitus using a visual rating scale. Changes in neural synchrony have been reported in humans and animal models of tinnitus. To assess neural synchrony, functional connectivity networks with the implant turned on and off, were compared using two network features: node strength and diversity coefficient.Main results.Changes in subjective ratings of loudness were significantly correlated with changes in node strength, averaged across occipital channels (r=-0.65, p=0.01). Changes in both loudness and annoyance were significantly correlated with changes in diversity coefficient averaged across all channels (r=-0.79,p<0.001 and r=-0.86,p<0.001). More distributed connectivity with the implant on, compared to implant off, was associated with a reduction in tinnitus loudness and annoyance.Significance.A better understanding of neural mechanisms underlying tinnitus suppression with cochlear implant use, could lead to their application as a tinnitus treatment and pave the way for effective use of other less invasive stimulation-based treatments.
Collapse
Affiliation(s)
- Mehrnaz Shoushtarian
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Jamal Esmaelpoor
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | | | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Yadollahpour A, Rashidi S, Saki N, Kunwar PS, Mayo-Yáñez M. Repeated Bilateral Transcranial Direct Current Stimulation over Auditory Cortex for Tinnitus Treatment: A Double-Blinded Randomized Controlled Clinical Trial. Brain Sci 2024; 14:373. [PMID: 38672022 PMCID: PMC11048041 DOI: 10.3390/brainsci14040373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive and painless technique of brain neuromodulation that applies a low-intensity galvanic current to the scalp with the aim of stimulating specific areas of the brain. Preliminary investigations have indicated the potential therapeutic efficacy of multisession tDCS applied to the auditory cortex (AC) in the treatment of chronic tinnitus. The aim of this study was to explore the therapeutic effects of repeated sessions of bilateral tDCS targeting the AC on chronic tinnitus. A double-blinded randomized placebo-controlled trial was conducted on patients (n = 48) with chronic intractable tinnitus (>2 years duration). Participants were randomly allocated to two groups: one receiving tDCS (n = 26), with the anode/cathode placed over the left/right AC, and the other receiving a placebo treatment (n = 22). A 20 min daily session of 2 mA current was administered for five consecutive days per week over two consecutive weeks, employing 35 cm2 electrodes. Tinnitus handicap inventory (THI) scores, tinnitus loudness, and tinnitus distress were measured using a visual analogue scale (VAS), and were assessed before intervention, immediately after, and at one-month follow-up. Anodal tDCS significantly reduced THI from 72.93 ± 10.11 score to 46.40 ± 15.36 after the last session and 49.68 ± 14.49 at one-month follow-up in 18 out of 25 participants (p < 0.001). The risk ratio (RR) of presenting an improvement of ≥20 points in the THI after the last session was 10.8 in patients treated with tDCS. Statistically significant reductions were observed in distress VAS and loudness VAS (p < 0.001). No statistically significant differences in the control group were observed. Variables such as age, gender, duration of tinnitus, laterality of tinnitus, baseline THI scores, and baseline distress and loudness VAS scores did not demonstrate significant correlations with treatment response. Repeated sessions of bilateral AC tDCS may potentially serve as a therapeutic modality for chronic tinnitus.
Collapse
Affiliation(s)
- Ali Yadollahpour
- Department of Psychology, University of Sheffield, Sheffield S1 2LT, UK;
- Bioelectromagnetic Clinic, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Samaneh Rashidi
- Department of Psychology, University of Surrey, Guildford GU2 7XH, UK;
| | - Nader Saki
- Hearing and Speech Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Pramod Singh Kunwar
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, Mount Kenya University, Thika P.O. Box 342-01000, Kenya;
| | - Miguel Mayo-Yáñez
- Department of Otorhinolaryngology—Head and Neck Surgery, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
- Department of Otorhinolaryngology—Head and Neck Surgery, Hospital San Rafael (HSR), 15006 A Coruña, Spain
- Otorhinolaryngology—Head and Neck Surgery Research Group, Institute of Biomedical Research of A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), 15006 A Coruña, Spain
| |
Collapse
|
3
|
Kim E, Kang H, Noh TS, Oh SH, Suh MW. Auditory cortex hyperconnectivity before rTMS is correlated with tinnitus improvement. Neurologia 2023; 38:475-485. [PMID: 37659838 DOI: 10.1016/j.nrleng.2021.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/06/2021] [Indexed: 09/04/2023] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) has been used as a potential treatment for tinnitus; however, its effectiveness is variable and unpredictable. We hypothesized that resting-state functional connectivity before rTMS may be correlated with rTMS treatment effectiveness. METHODS We applied 1-Hz rTMS to the left primary auditory (A1) and dorsolateral prefrontal cortices (DLPFC) of 10 individuals with tinnitus and 10 age-matched controls. Resting-state functional magnetic resonance imaging (fMRI) studies were performed approximately one week before rTMS. Seed-based connectivity analyses were conducted for each individual, with seed regions as rTMS target areas. RESULTS Compared to controls, the left superior temporal areas showed significantly increased positive connectivity with the left A1 and negative connectivity with the left DLPFC in the tinnitus group. The left frontoparietal and right cerebellar areas showed significantly increased negative connectivity with the left A1 and positive connectivity with the left DLPFC. Seed-based hyperconnectivity was correlated with tinnitus improvement (pre-rTMS vs. 2-week post-rTMS Tinnitus Handicap Inventory scores). Tinnitus improvement was significantly correlated with left A1 hyperconnectivity; however, no correlation was observed with left DLPFC connectivity. Positive rTMS outcomes were associated with significantly increased positive connectivity in bilateral superior temporal areas and significantly increased negative connectivity in bilateral frontal areas. CONCLUSIONS Our results suggest that oversynchronisation of left A1 connectivity before rTMS of the left A1 and DLPFC is associated with treatment effectiveness.
Collapse
Affiliation(s)
- E Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - H Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - T-S Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - S-H Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - M-W Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Elmer S, Schmitt R, Giroud N, Meyer M. The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss. Brain Struct Funct 2023; 228:1511-1534. [PMID: 37349539 PMCID: PMC10335971 DOI: 10.1007/s00429-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Tinnitus is one of the main hearing impairments often associated with pure-tone hearing loss, and typically manifested in the perception of phantom sounds. Nevertheless, tinnitus has traditionally been studied in isolation without necessarily considering auditory ghosting and hearing loss as part of the same syndrome. Hence, in the present neuroanatomical study, we attempted to pave the way toward a better understanding of the tinnitus syndrome, and compared two groups of almost perfectly matched individuals with (TIHL) and without (NTHL) pure-tone tinnitus, but both characterized by pure-tone hearing loss. The two groups were homogenized in terms of sample size, age, gender, handedness, education, and hearing loss. Furthermore, since the assessment of pure-tone hearing thresholds alone is not sufficient to describe the full spectrum of hearing abilities, the two groups were also harmonized for supra-threshold hearing estimates which were collected using temporal compression, frequency selectivity und speech-in-noise tasks. Regions-of-interest (ROI) analyses based on key brain structures identified in previous neuroimaging studies showed that the TIHL group exhibited increased cortical volume (CV) and surface area (CSA) of the right supramarginal gyrus and posterior planum temporale (PT) as well as CSA of the left middle-anterior part of the superior temporal sulcus (STS). The TIHL group also demonstrated larger volumes of the left amygdala and of the left head and body of the hippocampus. Notably, vertex-wise multiple linear regression analyses additionally brought to light that CSA of a specific cluster, which was located in the left middle-anterior part of the STS and overlapped with the one found to be significant in the between-group analyses, was positively associated with tinnitus distress level. Furthermore, distress also positively correlated with CSA of gray matter vertices in the right dorsal prefrontal cortex and the right posterior STS, whereas tinnitus duration was positively associated with CSA and CV of the right angular gyrus (AG) and posterior part of the STS. These results provide new insights into the critical gray matter architecture of the tinnitus syndrome matrix responsible for the emergence, maintenance and distress of auditory phantom sensations.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| |
Collapse
|
5
|
Ye T, Chen K, Li D, Yin K, Li Y, Long J, Hui L. Global research hot spot and trends in tinnitus treatment between 2000 and 2021: A bibliometric and visualized study. Front Neurol 2023; 13:1085684. [PMID: 36686526 PMCID: PMC9847583 DOI: 10.3389/fneur.2022.1085684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Background In the 21st century, the prevalence of tinnitus is increasing, impacting approximately one in five people. It is a very complicated condition that significantly affects quality of life. Despite the availability of hundreds of tinnitus treatment options, none are very successful. In light of this, there has been a steady increase in studies on tinnitus treatments in the recent past. To comprehend them better, this study used bibliometric approaches to analyze and summarize 21st century scientific research accomplishments in tinnitus treatment. Methods The Web of Science Core Collection (WoSCC) was searched for papers that had been published and related to the treatment of tinnitus. VOSviewer, CiteSpace, R, and Tableau software programs were used to conduct bibliometric studies. To evaluate and visualize the results. Results 2,933 publications on tinnitus treatment were found in 74 countries. Between 2000 and 2021, publications increased steadily. Otolaryngology-Head & Neck Surgery had the highest impact factor, whereas Otology & Neurotology had the most magazines and the highest h, g, and m index. Langguth B was the most prolific author in terms of productivity during the past 21 years. Numerous eminent authors and organizations from multiple nations collaborated. With 626 papers, the United States of America (USA) contributed the most to this field, making them the leading contributor. Neuroplasticity, sound therapy, and cognitive behavioral therapy (CBT) have attracted the attention of researchers, leading to the development of innovative diagnostic and treatment strategies for tinnitus. Conclusion This bibliometric study provides a comprehensive analysis of worldwide publications, cooperation, and research hotspots in tinnitus therapy, revealing the present status of research on this issue and guiding tinnitus treatment research in the coming years.
