1
|
Fu J, Chen H, Xu C, Jia Z, Lu Q, Zhang H, Hu Y, Lv K, Zhang J, Geng D. Harnessing routine MRI for the early screening of Parkinson's disease: a multicenter machine learning study using T2-weighted FLAIR imaging. Insights Imaging 2025; 16:92. [PMID: 40285905 PMCID: PMC12033128 DOI: 10.1186/s13244-025-01961-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE To explore the potential of radiomics features derived from T2-weighted fluid-attenuated inversion recovery (T2W FLAIR) images to distinguish idiopathic Parkinson's disease (PD) patients from healthy controls (HCs). METHODS T2W FLAIR images from 1727 subjects were retrospectively obtained from five cohorts and divided into a training set (395 PD/574 HC), an internal test set (99 PD/144 HC) and an external test set (295 PD/220 HC). Regions of interest (ROIs), including bilateral globus pallidus (GP), putamen (PU), substantia nigra (SN), and red nucleus (RN), were manually delineated. The radiomics features were extracted from ROIs. Six independent machine learning (ML) classifiers were trained on the training set, and validated on the internal and external test sets. RESULTS A selection of five, two, three, and ten highly correlated diagnostic features were identified from SN, RN, GP, and PU regions, respectively. Six ML classifiers were implemented based on the combined 20 radiomics features. In the internal test cohort, the six models achieved AUC of 0.96-0.98 with the accuracy ranging from 0.80 to 0.90. In the external test cohort, the multilayer perceptron model demonstrated the highest AUC of 0.85 (95% CI: 0.80-0.89) with an accuracy of 0.78. CONCLUSION ML models based on the conventional T2W FLAIR images demonstrated promising diagnostic performance for PD and those models may serve as a basis for future investigations on PD diagnosis with the aid of ML methods. CRITICAL RELEVANCE STATEMENT Our study confirmed that early screening of Parkinson's Disease based on the conventional T2W FLAIR images was feasible with the aid of machine learning algorithms in a large multicenter cohort and those models had certain generalization. KEY POINTS Conventional head MRI is routinely performed in Parkinson's disease (PD) but exhibits inadequate specificity for diagnosis. Machine learning (ML) models based on conventional T2W FLAIR images showed favorable accuracy for PD diagnosis. ML algorithm enables early screening of PD on routine T2W FLAIR sequence.
Collapse
Affiliation(s)
- Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Chengling Xu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongzheng Jia
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Lu
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Haiyan Zhang
- Department of Radiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yue Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Oquita R, Cuello V, Uppati S, Mannuru S, Salinas D, Dobbs M, Potter-Baker KA. Moving toward elucidating alternative motor pathway structures post-stroke: the value of spinal cord neuroimaging. Front Neurol 2024; 15:1282685. [PMID: 38419695 PMCID: PMC10899520 DOI: 10.3389/fneur.2024.1282685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Stroke results in varying levels of motor and sensory disability that have been linked to the neurodegeneration and neuroinflammation that occur in the infarct and peri-infarct regions within the brain. Specifically, previous research has identified a key role of the corticospinal tract in motor dysfunction and motor recovery post-stroke. Of note, neuroimaging studies have utilized magnetic resonance imaging (MRI) of the brain to describe the timeline of neurodegeneration of the corticospinal tract in tandem with motor function following a stroke. However, research has suggested that alternate motor pathways may also underlie disease progression and the degree of functional recovery post-stroke. Here, we assert that expanding neuroimaging techniques beyond the brain could expand our knowledge of alternate motor pathway structure post-stroke. In the present work, we will highlight findings that suggest that alternate motor pathways contribute to post-stroke motor dysfunction and recovery, such as the reticulospinal and rubrospinal tract. Then we review imaging and electrophysiological techniques that evaluate alternate motor pathways in populations of stroke and other neurodegenerative disorders. We will then outline and describe spinal cord neuroimaging techniques being used in other neurodegenerative disorders that may provide insight into alternate motor pathways post-stroke.
Collapse
Affiliation(s)
- Ramiro Oquita
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Victoria Cuello
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sarvani Uppati
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Sravani Mannuru
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Daniel Salinas
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Michael Dobbs
- Department of Clinical Neurosciences, College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Kelsey A. Potter-Baker
- Department of Neuroscience, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
3
|
Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. BIOLOGY 2022; 11:biology11101482. [PMID: 36290386 PMCID: PMC9598379 DOI: 10.3390/biology11101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary How hand motor behavior relates to the microstructure of the underlying subcortical white matter pathways is yet to be fully understood. Here we consider two well-known examples of our everyday motor repertoire, reaching and reach-to-grasp, by looking at their temporal unfolding and at the microstructure of descending projection pathways, conveying motor information from the motor cortices towards the more ventral regions of the nervous system. We combine three-dimensional kinematics, describing the temporal profile of hand movements, with diffusion imaging tractography, exploring the microstructure of specific segments of the projection pathways (internal capsule, corticospinal and hand motor tracts). The results indicate that the level of anisotropy characterizing these white matter tracts can influence the temporal unfolding of reaching and reach-to-grasp movements. Abstract The projection system, a complex organization of ascending and descending white matter pathways, is the principal system for conveying sensory and motor information, connecting frontal and sensorimotor regions with ventral regions of the central nervous system. The corticospinal tract (CST), one of the principal projection pathways, carries distal movement-related information from the cortex to the spinal cord, and whether its microstructure is linked to the kinematics of hand movements is still an open question. The aim of the present study was to explore how microstructure of descending branches of the projection system, namely the hand motor tract (HMT), the corticospinal tract (CST) and its sector within the internal capsule (IC), can relate to the temporal profile of reaching and reach-to-grasp movements. Projection pathways of 31 healthy subjects were virtually dissected by means of diffusion tractography and the kinematics of reaching and reach-to-grasp movements were also analyzed. A positive association between Hindrance Modulated Orientation Anisotropy (HMOA) and kinematics was observed, suggesting that anisotropy of the considered tract can influence the temporal unfolding of motor performance. We highlight, for the first time, that hand kinematics and the visuomotor transformation processes underlying reaching and reach-to-grasp movements relate to the microstructure of specific projection fibers subserving these movements.