Collapse
Affiliation(s)
- Tao Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kefan Chen
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dongyang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kailong Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Long
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China,Jin Long ✉
| | - Lian Hui
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Lian Hui ✉
| |
Collapse
|
6
|
A Protocol to Investigate Deep Brain Stimulation for Refractory Tinnitus: From Rat Model to the Set-Up of a Human Pilot Study. Audiol Res 2022; 13:49-63. [PMID: 36648926 PMCID: PMC9844413 DOI: 10.3390/audiolres13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Chronic tinnitus can have an immense impact on quality of life. Despite recent treatment advances, many tinnitus patients remain refractory to them. Preclinical and clinical evidence suggests that deep brain stimulation (DBS) is a promising treatment to suppress tinnitus. In rats, it has been shown in multiple regions of the auditory pathway that DBS can have an alleviating effect on tinnitus. The thalamic medial geniculate body (MGB) takes a key position in the tinnitus network, shows pathophysiological hallmarks of tinnitus, and is readily accessible using stereotaxy. Here, a protocol is described to evaluate the safety and test the therapeutic effects of DBS in the MGB in severe tinnitus sufferers. METHODS Bilateral DBS of the MGB will be applied in a future study in six patients with severe and refractory tinnitus. A double-blinded, randomized 2 × 2 crossover design (stimulation ON and OFF) will be applied, followed by a period of six months of open-label follow-up. The primary focus is to assess safety and feasibility (acceptability). Secondary outcomes assess a potential treatment effect and include tinnitus severity measured by the Tinnitus Functional Index (TFI), tinnitus loudness and distress, hearing, cognitive and psychological functions, quality of life, and neurophysiological characteristics. DISCUSSION This protocol carefully balances risks and benefits and takes ethical considerations into account. This study will explore the safety and feasibility of DBS in severe refractory tinnitus, through extensive assessment of clinical and neurophysiological outcome measures. Additionally, important insights into the underlying mechanism of tinnitus and hearing function might be revealed. TRIAL REGISTRATION ClinicalTrials.gov NCT03976908 (6 June 2019).
Collapse
|
7
|
Kubota Y, Takahashi K, Nonomura Y, Yamagishi T, Ohshima S, Izumi S, Morita Y, Aizawa N, Horii A. Effects of sound source localization of masking sound on perception level of simulated tinnitus. Sci Rep 2022; 12:1452. [PMID: 35087148 PMCID: PMC8795453 DOI: 10.1038/s41598-022-05535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
Tinnitus therapies have been combined with the use of varieties of sound/noise. For masking external sounds, location of the masker in space is important; however, effects of the spatial location of the masker on tinnitus are less understood. We aimed to test whether a masking sound location would affect the perception level of simulated tinnitus. The 4 kHz simulated tinnitus was induced in the right ear of healthy volunteers through an open-type earphone. White noise was presented to the right ear using a single-sided headphone or a speaker positioned on the right side at a distance of 1.8 m for masking the simulated tinnitus. In other sessions, monaurally recorded noise localized within the head (inside-head noise) or binaurally recorded noise localized outside the head (outside-head noise) was separately presented from a dual-sided headphone. The noise presented from a distant speaker and the outside-head noise masked the simulated tinnitus in 71.1% and 77.1% of measurements at a lower intensity compared to the noise beside the ear and the inside-head noise, respectively. In conclusion, spatial information regarding the masking noise may play a role in reducing the perception level of simulated tinnitus. Binaurally recorded sounds may be beneficial for an acoustic therapy of tinnitus.
Collapse
Affiliation(s)
- Yamato Kubota
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.,Department of Otolaryngology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma, Omiya-ku, Saitama, 330-8503, Japan
| | - Kuniyuki Takahashi
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yoriko Nonomura
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Tatsuya Yamagishi
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shinsuke Ohshima
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Izumi
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuka Morita
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Naotaka Aizawa
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Arata Horii
- Department of Otolaryngology Head Neck Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
8
|
Schoisswohl S, Langguth B, Schecklmann M, Bernal-Robledano A, Boecking B, Cederroth CR, Chalanouli D, Cima R, Denys S, Dettling-Papargyris J, Escalera-Balsera A, Espinosa-Sanchez JM, Gallego-Martinez A, Giannopoulou E, Hidalgo-Lopez L, Hummel M, Kikidis D, Koller M, Lopez-Escamez JA, Marcrum SC, Markatos N, Martin-Lagos J, Martinez-Martinez M, Martinez-Martinez M, Ferron MM, Mazurek B, Mueller-Locatelli N, Neff P, Oppel K, Perez-Carpena P, Robles-Bolivar P, Rose M, Schiele T, Schiller A, Simoes J, Stark S, Staudinger S, Stege A, Verhaert N, Schlee W. Unification of Treatments and Interventions for Tinnitus Patients (UNITI): a study protocol for a multi-center randomized clinical trial. Trials 2021; 22:875. [PMID: 34863270 PMCID: PMC8642746 DOI: 10.1186/s13063-021-05835-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tinnitus represents a relatively common condition in the global population accompanied by various comorbidities and severe burden in many cases. Nevertheless, there is currently no general treatment or cure, presumable due to the heterogeneity of tinnitus with its wide variety of etiologies and tinnitus phenotypes. Hence, most treatment studies merely demonstrated improvement in a subgroup of tinnitus patients. The majority of studies are characterized by small sample sizes, unstandardized treatments and assessments, or applications of interventions targeting only a single organ level. Combinatory treatment approaches, potentially targeting multiple systems as well as treatment personalization, might provide remedy and enhance treatment responses. The aim of the present study is to systematically examine established tinnitus therapies both alone and in combination in a large sample of tinnitus patients. Further, it wants to provide the basis for personalized treatment approaches by evaluating a specific decision support system developed as part of an EU-funded collaborative project (Unification of treatments and interventions for tinnitus patients; UNITI project). METHODS/STUDY DESIGN This is a multi-center parallel-arm randomized clinical trial conducted at five different clinical sites over the EU. The effect of four different tinnitus therapy approaches (sound therapy, structured counseling, hearing aids, cognitive behavioral therapy) applied over a time period of 12 weeks as a single or rather a combinatory treatment in a total number of 500 chronic tinnitus patients will be investigated. Assessments and interventions are harmonized over the involved clinical sites. The primary outcome measure focuses on the domain tinnitus distress assessed via the Tinnitus Handicap Inventory. DISCUSSION Results and conclusions from the current study might not only provide an essential contribution to combinatory and personalized treatment approaches in tinnitus but could also provide more profound insights in the heterogeneity of tinnitus, representing an important step towards a cure for tinnitus. TRIAL REGISTRATION ClinicalTrials.gov NCT04663828 . Registered on 11 December 2020.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| | - Alberto Bernal-Robledano
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Benjamin Boecking
- Tinnitus Center, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | | | | | - Rilana Cima
- Department of Health Psychology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sam Denys
- Department of Neurosciences, Research group Experimental Oto-Rhino-Laryngology, University of Leuven, Leuven, Belgium.,Department of Otorhinolaryngology - Head and Neck surgery, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary University Center for Speech-Language Pathology and Audiology, University Hospitals Leuven, Leuven, Belgium
| | | | - Alba Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Juan Manuel Espinosa-Sanchez
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Alvaro Gallego-Martinez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | | | - Leyre Hidalgo-Lopez
- Department of Mental Health, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Michael Hummel
- Central Biobank Charité, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Dimitris Kikidis
- Department of Otolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocrateion General Hospital, Athens, Greece
| | - Michael Koller
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Jose A Lopez-Escamez
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain
| | - Steven C Marcrum
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaos Markatos
- Department of Otolaryngology, Head and Neck Surgery, National and Kapodistrian University of Athens, Hippocrateion General Hospital, Athens, Greece
| | - Juan Martin-Lagos
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria ibs. GRANADA, Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Maria Martinez-Martinez
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Marta Martinez-Martinez
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Department of Otolaryngology, Instituto de Investigacion Biosanitaria ibs. GRANADA, Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Maria Mata Ferron
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Birgit Mazurek
- Tinnitus Center, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Nicolas Mueller-Locatelli
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria ibs. GRANADA, Hospital Universitario Clinico San Cecilio, Granada, Spain
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany.,Center for Cognitive Neuroscience and Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Kevin Oppel
- Terzo-Institute for Applied Hearing Research, ISMA, Sonneberg, Germany
| | - Patricia Perez-Carpena
- Department of Otolaryngology, Instituto de Investigacion Biosanitaria Ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain.,Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Paula Robles-Bolivar
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, GENYO, Center for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Matthias Rose
- Department of Psychosomatic and Psychotherapy, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Tabea Schiele
- Tinnitus Center, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Axel Schiller
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| | - Sabine Stark
- Tinnitus Center, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Susanne Staudinger
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| | - Alexandra Stege
- Central Biobank Charité, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt Universität Berlin, Berlin, Germany
| | - Nicolas Verhaert
- Department of Neurosciences, Research group Experimental Oto-Rhino-Laryngology, University of Leuven, Leuven, Belgium.,Department of Otorhinolaryngology - Head and Neck surgery, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary University Center for Speech-Language Pathology and Audiology, University Hospitals Leuven, Leuven, Belgium
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitaetsstraße 84, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Lanaia V, Tziridis K, Schulze H. Salicylate-Induced Changes in Hearing Thresholds in Mongolian Gerbils Are Correlated With Tinnitus Frequency but Not With Tinnitus Strength. Front Behav Neurosci 2021; 15:698516. [PMID: 34393736 PMCID: PMC8363116 DOI: 10.3389/fnbeh.2021.698516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Tinnitus is an auditory phantom percept without external sound sources. Despite the high prevalence and tinnitus-associated distress of affected patients, the pathophysiology of tinnitus remains largely unknown, making prevention and treatments difficult to develop. In order to elucidate the pathophysiology of tinnitus, animal models are used where tinnitus is induced either permanently by noise trauma or transiently by the application of salicylate. In a model of trauma-induced tinnitus, we have suggested a central origin of tinnitus-related development of neuronal hyperactivity based on stochastic resonance (SR). SR refers to the physiological phenomenon that weak subthreshold signals for given sensors (or synapses) can still be detected and transmitted if appropriate noise is added to the input of the sensor. The main objective of this study was to characterize the neurophysiological and behavioral effects during salicylate-induced tinnitus and compare these to the conditions within the trauma model. Our data show, in line with the pharmacokinetics, that hearing thresholds generally increase 2 h after salicylate injections. This increase was significantly stronger within the region of best hearing compared to other frequencies. Furthermore, animals showed behavioral signs of tinnitus during that time window and frequency range as assessed by gap prepulse inhibition of the acoustic startle reflex (GPIAS). In contrast to animals with noise trauma-induced tinnitus, salicylate-induced tinnitus animals showed no correlation between hearing thresholds and behavioral signs of tinnitus, indicating that the development of tinnitus after salicylate injection is not based on SR as proposed for the trauma model. In other words, salicylate-induced tinnitus and noise trauma-induced tinnitus are not based on the same neurophysiological mechanism.
Collapse
Affiliation(s)
- Veralice Lanaia
- Experimental Otolaryngology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Objective and Measurable Biomarkers in Chronic Subjective Tinnitus. Int J Mol Sci 2021; 22:ijms22126619. [PMID: 34205595 PMCID: PMC8235100 DOI: 10.3390/ijms22126619] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Tinnitus is associated with increased social costs and reduced quality of life through sleep disorders or psychological distress. The pathophysiology of chronic subjective tinnitus, which accounts for most tinnitus, has not been clearly elucidated. This is because chronic subjective tinnitus is difficult to evaluate objectively, and there are no objective markers that represent the diagnosis or therapeutic effect of tinnitus. Based on the results of studies on patients with chronic subjective tinnitus, objective and measurable biomarkers that help to identify the pathophysiology of tinnitus have been summarized. A total of 271 studies in PubMed, 303 in EMBASE, and 45 in Cochrane Library were found on biomarkers related to chronic subjective tinnitus published until April 2021. Duplicate articles, articles not written in English, review articles, case reports, and articles that did not match our topic were excluded. A total of 49 studies were included. Three specimens, including blood, saliva, and urine, and a total of 58 biomarkers were used as indicators for diagnosis, evaluation, prognosis, and therapeutic effectiveness of tinnitus. Biomarkers were classified into eight categories comprising metabolic, hemostatic, inflammatory, endocrine, immunological, neurologic, and oxidative parameters. Biomarkers can help in the diagnosis, measure the severity, predict prognosis, and treatment outcome of tinnitus.
Collapse
|
11
|
Heading for Personalized rTMS in Tinnitus: Reliability of Individualized Stimulation Protocols in Behavioral and Electrophysiological Responses. J Pers Med 2021; 11:jpm11060536. [PMID: 34207847 PMCID: PMC8226921 DOI: 10.3390/jpm11060536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation tool potentially modulating pathological brain activity. Its clinical effectiveness is hampered by varying results and characterized by inter-individual variability in treatment responses. RTMS individualization might constitute a useful strategy to overcome this variability. A precondition for this approach would be that repeatedly applied protocols result in reliable effects. The condition tinnitus provides the advantage of immediate behavioral consequences (tinnitus loudness changes) after interventions and thus offers an excellent model to exemplify TMS personalization. Objective: The aim was to investigate the test–retest reliability of short rTMS stimulations in modifying tinnitus loudness and oscillatory brain activity as well as to examine the feasibility of rTMS individualization in tinnitus. Methods: Three short verum (1, 10, 20 Hz; 200 pulses) and one sham (0.1 Hz; 20 pulses) rTMS protocol were administered on two different days in 22 tinnitus patients. Before and after each protocol, oscillatory brain activity was recorded with electroencephalography (EEG), together with behavioral tinnitus loudness ratings. RTMS individualization was executed on the basis of behavioral and electrophysiological responses. Stimulation responders were identified via consistent sham-superior increases in tinnitus loudness (behavioral responders) and alpha power increases or gamma power decreases (alpha responders/gamma responders) in accordance with the prevalent neurophysiological models for tinnitus. Results: It was feasible to identify individualized rTMS protocols featuring reliable tinnitus loudness changes (55% behavioral responder), alpha increases (91% alpha responder) and gamma decreases (100% gamma responder), respectively. Alpha responses primary occurred over parieto-occipital areas, whereas gamma responses mainly appeared over frontal regions. On the contrary, test–retest correlation analyses per protocol at a group level were not significant neither for behavioral nor for electrophysiological effects. No associations between behavioral and EEG responses were found. Conclusion: RTMS individualization via behavioral and electrophysiological data in tinnitus can be considered as a feasible approach to overcome low reliability at the group level. The present results open the discussion favoring personalization utilizing neurophysiological markers rather than behavioral responses. These insights are not only useful for the rTMS treatment of tinnitus but also for neuromodulation interventions in other pathologies, as our results suggest that the individualization of stimulation protocols is feasible despite absent group-level reliability.
Collapse
|
12
|
Neurophysiological correlates of residual inhibition in tinnitus: Hints for trait-like EEG power spectra. Clin Neurophysiol 2021; 132:1694-1707. [PMID: 34038848 DOI: 10.1016/j.clinph.2021.03.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate oscillatory brain activity changes following acoustic stimulation in tinnitus and whether these changes are associated with behavioral measures of tinnitus loudness. Moreover, differences in ongoing brain activity between individuals with and without residual inhibition (RI) are examined (responders vs. non-responders). METHODS Three different types of noise stimuli were administered for acoustic stimulation in 45 tinnitus patients. Subjects resting state brain activity was recorded before and after stimulation via EEG alongside with subjective measurements of tinnitus loudness. RESULTS Delta, theta and gamma band power increased, whereas alpha and beta power decreased from pre to post stimulation. Acoustic stimulation responders exhibited reduced gamma and a trend for enhanced alpha activity with the latter localized in the right inferior temporal gyrus. Post stimulation, individuals experiencing RI showed higher theta, alpha and beta power with a peak power difference in the alpha band localized in the right superior temporal gyrus. Neither correlations with behavioral tinnitus measures nor stimulus-specific changes in EEG activity were present. CONCLUSIONS Our observations might be indicative of trait-specific forms of oscillatory signatures in different subsets of the tinnitus population related to acoustic tinnitus suppression. SIGNIFICANCE Results and insights are not only useful to understand basic neural mechanisms behind RI but are also valuable for general neural models of tinnitus.
Collapse
|
13
|
Noreña AJ, Lacher-Fougère S, Fraysse MJ, Bizaguet E, Grevin P, Thai-Van H, Moati L, Le Pajolec C, Fournier P, Ohresser M. A contribution to the debate on tinnitus definition. PROGRESS IN BRAIN RESEARCH 2021; 262:469-485. [PMID: 33931192 DOI: 10.1016/bs.pbr.2021.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tinnitus is generally defined as an auditory perception in the absence of environmental sound stimulation. However, this definition is quite incomplete as it omits an essential aspect, the patient's point of view. This point of view constitutes, first and foremost, a global and unified lived experience, which is not only sensory (localization, loudness, pitch and tone), but also cognitive (thoughts, attentiveness, behaviors) and emotional (discomfort, suffering). This experience can be lived in a very unpleasant way and consequently have a very negative impact on quality of life. This article proposes and justifies a new definition for tinnitus elaborated by a group of French clinicians and researchers, which is more in line with its phenomenology. It also provides a minimum knowledge base, including possibilities for clinical care, hoping to eradicate all misinformation, misconceptions and inappropriate attitudes or practices toward this condition. Here is the short version of our definition: Tinnitus is an auditory sensation without an external sound stimulation or meaning, which can be lived as an unpleasant experience, possibly impacting quality of life.