Collapse
|
4
|
Spinal Cord Circuits: Models and Reality. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Hadjiosif AM, Branscheidt M, Anaya MA, Runnalls KD, Keller J, Bastian AJ, Celnik PA, Krakauer JW. Dissociation between abnormal motor synergies and impaired reaching dexterity after stroke. J Neurophysiol 2022; 127:856-868. [PMID: 35108107 PMCID: PMC8957333 DOI: 10.1152/jn.00447.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Most patients with stroke experience motor deficits, usually referred to collectively as hemiparesis. Although hemiparesis is one of the most common and clinically recognizable motor abnormalities, it remains undercharacterized in terms of its behavioral subcomponents and their interactions. Hemiparesis comprises both negative and positive motor signs. Negative signs consist of weakness and loss of motor control (dexterity), whereas positive signs consist of spasticity, abnormal resting posture, and intrusive movement synergies (abnormal muscle co-activations during voluntary movement). How positive and negative signs interact, and whether a common mechanism generates them, remains poorly understood. Here, we used a planar, arm-supported reaching task to assess poststroke arm dexterity loss, which we compared with the Fugl-Meyer stroke scale; a measure primarily reflecting abnormal synergies. We examined 53 patients with hemiparesis after a first-time ischemic stroke. Reaching kinematics were markedly more impaired in patients with subacute (<3 mo) compared to chronic (>6 mo) stroke even for similar Fugl-Meyer scores. This suggests a dissociation between abnormal synergies (reflected in the Fugl-Meyer scale) and loss of dexterity, which in turn suggests different underlying mechanisms. Moreover, dynamometry suggested that Fugl-Meyer scores capture weakness as well as abnormal synergies, in line with these two deficits sharing a neural substrate. These findings have two important implications: First, clinical studies that test for efficacy of rehabilitation interventions should specify which component of hemiparesis they are targeting and how they propose to measure it. Metrics used widely for this purpose may not always be chosen appropriately. For example, as we show here, the Fugl-Meyer score may capture some hemiparesis components (abnormal synergies and weakness) but not others (loss of dexterity). Second, there may be an opportunity to design rehabilitation interventions to address specific subcomponents of hemiparesis.NEW & NOTEWORTHY Motor impairment is common after stroke and comprises reduced dexterity, weakness, and abnormal muscle synergies. Here we report that, when matched on an established synergy and weakness scale (Fugl-Meyer), patients with subacute stroke have worse reaching dexterity than chronic ones. This result suggests that the components of hemiparesis are dissociable and have separable mechanisms and, thus, may require distinct assessments and treatments.
Collapse
Affiliation(s)
- Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Meret Branscheidt
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
- Cereneo Center for Research and Neurorehabilitation, Weggis, Switzerland
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Keith D Runnalls
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | | | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Kennedy Krieger Institute, Baltimore, Maryland
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
6
|
Input rate encoding and gain control in dendrites of neocortical pyramidal neurons. Cell Rep 2022; 38:110382. [PMID: 35172157 PMCID: PMC8967317 DOI: 10.1016/j.celrep.2022.110382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/15/2021] [Accepted: 01/23/2022] [Indexed: 01/06/2023] Open
Abstract
Elucidating how neurons encode network activity is essential to understanding how the brain processes information. Neocortical pyramidal cells receive excitatory input onto spines distributed along dendritic branches. Local dendritic branch nonlinearities can boost the response to spatially clustered and synchronous input, but how this translates into the integration of patterns of ongoing activity remains unclear. To examine dendritic integration under naturalistic stimulus regimes, we use two-photon glutamate uncaging to repeatedly activate multiple dendritic spines at random intervals. In the proximal dendrites of two populations of layer 5 pyramidal neurons in the mouse motor cortex, spatially restricted synchrony is not a prerequisite for dendritic boosting. Branches encode afferent inputs with distinct rate sensitivities depending upon cell and branch type. Thus, inputs distributed along a dendritic branch can recruit supralinear boosting and the window of this nonlinearity may provide a mechanism by which dendrites can preferentially amplify slow-frequency network oscillations.
Collapse
|
7
|
Zonnino A, Farrens AJ, Ress D, Sergi F. Measurement of stretch-evoked brainstem function using fMRI. Sci Rep 2021; 11:12544. [PMID: 34131162 PMCID: PMC8206209 DOI: 10.1038/s41598-021-91605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
Knowledge on the organization of motor function in the reticulospinal tract (RST) is limited by the lack of methods for measuring RST function in humans. Behavioral studies suggest the involvement of the RST in long latency responses (LLRs). LLRs, elicited by precisely controlled perturbations, can therefore act as a viable paradigm to measure motor-related RST activity using functional Magnetic Resonance Imaging (fMRI). Here we present StretchfMRI, a novel technique developed to study RST function associated with LLRs. StretchfMRI combines robotic perturbations with electromyography and fMRI to simultaneously quantify muscular and neural activity during stretch-evoked LLRs without loss of reliability. Using StretchfMRI, we established the muscle-specific organization of LLR activity in the brainstem. The observed organization is partially consistent with animal models, with activity primarily in the ipsilateral medulla for flexors and in the contralateral pons for extensors, but also includes other areas, such as the midbrain and bilateral pontomedullary contributions.
Collapse
Affiliation(s)
- Andrea Zonnino
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Andria J Farrens
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77020, USA
| | - Fabrizio Sergi
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
8
|
Olivares-Moreno R, Rodriguez-Moreno P, Lopez-Virgen V, Macías M, Altamira-Camacho M, Rojas-Piloni G. Corticospinal vs Rubrospinal Revisited: An Evolutionary Perspective for Sensorimotor Integration. Front Neurosci 2021; 15:686481. [PMID: 34177458 PMCID: PMC8226017 DOI: 10.3389/fnins.2021.686481] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The knowledge about how different subsystems participate and interplay in sensorimotor control is fundamental to understand motor deficits associated with CNS injury and movement recovery. The role of corticospinal (CS) and rubrospinal (RS) projections in motor control has been extensively studied and compared, and it is clear that both systems are important for skilled movement. However, during phylogeny, the emerging cerebral cortex took a higher hierarchical role controlling rubro-cerebellar circuits. Here, we present anatomical, neurophysiological, and behavioral evidence suggesting that both systems modulate complex segmental neuronal networks in a parallel way, which is important for sensorimotor integration at spinal cord level. We also highlight that, although specializations exist, both systems could be complementary and potentially subserve motor recovery associated with CNS damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerardo Rojas-Piloni
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
9
|
Whitten JHD, Hodgson DD, Drinkwater EJ, Prieske O, Aboodarda SJ, Behm DG. Unilateral Quadriceps Fatigue Induces Greater Impairments of Ipsilateral versus Contralateral Elbow Flexors and Plantar Flexors Performance in Physically Active Young Adults. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:300-309. [PMID: 34211323 DOI: 10.52082/jssm.2021.300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022]
Abstract
Non-local muscle fatigue (NLMF) studies have examined crossover impairments of maximal voluntary force output in non-exercised, contralateral muscles as well as comparing upper and lower limb muscles. Since prior studies primarily investigated contralateral muscles, the purpose of this study was to compare NLMF effects on elbow flexors (EF) and plantar flexors (PF) force and activation (electromyography: EMG). Secondly, possible differences when testing ipsilateral or contralateral muscles with a single or repeated isometric maximum voluntary contractions (MVC) were also investigated. Twelve participants (six males: (27.3 ± 2.5 years, 186.0 ± 2.2 cm, 91.0 ± 4.1 kg; six females: 23.0 ± 1.6 years, 168.2 ± 6.7 cm, 60.0 ± 4.3 kg) attended six randomized sessions where ipsilateral or contralateral PF or EF MVC force and EMG activity (root mean square) were tested following a dominant knee extensors (KE) fatigue intervention (2×100s MVC) or equivalent rest (control). Testing involving a single MVC (5s) was completed by the ipsilateral or contralateral PF or EF prior to and immediately post-interventions. One minute after the post-intervention single MVC, a 12×5s MVCs fatigue test was completed. Two-way repeated measures ANOVAs revealed that ipsilateral EF post-fatigue force was lower (-6.6%, p = 0.04, d = 0.18) than pre-fatigue with no significant changes in the contralateral or control conditions. EF demonstrated greater fatigue indexes for the ipsilateral (9.5%, p = 0.04, d = 0.75) and contralateral (20.3%, p < 0.01, d = 1.50) EF over the PF, respectively. There were no significant differences in PF force, EMG or EF EMG post-test or during the MVCs fatigue test. The results suggest that NLMF effects are side and muscle specific where prior KE fatigue could hinder subsequent ipsilateral upper body performance and thus is an important consideration for rehabilitation, recreation and athletic programs.