Collapse
Affiliation(s)
- Arnaud J Noreña
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France.
| | | | | | | | | | - Hung Thai-Van
- Hôpital Edouard Herriot, Pavillon U, Place d'Arsonval, Lyon, France
| | | | | | - Philippe Fournier
- Laboratoire de Neurosciences Cognitives, UMR 7291, Centre National de la Recherche Scientifique, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
14
|
Kim E, Kang H, Noh TS, Oh SH, Suh MW. Auditory cortex hyperconnectivity before rTMS is correlated with tinnitus improvement. Neurologia 2021; 38:S0213-4853(21)00023-2. [PMID: 33722455 DOI: 10.1016/j.nrl.2021.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) has been used as a potential treatment for tinnitus; however, its effectiveness is variable and unpredictable. We hypothesized that resting-state functional connectivity before rTMS may be correlated with rTMS treatment effectiveness. METHODS We applied 1-Hz rTMS to the left primary auditory (A1) and dorsolateral prefrontal cortices (DLPFC) of 10 individuals with tinnitus and 10 age-matched controls. Resting-state functional magnetic resonance imaging (fMRI) studies were performed approximately one week before rTMS. Seed-based connectivity analyses were conducted for each individual, with seed regions as rTMS target areas. RESULTS Compared to controls, the left superior temporal areas showed significantly increased positive connectivity with the left A1 and negative connectivity with the left DLPFC in the tinnitus group. The left frontoparietal and right cerebellar areas showed significantly increased negative connectivity with the left A1 and positive connectivity with the left DLPFC. Seed-based hyperconnectivity was correlated with tinnitus improvement (pre-rTMS vs. 2-week post-rTMS Tinnitus Handicap Inventory scores). Tinnitus improvement was significantly correlated with left A1 hyperconnectivity; however, no correlation was observed with left DLPFC connectivity. Positive rTMS outcomes were associated with significantly increased positive connectivity in bilateral superior temporal areas and significantly increased negative connectivity in bilateral frontal areas. CONCLUSIONS Our results suggest that oversynchronisation of left A1 connectivity before rTMS of the left A1 and DLPFC is associated with treatment effectiveness.
Collapse
Affiliation(s)
- E Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - H Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - T-S Noh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - S-H Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - M-W Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Tinnitus and tinnitus disorder: Theoretical and operational definitions (an international multidisciplinary proposal). PROGRESS IN BRAIN RESEARCH 2021; 260:1-25. [PMID: 33637213 DOI: 10.1016/bs.pbr.2020.12.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As for hypertension, chronic pain, epilepsy and other disorders with particular symptoms, a commonly accepted and unambiguous definition provides a common ground for researchers and clinicians to study and treat the problem. The WHO's ICD11 definition only mentions tinnitus as a nonspecific symptom of a hearing disorder, but not as a clinical entity in its own right, and the American Psychiatric Association's DSM-V doesn't mention tinnitus at all. Here we propose that the tinnitus without and with associated suffering should be differentiated by distinct terms: "Tinnitus" for the former and "Tinnitus Disorder" for the latter. The proposed definition then becomes "Tinnitus is the conscious awareness of a tonal or composite noise for which there is no identifiable corresponding external acoustic source, which becomes Tinnitus Disorder "when associated with emotional distress, cognitive dysfunction, and/or autonomic arousal, leading to behavioural changes and functional disability.". In other words "Tinnitus" describes the auditory or sensory component, whereas "Tinnitus Disorder" reflects the auditory component and the associated suffering. Whereas acute tinnitus may be a symptom secondary to a trauma or disease, chronic tinnitus may be considered a primary disorder in its own right. If adopted, this will advance the recognition of tinnitus disorder as a primary health condition in its own right. The capacity to measure the incidence, prevalence, and impact will help in identification of human, financial, and educational needs required to address acute tinnitus as a symptom but chronic tinnitus as a disorder.
Collapse
|
16
|
Wang H, Tang D, Wu Y, Zhou L, Sun S. The state of the art of sound therapy for subjective tinnitus in adults. Ther Adv Chronic Dis 2020; 11:2040622320956426. [PMID: 32973991 PMCID: PMC7493236 DOI: 10.1177/2040622320956426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Sound therapy is a clinically common method of tinnitus management. Various forms of sound therapy have been developed, but there are controversies regarding the selection criteria and the efficacy of different forms of sound therapy in the clinic. Our goal was to review the types and forms of sound therapy and our understanding of how the different characteristics of tinnitus patients influence their curative effects so as to provide a reference for personalized choice of tinnitus sound therapy. Method: Using an established methodological framework, a search of six databases including PubMed identified 43 records that met our inclusion criteria. The search strategy used the following key words: tinnitus AND (acoustic OR sound OR music) AND (treatment OR therapy OR management OR intervention OR measure). Results: There are various forms of sound therapy, and most of them show positive therapeutic effects. The effect of customized sound therapy is generally better than that of non-customized sound therapy, and patients with more severe initial tinnitus respond better to sound therapy. Conclusion: Sound therapy can effectively suppress tinnitus, at least in some patients. However, there is a lack of randomized controlled trials to identify effective management strategies. Further studies are needed to identify the most effective form of sound therapy for individualized therapy, and large, multicenter, long-term follow-up studies are still needed in order to develop more effective and targeted sound-therapy protocols. In addition, it is necessary to analyze the characteristics of individual tinnitus patients and to unify the assessment criteria of tinnitus.
Collapse
Affiliation(s)
- Haiyan Wang
- ENT Institute and Otorhinolaryngology Department of Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Dongmei Tang
- ENT Institute and Otorhinolaryngology Department of Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yongzhen Wu
- ENT Institute and Otorhinolaryngology Department of Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Li Zhou
- Shanghai High School, Shanghai, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| |
Collapse
|
17
|
Schoisswohl S, Arnds J, Schecklmann M, Langguth B, Schlee W, Neff P. Amplitude Modulated Noise for Tinnitus Suppression in Tonal and Noise-Like Tinnitus. Audiol Neurootol 2020; 24:309-321. [PMID: 31905364 DOI: 10.1159/000504593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The phenomenon of short-term tinnitus suppression by different forms of acoustic stimulation is referred to as residual inhibition (RI). RI can be triggered in the majority of tinnitus cases and was found to be depending on the used intensity, length or types of sounds. Past research already stressed the impact of noise stimulation as well as the superiority of amplitude modulated (AM) pure tones at the individual tinnitus frequency for RI in tonal tinnitus. Recently a novel approach for the determination of noise-like tinnitus characteristics was proposed. OBJECTIVES The aim of the present study was to investigate whether in participants with noise-like tinnitus RI can be increased by AM noise stimuli according to the individual tinnitus frequency range. METHODS For this purpose the individual tinnitus characteristics (noise-like and tonal tinnitus) of 29 people affected by tinnitus (mean age = 55.59, 7 females, mean tinnitus duration = 159.97 months) were assessed via customizable noise-band matching. The objective was to generate bandpass filtered stimuli according to the individual tinnitus sound (individualized bandpass filtered [IBP] sounds). Subsequently, various stimuli differing in bandpass filtering and AM were tested with respect to their potential to induce RI. Participants were acoustically stimulated with 7 different types of stimuli for 3 min each and had to rate the loudness of their tinnitus after each stimuli. RESULTS Results indicate a general efficacy of noise stimuli for the temporary suppression of tinnitus, but no significant differences between AM and unmodulated IBP. Significantly better effects were observed for the subgroup with noise-like tinnitus (n = 14), especially directly after stimulation offset. CONCLUSIONS The study at hand provides further insights in potential mechanisms behind RI for different types of tinnitus. Beyond that, derived principles may qualify for new or extend current tinnitus sound therapies.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Johannes Arnds
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany, .,University Research Priority Program "Dynamics of Healthy Aging," University of Zurich, Zurich, Switzerland,
| |
Collapse
|
18
|
Choice of test stimulus matters for pitch matching performance: Comparison between pure tone and narrow band noise. Hear Res 2019; 381:107776. [DOI: 10.1016/j.heares.2019.107776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/10/2023]
|
19
|
Schoisswohl S, Agrawal K, Simoes J, Neff P, Schlee W, Langguth B, Schecklmann M. RTMS parameters in tinnitus trials: a systematic review. Sci Rep 2019; 9:12190. [PMID: 31434985 PMCID: PMC6704094 DOI: 10.1038/s41598-019-48750-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few years extensive body of research was produced investigating the effects of repetitive transcranial magnetic stimulation (rTMS) for the treatment of chronic tinnitus with heterogeneous results. This heterogeneity is exemplified by two recently published large-scale clinical trials reporting different outcomes. Technical aspects of rTMS were suspected as a potential source for this incongruency. The aim of this systematic review is to examine the overall efficacy as well as to identify possible technical factors relevant for the effectiveness of rTMS tinnitus trials. Via a literature search appropriate original research papers were identified and rTMS parameters were extracted from each study arm for subsequent statistical analysis with respect to observed effects (significant vs. not significant pre-post rTMS effects). Our findings indicate that verum rTMS is superior to sham rTMS as demonstrated by the proportion of significant pre-post contrasts. Some relevant rTMS parameters (e.g., pulse waveform) are not reported. Lower rTMS stimulation intensity was associated with significant effects in verum rTMS arms. An additional stimulation of the DLPFC to the temporal cortex was not found to promote efficacy. Future research should consider differential effects of rTMS induced by technical parameters and strive for an exhaustive reporting of relevant rTMS parameters.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany.
| | - Kushal Agrawal
- Institute of Databases and Information Systems, University of Ulm, Ulm, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Jorge Simoes
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Winfried Schlee
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- European School for Interdisciplinary Tinnitus Research (ESIT), Regensburg, Germany
| |
Collapse
|
20
|
Barry K, Robertson D, Mulders W. Changes in auditory thalamus neural firing patterns after acoustic trauma in rats. Hear Res 2019; 379:89-97. [DOI: 10.1016/j.heares.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
|
21
|
Kan Y, Wang W, Zhang SX, Ma H, Wang ZC, Yang JG. Neural metabolic activity in idiopathic tinnitus patients after repetitive transcranial magnetic stimulation. World J Clin Cases 2019; 7:1582-1590. [PMID: 31367617 PMCID: PMC6658381 DOI: 10.12998/wjcc.v7.i13.1582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/21/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The central mechanism of idiopathic tinnitus is related to hyperactivity of cortical and subcortical auditory and non-auditory areas. Repetitive transcranial magnetic stimulation (rTMS) is a well-tolerated, non-invasive potential treatment option for tinnitus.
AIM To investigate the changes of neural metabolic activity after rTMS in chronic idiopathic tinnitus (IT) patients.
METHODS Eleven patients underwent rTMS (1 Hz, 90% motor threshold, 1000 stimuli/day for consecutive 10 d) on the left temporoparietal region cortex. Tinnitus handicap inventory (THI) and visual analogue score (VAS) were assessed at baseline and posttreatment. All patients underwent 18F-fluorodeoxyglucose (FDG) positron emission tomography to evaluate the neural metabolic activity. Data were preprocessed using statistical parametric mapping and Gretna software to extract the regions of interest (ROIs). The correlation between brain areas involved and THI scores was analyzed.
RESULTS Baseline and posttreatment parameters showed no significant difference regarding THI score (t = 1.019, P = 0.342 > 0.05) and VAS (t = 0.00, P = 1.0 > 0.05). Regions with the highest FDG uptake were the right inferior temporal gyrus (ITG), right parahippocampa gyrus (PHG), right hippocampus, rectus gyrus, left middle frontal gyrus, and right inferior frontal gyrus in IT patients. After rTMS treatment, IT patients showed increased activities in the right PHG, right superior temporal gyrus, right superior frontal gyrus, anterior insula, left inferior parietal lobule, and left precentral gyrus, and decreased activities in the left postcentral gyrus and left ITG. The ROIs in the right parahippocampa gyrus and right superior frontal gyrus were positively correlated with THI scores (r = 0.737, P = 0.037 < 0.05; r = 0.735, P = 0.038 < 0.05).
CONCLUSION Our study showed that 1-Hz rTMS directed to the left temporo-parietal junction resulted no statistically significant symptom alleviation. After treatment, brain areas of the limbic and prefrontal system showed high neutral metabolic activity. The auditory and non-auditory systems together will be the target for rTMS treatment.
Collapse
Affiliation(s)
- Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shu-Xin Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Huan Ma
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhen-Chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ji-Gang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
22
|
Yakunina N, Kim SS, Nam EC. BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS One 2018; 13:e0207281. [PMID: 30485375 PMCID: PMC6261575 DOI: 10.1371/journal.pone.0207281] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Objective Vagus nerve stimulation (VNS) is a neuromodulation method used for treatment of epilepsy and depression. Transcutaneous VNS (tVNS) has been gaining popularity as a noninvasive alternative to VNS. Previous tVNS neuroimaging studies revealed brain (de)activation patterns that involved multiple areas implicated in tinnitus generation and perception. In this study, functional magnetic resonance imaging (fMRI) was used to explore the effects of tVNS on brain activity in patients with tinnitus. Methods Thirty-six patients with chronic tinnitus received tVNS to the inner tragus, cymba conchae, and earlobe (sham stimulation). Results The locus coeruleus and nucleus of the solitary tract in the brainstem were activated in response to stimulation of both locations compared with the sham stimulation. The cochlear nuclei were also activated, which was not observed in healthy subjects with normal hearing. Multiple auditory and limbic structures, as well as other brain areas associated with generation and perception of tinnitus, were deactivated by tVNS, particularly the parahippocampal gyrus, which was recently speculated to cause tinnitus in hearing-impaired patients. Conclusions tVNS via the inner tragus or cymba conchae suppressed neural activity in the auditory, limbic, and other tinnitus-related non-auditory areas through auditory and vagal ascending pathways in tinnitus patients. The results from this study are discussed in the context of several existing models of tinnitus. They indicate that the mechanism of action of tVNS might be involved in multiple brain areas responsible for the generation of tinnitus, tinnitus-related emotional annoyance, and their mutual reinforcement.
Collapse
Affiliation(s)
- Natalia Yakunina
- Institute of Medical Science, Kangwon National University, School of Medicine, Chuncheon, Republic of Korea
- Neuroscience Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
| | - Sam Soo Kim
- Neuroscience Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Radiology, Kangwon National University, School of Medicine, Chuncheon, Republic of Korea
| | - Eui-Cheol Nam
- Neuroscience Research Institute, Kangwon National University Hospital, Chuncheon, Republic of Korea
- Department of Otolaryngology, Kangwon National University, School of Medicine, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Haider HF, Bojić T, Ribeiro SF, Paço J, Hall DA, Szczepek AJ. Pathophysiology of Subjective Tinnitus: Triggers and Maintenance. Front Neurosci 2018; 12:866. [PMID: 30538616 PMCID: PMC6277522 DOI: 10.3389/fnins.2018.00866] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tinnitus is the conscious perception of a sound without a corresponding external acoustic stimulus, usually described as a phantom perception. One of the major challenges for tinnitus research is to understand the pathophysiological mechanisms triggering and maintaining the symptoms, especially for subjective chronic tinnitus. Our objective was to synthesize the published literature in order to provide a comprehensive update on theoretical and experimental advances and to identify further research and clinical directions. We performed literature searches in three electronic databases, complemented by scanning reference lists from relevant reviews in our included records, citation searching of the included articles using Web of Science, and manual searching of the last 6 months of principal otology journals. One-hundred and thirty-two records were included in the review and the information related to peripheral and central mechanisms of tinnitus pathophysiology was collected in order to update on theories and models. A narrative synthesis examined the main themes arising from this information. Tinnitus pathophysiology is complex and multifactorial, involving the auditory and non-auditory systems. Recent theories assume the necessary involvement of extra-auditory brain regions for tinnitus to reach consciousness. Tinnitus engages multiple active dynamic and overlapping networks. We conclude that advancing knowledge concerning the origin and maintenance of specific tinnitus subtypes origin and maintenance mechanisms is of paramount importance for identifying adequate treatment.
Collapse
Affiliation(s)
- Haúla Faruk Haider
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Tijana Bojić
- Laboratory of Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Sara F Ribeiro
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - João Paço
- ENT Department, Hospital Cuf Infante Santo - NOVA Medical School, Lisbon, Portugal
| | - Deborah A Hall
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Hearing Sciences, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,University of Nottingham Malaysia, Semeniyh, Malaysia
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
24
|
Ramos Macías A, Falcón-González JC, Manrique Rodríguez M, Morera Pérez C, García-Ibáñez L, Cenjor Español C, Coudert-Koall C, Killian M. One-Year Results for Patients with Unilateral Hearing Loss and Accompanying Severe Tinnitus and Hyperacusis Treated with a Cochlear Implant. Audiol Neurootol 2018; 23:8-19. [PMID: 29929187 DOI: 10.1159/000488755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To show that patients with unilateral hearing loss (UHL), with one ear fulfilling cochlear implant (CI) indication criteria, and an additional severe tinnitus handicap can be treated effectively with a CI. METHOD A prospective multi-centre study was conducted in five Spanish centres. Sixteen adult patients with UHL and a mean Tinnitus Handicap Inventory (THI) score of at least 58 were implanted. The study design included repeated within-subject measures of quality of life (Health Utility Index Mark 3 [HUI3]), tinnitus (THI, Visual Analogue Scale [VAS] on tinnitus loudness), hearing (Speech, Spatial, and Qualities of Hearing Scale- [SSQ]), and hyperacusis (Test de Hipersensibilidad al Sonido [THS]) up to 12 months after the initial CI fitting. RESULTS Group data showed significant subjective benefit from CI treatment: the preoperative HUI3 total utility score of 0.45 went up to 0.57 at 6 months and 0.63 at 12 months; the preoperative THI total score of 75 decreased to 40 at 6 months and 35 at 12 months. The preoperative tinnitus loudness VAS score of 8.2 decreased to 2.4 at 6 months and 2.2 at 12 months with the implant "On" and to 6.7 at 6 months and 6.5 at 12 months with the implant "Off." The preoperative THS total score of 26 decreased to 17 at 12 months. The preoperative SSQ total score of 4.2 increased to 5.1 at 6 months and 6.3 at 12 months. No unanticipated adverse events were reported during the study period. At 12 months after CI activation all subjects (except 1 subject who used the device 6 days a week) wore their devices all day and every day. The primary reason for CI use was split evenly between tinnitus suppression (n = 6) and both hearing and tinnitus (n = 6). CONCLUSION A CI should be considered as a treatment option in patients with UHL and a concomitant severe tinnitus handicap. However, appropriate counselling of candidates on the anticipated risks, benefits, and limitations that are inherent to cochlear implantation is imperative.
Collapse
Affiliation(s)
- Angel Ramos Macías
- Unidad de Hipoacusia, Servicio de Otorrinolaringología, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas, Spain
| | - Juan Carlos Falcón-González
- Unidad de Hipoacusia, Servicio de Otorrinolaringología, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas, Spain
| | | | | | - Luis García-Ibáñez
- Servicio de Otorrinolaringología, Instituto de Otologia Garcia Ibanez, Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Yadollahpour A, Mayo M, Saki N, Rashidi S, Bayat A. A chronic protocol of bilateral transcranial direct current stimulation over auditory cortex for tinnitus treatment: Dataset from a double-blinded randomized controlled trial. F1000Res 2018; 7:733. [PMID: 30356442 PMCID: PMC6178906 DOI: 10.12688/f1000research.14971.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 11/30/2022] Open
Abstract
Preliminary studies have demonstrated the therapeutic potential of transcranial direct current stimulation (tDCS) for chronic tinnitus. However, the findings are controversial and most of the studies investigated effects of a single session of tDCS and short after-effects, ranging from hours to days. To our knowledge, there is no published study investigating the effects of a chronic protocol of bilateral tDCS over auditory cortex (AC) with one month follow-up in a double blinded randomized clinical trial. This dataset presents the results of a double-blinded placebo controlled trial investigating the effects of chronic protocol (10 sessions) of tDCS over AC with 1 month follow-up. The data of the two groups, real tDCS (n=25) and sham tDCS (n=15), are reported. The dataset includes three main data groups: patient- and tinnitus-specific data, data of the primary and secondary outcomes, and data on the adverse effects of and tolerability to tDCS. The first group includes demographic information, audiometric assessments, and tinnitus-specific characteristics. The second group includes tinnitus handicap inventory (THI) scores, tinnitus loudness, and tinnitus related distress based on 0-10 numerical visual analogue scale (VAS) scores. The values of the primary and secondary outcomes for pre-intervention and at different time points following interventions are presented. THI scores pre-intervention and immediately post-intervention and at 1 month follow-up; the scores of tinnitus loudness and distress scores for pre-intervention, and immediately, 1 hour, 1 week, and at 1 month after the last stimulation session are presented. Moreover, the adverse effects of and tolerability to the tDCS were assessed using a customized questionnaire after the last tDCS session. This dataset can be used alone or in combination with other datasets using advanced statistical analyses and modeling to investigate the treatment efficacy of tDCS in chronic intractable tinnitus.