Collapse
Affiliation(s)
- Joseph H D Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Daniel D Hodgson
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Eric J Drinkwater
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Centre for Sport Research, School of Exercise & Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sports and Management Potsdam, Potsdam, Germany
| | | | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
10
|
Neural Signals in Red Nucleus during Reactive and Proactive Adjustments in Behavior. J Neurosci 2020; 40:4715-4726. [PMID: 32376779 PMCID: PMC7294803 DOI: 10.1523/jneurosci.2775-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to adjust behavior is an essential component of cognitive control. Much is known about frontal and striatal processes that support cognitive control, but few studies have investigated how motor signals change during reactive and proactive adjustments in motor output. To address this, we characterized neural signals in red nucleus (RN), a brain region linked to motor control, as male and female rats performed a novel variant of the stop-signal task. We found that activity in RN represented the direction of movement and was strongly correlated with movement speed. Additionally, we found that directional movement signals were amplified on STOP trials before completion of the response and that the strength of RN signals was modulated when rats exhibited cognitive control. These results provide the first evidence that neural signals in RN integrate cognitive control signals to reshape motor outcomes reactively within trials and proactivity across them.SIGNIFICANCE STATEMENT Healthy human behavior requires the suppression or inhibition of errant or maladaptive motor responses, often called cognitive control. While much is known about how frontal brain regions facilitate cognitive control, less is known about how motor regions respond to rapid and unexpected changes in action selection. To address this, we recorded from neurons in the red nucleus, a motor region thought to be important for initiating movement in rats performing a cognitive control task. We show that red nucleus tracks motor plans and that selectivity was modulated on trials that required shifting from one motor response to another. Collectively, these findings suggest that red nucleus contributes to modulating motor behavior during cognitive control.
Collapse
|
11
|
Senneff S, McManus L, Lowery MM. Investigating the Effect of Persistent Inward Currents on Motor Unit Firing Rates and Beta-Band Coherence in a Model of the First Dorsal Interosseous Muscle .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2293-2296. [PMID: 31946358 DOI: 10.1109/embc.2019.8857534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromodulatory drive resulting in the generation of persistent inward currents (PICs) within motoneuron dendrites has been demonstrated to introduce nonlinearities into the motoneuron input-output function for a given motor command. It is less understood, however, as to what role PICs play during voluntary contractions or on the correlation between motoneuron firings arising as a result of common synaptic inputs to the motoneuron pool. To examine this, a biophysical model of the motoneuron pool representing the first dorsal interosseous (FDI) muscle was used to simulate the effects of PICs on motor unit firing patterns and beta-band (15-30 Hz) motor unit coherence at 20, 30, and 40 percent of maximum voluntary contraction (MVC). The contribution of PICs at each MVC was quantified by calculating the difference in the mean firing rate of each motoneuron within the pool and assessing changes in the mean firing rate distribution and motor unit coherence with and without PICs present. The results of the current study demonstrated that increased activation of PICs progressively reduced motor unit coherence, however, changes in coherence were modest when investigating activation levels consistent with experimentally observed mean motor unit firing rates in the FDI muscle during isometric voluntary contraction.
Collapse
|
12
|
McManus L, Flood MW, Lowery MM. Beta-band motor unit coherence and nonlinear surface EMG features of the first dorsal interosseous muscle vary with force. J Neurophysiol 2019; 122:1147-1162. [PMID: 31365308 DOI: 10.1152/jn.00228.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor unit firing times are weakly coupled across a range of frequencies during voluntary contractions. Coherent activity within the beta-band (15-35 Hz) has been linked to oscillatory cortical processes, providing evidence of functional connectivity between the motoneuron pool and motor cortex. The aim of this study was to investigate whether beta-band motor unit coherence is altered with increasing abduction force in the first dorsal interosseous muscle. Coherence between motor unit firing times, extracted from decomposed surface electromyography (EMG) signals, was investigated in 17 subjects at 10, 20, 30, and 40% of maximum voluntary contraction. Corresponding changes in nonlinear surface EMG features (specifically sample entropy and determinism, which are sensitive to motor unit synchronization) were also examined. A reduction in beta-band and alpha-band coherence was observed as force increased [F(3, 151) = 32, P < 0.001 and F(3, 151) = 27, P < 0.001, respectively], accompanied by corresponding changes in nonlinear surface EMG features. A significant relationship between the nonlinear features and motor unit coherence was also detected (r = -0.43 ± 0.1 and r = 0.45 ± 0.1 for sample entropy and determinism, respectively; both P < 0.001). The reduction in beta-band coherence suggests a change in the relative contribution of correlated and uncorrelated presynaptic inputs to the motoneuron pool, and/or a decrease in the responsiveness of the motoneuron pool to synchronous inputs at higher forces. The study highlights the importance of considering muscle activation when investigating changes in motor unit coherence or nonlinear EMG features and examines other factors that can influence coherence estimation.NEW & NOTEWORTHY Intramuscular alpha- and beta-band coherence decreased as muscle contraction force increased. Beta-band coherence was higher in groups of high-threshold motor units than in simultaneously active lower threshold units. Alterations in motor unit coherence with increases or decreases in force and with the onset of fatigue were accompanied by corresponding changes in surface electromyography sample entropy and determinism. Mixed-model analysis indicated mean firing rate and number of motor units also influenced the coherence estimate.