Collapse
Affiliation(s)
- Ali Yadollahpour
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Bioelectromagnetic Clinic, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Miguel Mayo
- Department of Otorhinolaryngology, A Coruña University Hospital Complex, A Coruña, Spain
| | - Nader Saki
- Bioelectromagnetic Clinic, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Rashidi
- Hearing Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Bayat
- Hearing Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
26
|
Bayat A, Mayo M, Rashidi S, Saki N, Yadollahpour A. Repeated sessions of bilateral transcranial direct current stimulation on intractable tinnitus: a study protocol for a double-blind randomized controlled trial. F1000Res 2018; 7:317. [PMID: 29707203 PMCID: PMC5887075 DOI: 10.12688/f1000research.13558.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Transcranial Direct Current Stimulation (tDCS) is reportedly a potential treatment option for chronic tinnitus. The main drawbacks of previous studies are short term follow up and focusing on the efficacy of single session tDCS. This study aims to investigate the therapeutic efficacy, adverse effects (AEs) and tolerability of repeated sessions of bilateral tDCS over auditory cortex (AC) on tinnitus symptoms Methods: This will be a double-blinded randomized placebo controlled parallel trial on patients (n=90) with intractable chronic tinnitus (> 2 years) randomly divided into three groups of anodal, cathodal, and sham tDCS. In the sham treatment, after 30 sec the device will be turned OFF without informing the patients. The tDCS protocol consists of 10 sessions (daily 20 min session; 2 mA current for 5 consecutive days per week and 2 consecutive weeks) applied through 35 cm 2 electrodes. The primary outcome is tinnitus handicap inventory (THI) which will be assessed pre- and post-intervention and at one month follow-up. The secondary outcomes are tinnitus loudness and distress to be assessed using a visual analogue scale (VAS) pre-intervention, and immediately, one hour, one week, and one month after last stimulation. The AEs and tolerability of patients will be evaluated after each session using a customized questionnaire. Possible interactions between the disease features and treatment response will be evaluated. Discussion: To our knowledge this is the first study to investigate the effects of repeated sessions of tDCS on chronic tinnitus symptoms with one month follow-up. In addition, the AEs, and tolerability of patients will be studied. In addition, the possible interactions between the disease specific features including the hearing loss, laterality, type of tinnitus, and treatment response will be evaluated. Trial registration: The study has been registered as a clinical trial in Iranian Registry of Clinical Trial ( IRCT2016110124635N6) on the 01/06/2017.
Collapse
Affiliation(s)
- Arash Bayat
- Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Miguel Mayo
- Department of Otorhinolaryngology, A Coruña University Hospital Complex, A Coruña, 15006, Spain
| | - Samaneh Rashidi
- Bioelectromagnetic Clinic, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61936-73111, Iran
| | - Nader Saki
- Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Ali Yadollahpour
- Bioelectromagnetic Clinic, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61936-73111, Iran.,Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-33118, Iran
| |
Collapse
|
27
|
Tetteh H, Lee M, Lau CG, Yang S, Yang S. Tinnitus: Prospects for Pharmacological Interventions With a Seesaw Model. Neuroscientist 2017; 24:353-367. [PMID: 29283017 DOI: 10.1177/1073858417733415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chronic tinnitus, the perception of lifelong constant ringing in ear, is one capital cause of disability in modern society. It is often present with various comorbid factors that severely affect quality of life, including insomnia, deficits in attention, anxiety, and depression. Currently, there are limited therapeutic treatments for alleviation of tinnitus. Tinnitus can involve a shift in neuronal excitation/inhibition (E/I) balance, which is largely modulated by ion channels and receptors. Thus, ongoing research is geared toward pharmaceutical approaches that modulate the function of ion channels and receptors. Here, we propose a seesaw model that delineates how tinnitus-related ion channels and receptors are involved in homeostatic E/I balance of neurons. This review provides a thorough account of our current mechanistic understanding of tinnitus and insight into future direction of drug development.
Collapse
Affiliation(s)
- Hannah Tetteh
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Minseok Lee
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - C Geoffrey Lau
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Sunggu Yang
- 2 Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- 1 Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
28
|
No auditory experience, no tinnitus: Lessons from subjects with congenital- and acquired single-sided deafness. Hear Res 2017; 354:9-15. [DOI: 10.1016/j.heares.2017.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
|
29
|
Vlajkovic SM, Ambepitiya K, Barclay M, Boison D, Housley GD, Thorne PR. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss. Hear Res 2016; 345:43-51. [PMID: 28034618 DOI: 10.1016/j.heares.2016.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
Our previous studies have shown that the stimulation of A1 adenosine receptors in the inner ear can mitigate the loss of sensory hair cells and hearing loss caused by exposure to traumatic noise. Here, we focus on the role of adenosine receptors (AR) in the development of noise-induced neural injury in the cochlea using A1AR and A2AAR null mice (A1AR-/- and A2AAR-/-). Wildtype (WT) and AR deficient mice were exposed to octave band noise (8-16 kHz, 100 dB SPL) for 2 h to induce cochlear injury and hearing loss. Auditory thresholds and input/output functions were assessed using auditory brainstem responses (ABR) before and two weeks post-exposure. The loss of outer hair cells (OHC), afferent synapses and spiral ganglion neurons (SGN) were assessed by quantitative histology. A1AR-/- mice (6-8 weeks old) displayed a high frequency hearing loss (ABR threshold shift and reduced ABR wave I and II amplitudes). This hearing loss was further aggravated by acute noise exposure and exceeded the hearing loss in the WT and A2AAR-/- mice. All mice experienced the loss of OHC, synaptic ribbons and SGN after noise exposure, but the loss of SGN was significantly higher in A1AR-/- mice than in the A2AAR-/- and WT genotypes. The A2AAR-/- demonstrated better preservation of OHC and afferent synapses and the minimal loss of SGN after noise exposure. The findings suggest that the loss of A1AR expression results in an increased susceptibility to cochlear neural injury and hearing loss, whilst absence of A2AAR increases cochlear resistance to acoustic trauma.
Collapse
Affiliation(s)
- Srdjan M Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | - Kaushi Ambepitiya
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Meagan Barclay
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | - Detlev Boison
- RS Dow Neurobiology Laboratories, Legacy Research, Portland, OR, 97232, USA
| | - Gary D Housley
- Department of Physiology and Translational Neuroscience Facility, School of Medical Sciences, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Peter R Thorne
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| |
Collapse
|
30
|
Song Y, Liu J, Ma F, Mao L. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats. Acta Otolaryngol 2016; 136:1220-1224. [PMID: 27388640 DOI: 10.1080/00016489.2016.1204664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. OBJECTIVE To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. MATERIALS AND METHODS This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. RESULTS Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.
Collapse
|
31
|
Factor Analysis of Low-Frequency Repetitive Transcranial Magnetic Stimulation to the Temporoparietal Junction for Tinnitus. Neural Plast 2016; 2016:2814056. [PMID: 27847647 PMCID: PMC5101393 DOI: 10.1155/2016/2814056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/16/2016] [Accepted: 10/03/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives. We investigated factors that contribute to suppression of tinnitus after repetitive transcranial magnetic stimulation (rTMS). Methods. A total of 289 patients with tinnitus underwent active 1 Hz rTMS in the left temporoparietal region. A visual analog scale (VAS) was used to assess tinnitus loudness. All participants were interviewed regarding age, gender, tinnitus duration, laterality and pitch, audiometric parameters, sleep, and so forth. The resting motor thresholds (RMTs) were measured in all patients and 30 age- and gender-matched volunteers. Results. With respect to different factors that contribute to tinnitus suppression, we found improvement in the following domains: shorter duration, normal hearing (OR: 3.25, 95%CI: 2.01-5.27, p = 0.001), and without sleep disturbance (OR: 2.51, 95%CI: 1.56-4.1, p = 0.005) adjusted for age and gender. The patients with tinnitus lasting less than 1 year were more likely to show suppression of tinnitus (OR: 2.77, 95%CI: 1.48-5.19, p = 0.002) compared to those with tinnitus lasting more than 5 years. Tinnitus patients had significantly lower RMTs compared with healthy volunteers. Conclusion. Active low-frequency rTMS results in a significant reduction in the loudness of tinnitus. Significant tinnitus suppression was shown in subjects with shorter tinnitus duration, with normal hearing, and without sleep disturbance.