Collapse
Affiliation(s)
- Lara McManus
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Matthew W Flood
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| | - Madeleine M Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Smith V, Maslovat D, Drummond NM, Hajj J, Leguerrier A, Carlsen AN. High-intensity transcranial magnetic stimulation reveals differential cortical contributions to prepared responses. J Neurophysiol 2019; 121:1809-1821. [PMID: 30864866 DOI: 10.1152/jn.00510.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Corticospinal output pathways have typically been considered to be the primary driver for voluntary movements of the hand/forearm; however, more recently, reticulospinal drive has also been implicated in the production of these movements. Although both pathways may play a role, the reticulospinal tract is thought to have stronger connections to flexor muscles than to extensors. Similarly, movements involuntarily triggered via a startling acoustic stimulus (SAS) are believed to receive greater reticular input than voluntary movements. To investigate a differential role of reticulospinal drive depending on movement type or acoustic stimulus, corticospinal drive was transiently interrupted using high-intensity transcranial magnetic stimulation (TMS) applied during the reaction time (RT) interval. This TMS-induced suppression of cortical drive leads to RT delays that can be used to assess cortical contributions to movement. Participants completed targeted flexion and extension movements of the wrist in a simple RT paradigm in response to a control auditory go signal or SAS. Occasionally, suprathreshold TMS was applied over the motor cortical representation for the prime mover. Results revealed that TMS significantly increased RT in all conditions. There was a significantly longer TMS-induced RT delay seen in extension movements than in flexion movements and a greater RT delay in movements initiated in response to control stimuli compared with SAS. These results suggest that the contribution of reticulospinal drive is larger for wrist flexion than for extension. Similarly, movements triggered involuntarily by an SAS appear to involve greater reticulospinal drive, and relatively less corticospinal drive, than those that are voluntarily initiated. NEW & NOTEWORTHY Through the use of the transcranial magnetic stimulation-induced silent period, we provide novel evidence for a greater contribution of reticulospinal drive, and a relative decrease in corticospinal drive, to movements involuntarily triggered by a startle compared with voluntary movements. These results also provide support for the notion that both cortical and reticular structures are involved in the neural pathway underlying startle-triggered movements. Furthermore, our results indicate greater reticulospinal contribution to wrist flexion than extension movements.
Collapse
Affiliation(s)
- Victoria Smith
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Dana Maslovat
- School of Kinesiology, University of British Columbia , Vancouver, British Columbia , Canada
| | - Neil M Drummond
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | - Joëlle Hajj
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| | | | - Anthony N Carlsen
- School of Human Kinetics, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
14
|
Zhang W, Yang B, Weng H, Liu T, Shi L, Yu P, So KF, Qu Y, Zhou L. Wheel Running Improves Motor Function and Spinal Cord Plasticity in Mice With Genetic Absence of the Corticospinal Tract. Front Cell Neurosci 2019; 13:106. [PMID: 30941019 PMCID: PMC6433830 DOI: 10.3389/fncel.2019.00106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Our previous studies showed that mutant mice with congenital absence of the corticospinal tract (CST) undergo spontaneous remodeling of motor networks to partially compensate for absent CST function. Here, we asked whether voluntary wheel running could further improve locomotor plasticity in CST-deficient mice. Adult mutant mice were randomly allocated to a “runners” group with free access to a wheel, or a “non-runners” group with no access to a wheel. In comparison with non-runners, there was a significant motor improvement including fine movement, grip strength, decreased footslip errors in runners after 8-week training, which was supported by the elevated amplitude of electromyography recording and increased neuromuscular junctions in the biceps. In runners, terminal ramifications of monoaminergic and rubrospinal descending axons were significantly increased in spinal segments after 12 weeks of exercise compared to non-runners. 5-ethynyl-2′-deoxyuridine (EDU) labeling showed that proliferating cells, 90% of which were Olig2-positive oligodendrocyte progenitors, were 4.8-fold more abundant in runners than in non-runners. In 8-week runners, RNAseq analysis of spinal samples identified 404 genes up-regulated and 398 genes down-regulated, and 69 differently expressed genes involved in signal transduction, among which the NF-κB, PI3K-Akt and cyclic AMP (cAMP) signaling were three top pathways. Twelve-week training induced a significant elevation of postsynaptic density protein 95 (PSD95), synaptophysin 38 and myelin basic protein (MBP), but not of brain derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and insulin like growth factor-1 (IGF-1). Thus, locomotor training activates multiple signaling pathways, contributes to neural plasticity and functional improvement, and might palliate locomotor deficits in patients.
Collapse
Affiliation(s)
- Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Huandi Weng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Tao Liu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Lingling Shi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China.,Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Lemon R, Kraskov A. Starting and stopping movement by the primate brain. Brain Neurosci Adv 2019; 3:2398212819837149. [PMID: 32166180 PMCID: PMC7058194 DOI: 10.1177/2398212819837149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/13/2023] Open
Abstract
We review the current knowledge about the part that motor cortex plays in the preparation and generation of movement, and we discuss the idea that corticospinal neurons, and particularly those with cortico-motoneuronal connections, act as ‘command’ neurons for skilled reach-to-grasp movements in the primate. We also review the increasing evidence that it is active during processes such as action observation and motor imagery. This leads to a discussion about how movement is inhibited and stopped, and the role in these for disfacilitation of the corticospinal output. We highlight the importance of the non-human primate as a model for the human motor system. Finally, we discuss the insights that recent research into the monkey motor system has provided for translational approaches to neurological diseases such as stroke, spinal injury and motor neuron disease.
Collapse
Affiliation(s)
- Roger Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London (UCL), London, UK
| | - Alexander Kraskov
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London (UCL), London, UK
| |
Collapse
|
16
|
Philippens IHCHM, Wubben JA, Franke SK, Hofman S, Langermans JAM. Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson's Disease. Sci Rep 2019; 9:880. [PMID: 30696912 PMCID: PMC6351580 DOI: 10.1038/s41598-018-37381-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/05/2018] [Indexed: 01/14/2023] Open
Abstract
Neurological compensatory mechanisms help our brain to adjust to neurodegeneration as in Parkinson's disease. It is suggested that the compensation of the damaged striato-thalamo-cortical circuit is focused on the intact thalamo-rubro-cerebellar pathway as seen during presymptomatic Parkinson, paradoxical movement and sensorimotor rhythm (SMR). Indeed, the size of the red nucleus, connecting the cerebellum with the cerebral cortex, is larger in Parkinson's disease patients suggesting an increased activation of this brain area. Therefore, the red nucleus was examined in MPTP-induced parkinsonian marmoset monkeys during the presymptomatic stage and after SMR activation by neurofeedback training. We found a reverse significant correlation between the early expression of parkinsonian signs and the size of the parvocellular part of the red nucleus, which is predominantly present in human and non-human primates. In quadrupedal animals it consists mainly of the magnocellular part. Furthermore, SMR activation, that mitigated parkinsonian signs, further increased the size of the red nucleus in the marmoset monkey. This plasticity of the brain helps to compensate for dysfunctional movement control and can be a promising target for compensatory treatment with neurofeedback technology, vibrotactile stimulation or DBS in order to improve the quality of life for Parkinson's disease patients.
Collapse
Affiliation(s)
- Ingrid H C H M Philippens
- Animal Science Department, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.
| | - Jacqueline A Wubben
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Sigrid K Franke
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands.,Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Sam Hofman
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| | - Jan A M Langermans
- Animal Science Department, Biomedical Primate Research Centre (BPRC), P.O. Box 3306, 2280 GH, Rijswijk, The Netherlands
| |
Collapse
|
17
|
Kurata K. Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience 2018; 382:127-143. [PMID: 29715510 DOI: 10.1016/j.neuroscience.2018.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed that the ventral premotor cortex (PMv) of nonhuman primates plays a pivotal role in various behaviors that require the transformation of sensory cues to appropriate actions. Examples include decision-making based on various sensory cues, preparation for upcoming motor behavior, adaptive sensorimotor transformation, and the generation of motor commands using rapid sensory feedback. Although the PMv has frequently been regarded as a single entity, it can be divided into at least five functionally distinct regions: F4, a dorsal convexity region immediately rostral to the primary motor cortex (M1); F5p, a cortical region immediately rostral to F4, lying within the arcuate sulcus; F5c, a ventral convexity region rostral to F4; and F5a, located in the caudal bank of the arcuate sulcus inferior limb lateral to F5p. Among these, F4 can be further divided into dorsal and ventral subregions (F4d and F4v), which are involved in forelimb and orofacial movements, respectively. F5p contains "mirror neurons" to understand others' actions based on visual and other types of information, and F4d and F5p work together as a functional complex involved in controlling forelimb and eye movements, most efficiently in the execution and completion of coordinated eye-hand movements for reaching and grasping under visual guidance. In contrast, F5c and F5a are hierarchically higher than the F4d, F5p, and F5v complexes, and play a role in decision-making based on various sensory discriminations. Hence, the PMv subregions form a hierarchically organized integral system from decision-making to eye-hand coordination under various behavioral circumstances.
Collapse
Affiliation(s)
- Kiyoshi Kurata
- Department of Physiology, Hirosaki University School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|
18
|
Wen TC, Lall S, Pagnotta C, Markward J, Gupta D, Ratnadurai-Giridharan S, Bucci J, Greenwald L, Klugman M, Hill NJ, Carmel JB. Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats. Front Neural Circuits 2018; 12:28. [PMID: 29706871 PMCID: PMC5906589 DOI: 10.3389/fncir.2018.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
After injury to the corticospinal tract (CST) in early development there is large-scale adaptation of descending motor pathways. Some studies suggest the uninjured hemisphere controls the impaired forelimb, while others suggest that the injured hemisphere does; these pathways have never been compared directly. We tested the contribution of each motor cortex to the recovery forelimb function after neonatal injury of the CST. We cut the left pyramid (pyramidotomy) of postnatal day 7 rats, which caused a measurable impairment of the right forelimb. We used pharmacological inactivation of each motor cortex to test its contribution to a skilled reach and supination task. Rats with neonatal pyramidotomy were further impaired by inactivation of motor cortex in both the injured and the uninjured hemispheres, while the forelimb of uninjured rats was impaired only from the contralateral motor cortex. Thus, inactivation demonstrated motor control from each motor cortex. In contrast, physiological and anatomical interrogation of these pathways support adaptations only in the uninjured hemisphere. Intracortical microstimulation of motor cortex in the uninjured hemisphere of rats with neonatal pyramidotomy produced responses from both forelimbs, while stimulation of the injured hemisphere did not elicit responses from either forelimb. Both anterograde and retrograde tracers were used to label corticofugal pathways. There was no increased plasticity from the injured hemisphere, either from cortex to the red nucleus or the red nucleus to the spinal cord. In contrast, there were very strong CST connections to both halves of the spinal cord from the uninjured motor cortex. Retrograde tracing produced maps of each forelimb within the uninjured hemisphere, and these were partly segregated. This suggests that the uninjured hemisphere may encode separate control of the unimpaired and the impaired forelimbs of rats with neonatal pyramidotomy.
Collapse
Affiliation(s)
- Tong-Chun Wen
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Sophia Lall
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Corey Pagnotta
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - James Markward
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Disha Gupta
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | | | - Jacqueline Bucci
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Lucy Greenwald
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Madelyn Klugman
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - N Jeremy Hill
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States
| | - Jason B Carmel
- Motor Recovery Laboratory, Burke-Cornell Medical Research Institute, White Plains, NY, United States.,Departments of Neurology and Pediatrics, Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
19
|
Hudson HM, Park MC, Belhaj-Saïf A, Cheney PD. Representation of individual forelimb muscles in primary motor cortex. J Neurophysiol 2017; 118:47-63. [PMID: 28356482 DOI: 10.1152/jn.01070.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 11/22/2022] Open
Abstract
Stimulus-triggered averaging (StTA) of forelimb muscle electromyographic (EMG) activity was used to investigate individual forelimb muscle representation within the primary motor cortex (M1) of rhesus macaques with the objective of determining the extent of intra-areal somatotopic organization. Two monkeys were trained to perform a reach-to-grasp task requiring multijoint coordination of the forelimb. EMG activity was simultaneously recorded from 24 forelimb muscles including 5 shoulder, 7 elbow, 5 wrist, 5 digit, and 2 intrinsic hand muscles. Microstimulation (15 µA at 15 Hz) was delivered throughout the movement task and individual stimuli were used as triggers for generating StTAs of EMG activity. StTAs were used to map the cortical representations of individual forelimb muscles. As reported previously (Park et al. 2001), cortical maps revealed a central core of distal muscle (wrist, digit, and intrinsic hand) representation surrounded by a horseshoe-shaped proximal (shoulder and elbow) muscle representation. In the present study, we found that shoulder and elbow flexor muscles were predominantly represented in the lateral branch of the horseshoe whereas extensors were predominantly represented in the medial branch. Distal muscles were represented within the core distal forelimb representation and showed extensive overlap. For the first time, we also show maps of inhibitory output from motor cortex, which follow many of the same organizational features as the maps of excitatory output.NEW & NOTEWORTHY While the orderly representation of major body parts along the precentral gyrus has been known for decades, questions have been raised about the possible existence of additional more detailed aspects of somatotopy. In this study, we have investigated this question with respect to muscles of the arm and show consistent features of within-arm (intra-areal) somatotopic organization. For the first time we also show maps of how inhibitory output from motor cortex is organized.