Collapse
|
32
|
Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci 2016; 37:1511-6. [DOI: 10.1007/s10072-016-2603-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
33
|
Prognostic value of mean platelet volume on tinnitus. The Journal of Laryngology & Otology 2015; 130:162-5. [PMID: 26653396 DOI: 10.1017/s0022215115003254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE This study aimed to determine whether there was any relationship between tinnitus and mean platelet volume. METHODS This retrospective study was conducted between January 2013 and January 2014 in Ankara Atatürk Hospital and Ondokuz Mayıs University Hospital, Turkey, on a study group of 86 patients with tinnitus and a control group of 84 healthy subjects. Mean platelet volume was recorded and comparisons were made between the two groups. RESULTS Mean (± standard deviation) platelet volume was 7.67 ± 0.83 μm(3) in the study group and 7.28 ± 0.56 μm(3) in the control group. There was a statistically significant difference in mean platelet volume between the tinnitus patients and the healthy subjects (p < 0.05). CONCLUSION The clinical findings indicated that tinnitus patients had a higher mean platelet volume than the healthy control subjects; however, the pathophysiological mechanism remains unclear.
Collapse
|
34
|
Polanski JF, Soares AD, de Mendonça Cruz OL. Antioxidant therapy in the elderly with tinnitus. Braz J Otorhinolaryngol 2015; 82:269-74. [PMID: 26547700 PMCID: PMC9444615 DOI: 10.1016/j.bjorl.2015.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Several approaches have been tried for the treatment of tinnitus, from cognitive-behavioral therapies and sound enrichment to medication. In this context, antioxidants, widely used in numerous areas of medicine, appear to represent a promising approach for the control of this symptom, which often is poorly controlled. OBJECTIVE To evaluate the effects of antioxidant therapy for tinnitus in a group of elderly patients. METHODS Prospective, randomized, double-blinded, placebo-controlled clinical trial. The sample consisted of 58 subjects aged 60 years or older, with a complaint of tinnitus associated with sensorineural hearing loss. These individuals completed the Tinnitus Handicap Inventory (THI) questionnaire before and after six months of therapy. The treatment regimens were: Ginkgo biloba dry extract (120mg/day), α-lipoic acid (60mg/day)+vitamin C (600mg/day), papaverine hydrochloride (100mg/day)+vitamin E (400mg/day), and placebo. RESULTS There was no statistically significant difference between THI by degree (p=0.441) and by score (p=0.848) before and after treatment. CONCLUSION There was no benefit from the use of antioxidant agents for tinnitus in this sample.
Collapse
Affiliation(s)
- José Fernando Polanski
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Hospital de Clínicas, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| | | | - Oswaldo Laércio de Mendonça Cruz
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Otorhinolaryngology and Head and Neck Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
35
|
Donovan C, Sweet J, Eccher M, Megerian C, Semaan M, Murray G, Miller J. Deep Brain Stimulation of Heschl Gyrus. Neurosurgery 2015; 77:940-7. [PMID: 26280116 DOI: 10.1227/neu.0000000000000969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND:
Tinnitus is a source of considerable morbidity, and neuromodulation has been shown to be a potential treatment option. However, the location of the primary auditory cortex within Heschl gyrus in the temporal operculum presents challenges for targeting and electrode implantation.
OBJECTIVE:
To determine whether anatomic targeting with intraoperative verification using evoked potentials can be used to implant electrodes directly into the Heschl gyrus (HG).
METHODS:
Nine patients undergoing stereo-electroencephalogram evaluation for epilepsy were enrolled. HG was directly targeted on volumetric magnetic resonance imaging, and framed stereotaxy was used to implant an electrode parallel to the axis of the gyrus by using an oblique anterolateral-posteromedial trajectory. Intraoperative evoked potentials from auditory stimuli were recorded from multiple electrode contacts. Postoperatively, stimulation of each electrode was performed and participants were asked to describe the percept. Audiometric analysis was performed for 2 participants during subthreshold stimulation.
RESULTS:
Sounds presented to the contralateral and ipsilateral ears produced evoked potentials in HG electrodes in all participants intraoperatively. Stimulation produced a reproducible sensation of sound in all participants with perceived volume proportional to amplitude. Four participants reported distinct sounds when different electrodes were stimulated, with more medial contacts producing tones perceived as higher in pitch. Stimulation was not associated with adverse audiometric effects. There were no complications of electrode implantation.
CONCLUSION:
Direct anatomic targeting with physiological verification can be used to implant electrodes directly into primary auditory cortex. If deep brain stimulation proves effective for intractable tinnitus, this technique may be useful to assist with electrode implantation.
Collapse
Affiliation(s)
- Chris Donovan
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jennifer Sweet
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew Eccher
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cliff Megerian
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Maroun Semaan
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Gail Murray
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jonathan Miller
- The Neurological Institute, University Hospital Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
36
|
Tziridis K, Ahlf S, Jeschke M, Happel MFK, Ohl FW, Schulze H. Noise Trauma Induced Neural Plasticity Throughout the Auditory System of Mongolian Gerbils: Differences between Tinnitus Developing and Non-Developing Animals. Front Neurol 2015; 6:22. [PMID: 25713557 PMCID: PMC4322711 DOI: 10.3389/fneur.2015.00022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/27/2015] [Indexed: 12/29/2022] Open
Abstract
In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development.
Collapse
Affiliation(s)
- Konstantin Tziridis
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Sönke Ahlf
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| | - Marcus Jeschke
- Leibniz Institute for Neurobiology , Magdeburg , Germany
| | - Max F K Happel
- Leibniz Institute for Neurobiology , Magdeburg , Germany ; Institute of Biology, Otto-von-Guericke-University , Magdeburg , Germany
| | - Frank W Ohl
- Leibniz Institute for Neurobiology , Magdeburg , Germany ; Institute of Biology, Otto-von-Guericke-University , Magdeburg , Germany ; Center for Behavioral Brain Sciences , Magdeburg , Germany
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
37
|
Non-penetrating round window electrode stimulation for tinnitus therapy followed by cochlear implantation. Eur Arch Otorhinolaryngol 2014; 272:3283-93. [DOI: 10.1007/s00405-014-3413-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/26/2014] [Indexed: 12/24/2022]
|
38
|
Adjamian P. The application of electro- and magneto-encephalography in tinnitus research - methods and interpretations. Front Neurol 2014; 5:228. [PMID: 25431567 PMCID: PMC4230045 DOI: 10.3389/fneur.2014.00228] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years, there has been a significant increase in the use of electroencephalography (EEG) and magnetoencephalography (MEG) to investigate changes in oscillatory brain activity associated with tinnitus with many conflicting results. Current view of the underlying mechanism of tinnitus is that it results from changes in brain activity in various structures of the brain as a consequence of sensory deprivation. This in turn gives rise to increased spontaneous activity and/or synchrony in the auditory centers but also involves modulation from non-auditory processes from structures of the limbic and paralimbic system. Some of the neural changes associated with tinnitus may be assessed non-invasively in human beings with MEG and EEG (M/EEG) in ways, which are superior to animal studies and other non-invasive imaging techniques. However, both MEG and EEG have their limitations and research results can be misinterpreted without appropriate consideration of these limitations. In this article, I intend to provide a brief review of these techniques, describe what the recorded signals reflect in terms of the underlying neural activity, and their strengths and limitations. I also discuss some pertinent methodological issues involved in tinnitus-related studies and conclude with suggestions to minimize possible discrepancies between results. The overall message is that while MEG and EEG are extremely useful techniques, the interpretation of results from tinnitus studies requires much caution given the individual variability in oscillatory activity and the limits of these techniques.
Collapse
|
39
|
Liu F, Han X, Li Y, Yu S. Acupuncture in the treatment of tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2014; 273:285-94. [DOI: 10.1007/s00405-014-3341-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
40
|
Thabit MN, Fouad N, Shahat B, Youssif M. Combined Central and Peripheral Stimulation for Treatment of Chronic Tinnitus. Neurorehabil Neural Repair 2014; 29:224-33. [DOI: 10.1177/1545968314542616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background. Tinnitus is a common untreatable condition that originates from central maladaptive plasticity initiated by peripheral injury. Repetitive transcranial magnetic stimulation (rTMS), direct cochlear low-level laser therapy (LLLT), and acupuncture were tried for tinnitus treatment, but the results of these methods were clinically unsatisfactory. Objective. This study aimed to test the combined effect of the 3 methods targeting both peripheral and central auditory areas as a new therapeutic strategy for tinnitus. Methods. For this, 30 patients were randomized to 3 equal groups receiving 3 different interventions: inhibitory rTMS to the left auditory cortex, LLLT (which includes a combination of direct cochlear LLLT and laser acupuncture) to the affected ear(s), and finally, a combination of rTMS and LLLT. The Tinnitus Handicap Inventory (THI) and Visual Analogue Scale (VAS) were assessed before, immediately after, and at 2 weeks and 4 weeks after 10 consecutive every-other-day sessions for each intervention type. Results. We found that combined stimulation was effective in tinnitus treatment. This effect remained for 4 weeks after the end of the treatment. However, each of rTMS and LLLT alone had no significant effect. Repeated-measures ANOVA showed a significant effect of Time and Time × Intervention interaction for THI and VAS scores. The post hoc t test for different time points per intervention revealed a significant difference between baseline and all postintervention measurements of both THI and VAS for the combination intervention. Conclusion. Combined central rTMS and peripheral LLLT is more beneficial as a new method for management of tinnitus rather than these two used separately.