Collapse
Affiliation(s)
- Heather M Hudson
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
| | - Michael C Park
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Abderraouf Belhaj-Saïf
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| | - Paul D Cheney
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and
| |
Collapse
|
20
|
Abstract
The direct cortico-motoneuronal (CM) projection from motor cortex to spinal motoneurons is a distinctive primate feature, and appears to be of particular importance for the control of fine hand and finger move ments. This review considers recent neurophysiological evidence showing that the degree of dexterity in different nonhuman primates is reflected in the strength of the CM connections to hand motoneurons. It also shows that phylogenetically older, indirect pathways may have been superseded by the direct CM system. The unique contribution of the CM system to hand function may reside in the focused and powerful facilitation it exerts on selective groups of muscles, as shown by recordings from identified CM neurons during performance of precision grip by conscious, trained monkeys. In man, damage by stroke to the corticospinal system often results in weakness and poverty of hand movement. New evidence from the use of transcranial magnetic stimulation (TMS) in stroke patients demonstrates that any recovery in the voluntary activation of hand muscles is always accompanied by recovery of short-latency responses to TMS, which are probably mediated by the fast corticospinal system, suggesting that the integrity of this system is es sential for recovery of hand function. NEUROSCIENTIST 3:389-398, 1997
Collapse
Affiliation(s)
- Roger N. Lemon
- Sobell Department of Neurophysiology Institute of Neurology
London
| |
Collapse
|
21
|
Abstract
The corticospinal system is the principal motor system for controlling movements that require the greatest skill and flexibility. It is the last motor system to develop. The pattern of termination of corticospinal axons, as they grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. Refinement of corticospinal terminations occurs during a protracted postnatal period and includes both elimination of transient terminations and growth to new targets. This refinement is driven by neural activity in the motor cortical areas and by limb motor experience. Developing corticospinal terminals compete with each other for synaptic space on spinal neurons. More active terminals are more competitive and are able to secure more synaptic space than their less active counterparts. Corticospinal terminals can activate spinal neurons from very early in development. The importance of this early synaptic activity appears to be more for refining corticospinal connections than for transmitting signals to spinal motor circuits for movement control. The motor control functions of the corticospinal system are not expressed until development of connectional specificity with spinal cord neurons, a strong capacity for corticospinal synapses to facilitate spinal motor circuits, and the formation of the cortical motor map.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
22
|
Models to Tailor Brain Stimulation Therapies in Stroke. Neural Plast 2016; 2016:4071620. [PMID: 27006833 PMCID: PMC4781989 DOI: 10.1155/2016/4071620] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
A great challenge facing stroke rehabilitation is the lack of information on how to derive targeted therapies. As such, techniques once considered promising, such as brain stimulation, have demonstrated mixed efficacy across heterogeneous samples in clinical studies. Here, we explain reasons, citing its one-type-suits-all approach as the primary cause of variable efficacy. We present evidence supporting the role of alternate substrates, which can be targeted instead in patients with greater damage and deficit. Building on this groundwork, this review will also discuss different frameworks on how to tailor brain stimulation therapies. To the best of our knowledge, our report is the first instance that enumerates and compares across theoretical models from upper limb recovery and conditions like aphasia and depression. Here, we explain how different models capture heterogeneity across patients and how they can be used to predict which patients would best respond to what treatments to develop targeted, individualized brain stimulation therapies. Our intent is to weigh pros and cons of testing each type of model so brain stimulation is successfully tailored to maximize upper limb recovery in stroke.
Collapse
|
23
|
Abstract
The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to coordinate their emerging functions and, if so, the mechanisms underlying this process. This study examined activity-dependent interactions between the developing corticospinal and rubrospinal systems, two key systems for skilled limb movements. We show that the developing rubrospinal system competes with the corticospinal system in establishing the red nucleus motor map and rubrospinal tract connections. This is the first demonstration of one motor system steering development, and ultimately function, of another. Knowledge of activity-dependent competition between these two systems helps predict the response of the rubrospinal system following corticospinal system developmental injury.
Collapse
|
24
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, Rotella DL, Darling WG. Frontal and frontoparietal injury differentially affect the ipsilateral corticospinal projection from the nonlesioned hemisphere in monkey (Macaca mulatta). J Comp Neurol 2015. [PMID: 26224429 DOI: 10.1002/cne.23861] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Upper extremity hemiplegia is a common consequence of unilateral cortical stroke. Understanding the role of the unaffected cerebral hemisphere in the motor recovery process has been encouraged, in part, by the presence of ipsilateral corticospinal projections (iCSP). We examined the neuroplastic response of the iCSP from the contralesional primary motor cortex (cM1) hand/arm area to spinal levels C5-T1 after spontaneous long-term recovery from isolated frontal lobe injury and isolated frontoparietal injury. High-resolution tract tracing, stereological, and behavioral methodologies were applied. Recovery from frontal motor injury resulted in enhanced numbers of terminal labeled boutons in the iCSP from cM1 compared with controls. Increases occurred in lamina VIII and the adjacent ventral sectors of lamina VII, which are involved in axial/proximal limb sensorimotor processing. Larger frontal lobe lesions were associated with greater numbers of terminal boutons than smaller frontal lobe lesions. In contrast, frontoparietal injury blocked this response; total bouton number was similar to controls, demonstrating that disruption of somatosensory input to one hemisphere has a suppressive effect on the iCSP from the nonlesioned hemisphere. However, compared with controls, elevated bouton numbers occurred in lamina VIII, at the expense of lamina VII bouton labeling. Lamina IX boutons were also elevated in two frontoparietal lesion cases with extensive cortical injury. Because laminae VIII and IX collectively harbor axial, proximal, and distal motoneurons, therapeutic intervention targeting the ipsilateral corticospinal linkage from cM1 may promote proximal, and possibly distal, upper-limb motor recovery following frontal and frontoparietal injury.
Collapse
Affiliation(s)
- R J Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - J Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - K S Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - D W McNeal
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, 57069
| | - S M Hynes
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| | - M A Pizzimenti
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242.,Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - D L Rotella
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| | - W G Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
25
|
Neuroplasticity subserving the operation of brain-machine interfaces. Neurobiol Dis 2015; 83:161-71. [PMID: 25968934 DOI: 10.1016/j.nbd.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 01/16/2023] Open
Abstract
Neuroplasticity is key to the operation of brain machine interfaces (BMIs)-a direct communication pathway between the brain and a man-made computing device. Whereas exogenous BMIs that associate volitional control of brain activity with neurofeedback have been shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent stimulation--and thus may curtail the time scale that governs natural sensorimotor integration loops--have been shown to induce short lasting plasticity. Here we summarize recent findings from studies using both categories of BMIs, and discuss the fundamental principles that may underlie their operation and the longevity of the plasticity they induce. We draw comparison to plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for the purpose of re-organization of target brain regions and directed augmentation of sensorimotor maps, and suggest possible avenues for future work to maximize their efficacy and viability in clinical applications.
Collapse
|
26
|
Herter TM, Takei T, Munoz DP, Scott SH. Neurons in red nucleus and primary motor cortex exhibit similar responses to mechanical perturbations applied to the upper-limb during posture. Front Integr Neurosci 2015; 9:29. [PMID: 25964747 PMCID: PMC4408851 DOI: 10.3389/fnint.2015.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/29/2015] [Indexed: 11/29/2022] Open
Abstract
Primary motor cortex (M1) and red nucleus (RN) are brain regions involved in limb motor control. Both structures are highly interconnected with the cerebellum and project directly to the spinal cord, although the contribution of RN is smaller than M1. It remains uncertain whether RN and M1 serve similar or distinct roles during posture and movement. Many neurons in M1 respond rapidly to mechanical disturbances of the limb, but it remains unclear whether RN neurons also respond to such limb perturbations. We have compared discharges of single neurons in RN (n = 49) and M1 (n = 109) of one monkey during a postural perturbation task. Neural responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor or extensor torques to the shoulder and/or elbow while the monkeys attempted to maintain a static hand posture. Relative to baseline discharges before perturbation onset, perturbations evoked rapid (<100 ms) changes of neural discharges in many RN (28 of 49, 57%) and M1 (43 of 109, 39%) neurons. In addition to exhibiting a greater proportion of perturbation-related neurons, RN neurons also tended to exhibit higher peak discharge frequencies in response to perturbations than M1 neurons. Importantly, neurons in both structures exhibited similar response latencies and tuning properties (preferred torque directions and tuning widths) in joint-torque space. Proximal arm muscles also displayed similar tuning properties in joint-torque space. These results suggest that RN is more sensitive than M1 to mechanical perturbations applied during postural control but both structures may play a similar role in feedback control of posture.
Collapse
Affiliation(s)
- Troy M Herter
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Exercise Science, University of South Carolina Columbia, SC, USA
| | - Tomohiko Takei
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University Kingston, ON, Canada ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada ; Department of Medicine, Queen's University Kingston, ON, Canada
| |
Collapse
|
27
|
Han Q, Cao C, Ding Y, So KF, Wu W, Qu Y, Zhou L. Plasticity of motor network and function in the absence of corticospinal projection. Exp Neurol 2015; 267:194-208. [PMID: 25792481 DOI: 10.1016/j.expneurol.2015.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Despite the obvious clinical interest, our understanding of how developmental mechanisms are redeployed during degeneration and regeneration after brain and spinal cord injuries remains quite rudimentary. In animal models of spinal cord injury, although spontaneous regeneration of descending axons is limited, compensation by intact corticospinal axons, descending tracts from the brainstem, and local intrinsic spinal networks all contribute to the recovery of motor function. Here, we investigated spontaneous motor compensation and plasticity that occur in the absence of corticospinal tract, using Celsr3|Emx1 mice in which the corticospinal tract is completely and specifically absent as a consequence of Celsr3 inactivation in the cortex. Mutant mice had no paresis, but displayed hyperactivity in open-field, and a reduction in skilled movements in food pellet manipulation tests. The number of spinal motoneurons was reduced and their terminal arbors at neuromuscular junctions were atrophic, which was reflected in electromyography deficits. Rubrospinal projections, calretinin-positive propriospinal projections, afferent innervation of motoneurons by calretinin-positive segmental interneurons, and terminal ramifications of monoaminergic projections were significantly increased. Contrary to control animals, mutants also developed a severe and persistent disability of forelimb use following the section of the rubrospinal tract at the C4 spinal level. These observations demonstrate for the first time that the congenital absence of the corticospinal tract induces spontaneous plasticity, both at the level of the motor spinal cord and in descending monoaminergic and rubrospinal projections. Such compensatory mechanisms could be recruited in case of brain or spinal cord lesion or degeneration.
Collapse
Affiliation(s)
- Qi Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Changshu Cao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China
| | - Yuetong Ding
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Wutian Wu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China.
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China; Department of Human Anatomy, Medical School of Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, PR China.
| |
Collapse
|
28
|
Kurtzer IL. Long-latency reflexes account for limb biomechanics through several supraspinal pathways. Front Integr Neurosci 2015; 8:99. [PMID: 25688187 PMCID: PMC4310276 DOI: 10.3389/fnint.2014.00099] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/21/2014] [Indexed: 12/01/2022] Open
Abstract
Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20–45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms). Between these two epochs is the long-latency reflex (LLR) (around 50–100 ms) which acts more rapidly than voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the LLR accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the SLR. This paper will review how the LLR accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation (RF) contribute to the LLR either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines.