Collapse
|
41
|
De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B. An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 2014; 44:16-32. [PMID: 23597755 DOI: 10.1016/j.neubiorev.2013.03.021] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 01/30/2023]
|
42
|
Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH, Cantello RM, Cincotta M, de Carvalho M, De Ridder D, Devanne H, Di Lazzaro V, Filipović SR, Hummel FC, Jääskeläinen SK, Kimiskidis VK, Koch G, Langguth B, Nyffeler T, Oliviero A, Padberg F, Poulet E, Rossi S, Rossini PM, Rothwell JC, Schönfeldt-Lecuona C, Siebner HR, Slotema CW, Stagg CJ, Valls-Sole J, Ziemann U, Paulus W, Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014; 125:2150-2206. [PMID: 25034472 DOI: 10.1016/j.clinph.2014.05.021] [Citation(s) in RCA: 1287] [Impact Index Per Article: 128.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
A group of European experts was commissioned to establish guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) from evidence published up until March 2014, regarding pain, movement disorders, stroke, amyotrophic lateral sclerosis, multiple sclerosis, epilepsy, consciousness disorders, tinnitus, depression, anxiety disorders, obsessive-compulsive disorder, schizophrenia, craving/addiction, and conversion. Despite unavoidable inhomogeneities, there is a sufficient body of evidence to accept with level A (definite efficacy) the analgesic effect of high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the pain and the antidepressant effect of HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC). A Level B recommendation (probable efficacy) is proposed for the antidepressant effect of low-frequency (LF) rTMS of the right DLPFC, HF-rTMS of the left DLPFC for the negative symptoms of schizophrenia, and LF-rTMS of contralesional M1 in chronic motor stroke. The effects of rTMS in a number of indications reach level C (possible efficacy), including LF-rTMS of the left temporoparietal cortex in tinnitus and auditory hallucinations. It remains to determine how to optimize rTMS protocols and techniques to give them relevance in routine clinical practice. In addition, professionals carrying out rTMS protocols should undergo rigorous training to ensure the quality of the technical realization, guarantee the proper care of patients, and maximize the chances of success. Under these conditions, the therapeutic use of rTMS should be able to develop in the coming years.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France.
| | - Nathalie André-Obadia
- Neurophysiology and Epilepsy Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France; Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France
| | - Andrea Antal
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Samar S Ayache
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roberto M Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | | | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Portugal
| | - Dirk De Ridder
- Brai(2)n, Tinnitus Research Initiative Clinic Antwerp, Belgium; Department of Neurosurgery, University Hospital Antwerp, Belgium
| | - Hervé Devanne
- Department of Clinical Neurophysiology, Lille University Hospital, Lille, France; ULCO, Lille-Nord de France University, Lille, France
| | - Vincenzo Di Lazzaro
- Department of Neurosciences, Institute of Neurology, Campus Bio-Medico University, Rome, Italy
| | - Saša R Filipović
- Department of Neurophysiology, Institute for Medical Research, University of Belgrade, Beograd, Serbia
| | - Friedhelm C Hummel
- Brain Imaging and Neurostimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Nyffeler
- Perception and Eye Movement Laboratory, Department of Neurology, University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| | - Emmanuel Poulet
- Department of Emergency Psychiatry, CHU Lyon, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France; EAM 4615, Lyon-1 University, Bron, France
| | - Simone Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy; Institute of Neurology, Catholic University, Rome, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | | | - Hartwig R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Charlotte J Stagg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Josep Valls-Sole
- EMG Unit, Neurology Service, Hospital Clinic, Department of Medicine, University of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - Luis Garcia-Larrea
- Inserm U 1028, NeuroPain Team, Neuroscience Research Center of Lyon (CRNL), Lyon-1 University, Bron, France; Pain Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
43
|
|
44
|
Short term effects of repetitive transcranial magnetic stimulation in patients with catastrophic intractable tinnitus: preliminary report. Clin Exp Otorhinolaryngol 2013; 6:63-7. [PMID: 23799161 PMCID: PMC3687063 DOI: 10.3342/ceo.2013.6.2.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The short-term effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) in the patients with catastrophic and intractable tinnitus were investigated. METHODS Fifteen participants were recruited among patients with catastrophic intractable tinnitus to receive 1 Hz rTMS treatment. Tinnitus severity was assessed before rTMS and directly after sham or real rTMS using the tinnitus handicap inventory (THI) and visual analog scale (VAS). RESULTS There was no statistical difference in the THI score before and after sham stimulation. However, after 5 replications of real rTMS there was statistically significant reduction in THI score. Eight patients showed a decrease of more than 10 in THI score. Patients who showed a vast change in THI score after rTMS also showed a large decrease in their VAS score (r=0.879, P<0.001). Duration of tinnitus and change of THI score showed statistically significant moderate negative correlation (r=-0.637, P=0.011). But in case of VAS, there was no significant difference between VAS and duration of tinnitus. CONCLUSION Among total 15 patients with catastrophic intractable chronic tinnitus, eight patients showed some improvement in symptoms after 1 Hz rTMS. rTMS can be considered management modality for intractable tinnitus even with distress as severe as catastrophic stage.
Collapse
|
45
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
46
|
Fioretti A, Fusetti M, Eibenstein A. Association between sleep disorders, hyperacusis and tinnitus: Evaluation with tinnitus questionnaires. Noise Health 2013; 15:91-5. [DOI: 10.4103/1463-1741.110287] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
47
|
Herholz S, Zatorre R. Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron 2012; 76:486-502. [PMID: 23141061 DOI: 10.1016/j.neuron.2012.10.011] [Citation(s) in RCA: 417] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
|
48
|
Engineer ND, Møller AR, Kilgard MP. Directing neural plasticity to understand and treat tinnitus. Hear Res 2012; 295:58-66. [PMID: 23099209 DOI: 10.1016/j.heares.2012.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 01/01/2023]
Abstract
The functional organization of cortical and subcortical networks can be altered by sensory experience. Sensory deprivation destabilizes neural networks resulting in increased excitability, greater neural synchronization and increased spontaneous firing in cortical and subcortical neurons. This pathological activity is thought to generate the phantom percept of chronic tinnitus. While sound masking, pharmacotherapy and cortical stimulation can temporarily suppress tinnitus for some patients, these interventions do not eliminate the pathological activity that is responsible for tinnitus. A treatment that could reverse the underlying pathology would be expected to be effective in alleviating the symptoms, if not curative. Targeted neural plasticity can provide the specificity required to restore normal neural activity in dysfunctional neural circuits that are assumed to underlie many forms of tinnitus. The forebrain cholinergic system and the noradrenergic system play a significant role in modulating cortical plasticity. Stimulation of the vagus nerve is known to activate these neuromodulatory pathways. Our earlier studies have demonstrated that pairing sounds with either nucleus basalis of Meynert (NB) stimulation or vagus nerve stimulation (VNS) generates highly specific and long-lasting plasticity in auditory cortex neurons. Repeatedly pairing tones with brief pulses of VNS reversed the physiological and behavioral correlates of tinnitus in noise exposed rats. We also recently demonstrated that VNS modulates synchrony and excitability in the auditory cortex at least in part by activation of muscarinic acetylcholine receptors, suggesting that acetylcholine is involved in the mechanism of action of VNS. These results suggest that pairing sounds with VNS provides a new avenue of treatment for some forms of tinnitus. This paper discusses neuromodulation as treatment for tinnitus with a focus on the potential value of pairing VNS with sound stimulation as a treatment of chronic tinnitus.
Collapse
Affiliation(s)
- Navzer D Engineer
- MicroTransponder, Inc., 2802 Flintrock Trace, Suite 225, Austin, TX 78738, USA.
| | | | | |
Collapse
|
49
|
Peng Z, Chen XQ, Gong SS. Effectiveness of Repetitive Transcranial Magnetic Stimulation for Chronic Tinnitus. Otolaryngol Head Neck Surg 2012; 147:817-25. [PMID: 22941756 DOI: 10.1177/0194599812458771] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective This systematic review aimed to assess the effectiveness of repetitive transcranial magnetic stimulation (rTMS) treatment for chronic tinnitus. Data Sources Relevant electronic databases and a reference list of articles published up to January 2012 were searched. Randomized controlled clinical trials of all types of rTMS treatment for patients with chronic tinnitus were included. Review Methods A literature search was conducted with structured criteria to select studies evaluated for systematic review. Results Five trials (160 participants) were included in this review. Repetitive transcranial magnetic stimulation treatment showed benefits in the short term, but the long-term effects are questionable. The Tinnitus Handicap Inventory (THI) and the visual analog scale (VAS) were the major assessment methods used. After active TMS stimulation, the reduction in the THI total score and VAS was significant compared with baseline at the first time point assessed and in the short term (2 weeks and 4 weeks). The longest follow-up time was 26 weeks after treatment, and the shortest follow-up time was 2 weeks. No severe side effects were reported from the use of rTMS. Differences in age, hearing level, duration of tinnitus of the included patients, and the condition of sham treatment may influence the effect. Conclusion Repetitive transcranial magnetic stimulation could be a new therapeutic tool for the treatment of chronic tinnitus, and thus far we have not been able to demonstrate any substantial risk from rTMS treatment. However, the long-term effects of rTMS treatment for tinnitus are not clear and will require further study.
Collapse
Affiliation(s)
- Zhe Peng
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, and Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiu-Qi Chen
- Department of Pediatrics, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shu-Sheng Gong
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China, and Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
50
|
Pantev C, Okamoto H, Teismann H. Tinnitus: the dark side of the auditory cortex plasticity. Ann N Y Acad Sci 2012; 1252:253-8. [DOI: 10.1111/j.1749-6632.2012.06452.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|