Collapse
Affiliation(s)
- Isaac L Kurtzer
- Department of Biomedical Sciences, New York Institute of Technology - College of Osteopathic Medicine Old Westbury, NY, USA
| |
Collapse
|
29
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Hynes SM, Pizzimenti MA, Rotella DL, Darling WG. Vulnerability of the medial frontal corticospinal projection accompanies combined lateral frontal and parietal cortex injury in rhesus monkey. J Comp Neurol 2014; 523:669-97. [PMID: 25349147 DOI: 10.1002/cne.23703] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022]
Abstract
Concurrent damage to the lateral frontal and parietal cortex is common following middle cerebral artery infarction, leading to upper extremity paresis, paresthesia, and sensory loss. Motor recovery is often poor, and the mechanisms that support or impede this process are unclear. Since the medial wall of the cerebral hemisphere is commonly spared following stroke, we investigated the spontaneous long-term (6 and 12 month) effects of lateral frontoparietal injury (F2P2 lesion) on the terminal distribution of the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2) at spinal levels C5 to T1. Isolated injury to the frontoparietal arm/hand region resulted in a significant loss of contralateral corticospinal boutons from M2 compared with controls. Specifically, reductions occurred in the medial and lateral parts of lamina VII and the dorsal quadrants of lamina IX. There were no statistical differences in the ipsilateral CSP. Contrary to isolated lateral frontal motor injury (F2 lesion), which results in substantial increases in contralateral M2 labeling in laminae VII and IX (McNeal et al. [2010] J. Comp. Neurol. 518:586-621), the added effect of adjacent parietal cortex injury to the frontal motor lesion (F2P2 lesion) not only impedes a favorable compensatory neuroplastic response but results in a substantial loss of M2 CSP terminals. This dramatic reversal of the CSP response suggests a critical trophic role for cortical somatosensory influence on spared ipsilesional frontal corticospinal projections, and that restoration of a favorable compensatory response will require therapeutic intervention.
Collapse
Affiliation(s)
- R J Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota, 57069
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Friel KM, Williams PTJA, Serradj N, Chakrabarty S, Martin JH. Activity-Based Therapies for Repair of the Corticospinal System Injured during Development. Front Neurol 2014; 5:229. [PMID: 25505443 PMCID: PMC4241838 DOI: 10.3389/fneur.2014.00229] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/22/2014] [Indexed: 01/29/2023] Open
Abstract
This review presents the mechanistic underpinnings of corticospinal tract (CST) development, derived from animal models, and applies what has been learned to inform neural activity-based strategies for CST repair. We first discuss that, in normal development, early bilateral CST projections are later refined into a dense crossed CST projection, with maintenance of sparse ipsilateral projections. Using a novel mouse genetic model, we show that promoting the ipsilateral CST projection produces mirror movements, common in hemiplegic cerebral palsy (CP), suggesting that ipsilateral CST projections become maladaptive when they become abnormally dense and strong. We next discuss how animal studies support a developmental “competition rule” whereby more active/used connections are more competitive and overtake less active/used connections. Based on this rule, after unilateral injury the damaged CST is less able to compete for spinal synaptic connections than the uninjured CST. This can lead to a progressive loss of the injured hemisphere’s contralateral projection and a reactive gain of the undamaged hemisphere’s ipsilateral CST. Knowledge of the pathophysiology of the developing CST after injury informs interventional strategies. In an animal model of hemiplegic CP, promoting injured system activity or decreasing the uninjured system’s activity immediately after the period of a developmental injury both increase the synaptic competitiveness of the damaged system, contributing to significant CST repair and motor recovery. However, delayed intervention, despite significant CST repair, fails to restore skilled movements, stressing the need to consider repair strategies for other neural systems, including the rubrospinal and spinal interneuronal systems. Our interventional approaches harness neural activity-dependent processes and are highly effective in restoring function. These approaches are minimally invasive and are poised for translation to the human.
Collapse
Affiliation(s)
- Kathleen M Friel
- Department of Neurology, Brain and Mind Research Institute, Weill Cornell Medical College , New York, NY , USA ; Burke Medical Research Institute , White Plains, NY , USA
| | - Preston T J A Williams
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Najet Serradj
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA
| | - Samit Chakrabarty
- School of Biomedical Sciences, Faculty of Biology, University of Leeds , Leeds , UK
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York , New York, NY , USA ; The Graduate Center of the City University of New York , New York, NY , USA
| |
Collapse
|
31
|
Morecraft RJ, Stilwell-Morecraft KS, Solon-Cline KM, Ge J, Darling WG. Cortical innervation of the hypoglossal nucleus in the non-human primate (Macaca mulatta). J Comp Neurol 2014; 522:3456-84. [PMID: 24752643 PMCID: PMC4139435 DOI: 10.1002/cne.23614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 01/06/2023]
Abstract
The corticobulbar projection to the hypoglossal nucleus was studied from the frontal, parietal, cingulate, and insular cortices in the rhesus monkey by using high-resolution anterograde tracers and stereology. The hypoglossal nucleus received bilateral input from the face/head region of the primary (M1), ventrolateral pre- (LPMCv), supplementary (M2), rostral cingulate (M3), and caudal cingulate (M4) motor cortices. Additional bilateral corticohypoglossal projections were found from the dorsolateral premotor cortex (LPMCd), ventrolateral proisocortical motor area (ProM), ventrolateral primary somatosensory cortex (S1), rostral insula, and pregenual region of the anterior cingulate gyrus (areas 24/32). Dense terminal projections arose from the ventral region of M1, and moderate projections from LPMCv and rostral part of M2, with considerably fewer hypoglossal projections arising from the other cortical regions. These findings demonstrate that extensive regions of the non-human primate cerebral cortex innervate the hypoglossal nucleus. The widespread and bilateral nature of this corticobulbar connection suggests recovery of tongue movement after cortical injury that compromises a subset of these areas, may occur from spared corticohypoglossal projection areas located on the lateral, as well as medial surfaces of both hemispheres. Since functional imaging studies have shown that homologous cortical areas are activated in humans during tongue movement tasks, these corticobulbar projections may exist in the human brain.
Collapse
Affiliation(s)
- Robert J. Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Kimberly S. Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Kathryn M. Solon-Cline
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Warren G. Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
32
|
Caux-Dedeystère A, Rambour M, Duhamel A, Cassim F, Derambure P, Devanne H. Task-dependent changes in late inhibitory and disinhibitory actions within the primary motor cortex in humans. Eur J Neurosci 2014; 39:1485-90. [DOI: 10.1111/ejn.12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Alexandre Caux-Dedeystère
- Lille-Nord de France University; Department of Clinical Neurophysiology; EA 4559; Lille University Hospital; Lille Cedex France
| | - Mélanie Rambour
- Lille-Nord de France University; Department of Clinical Neurophysiology; EA 4559; Lille University Hospital; Lille Cedex France
| | - Alain Duhamel
- Lille Nord de France University; Department of Biostatistics; EA 2694; UDSL; Lille University Hospital; Lille Cedex France
| | - François Cassim
- Lille-Nord de France University; Department of Clinical Neurophysiology; EA 4559; Lille University Hospital; Lille Cedex France
| | - Philippe Derambure
- Lille-Nord de France University; Department of Clinical Neurophysiology; EA 4559; Lille University Hospital; Lille Cedex France
| | - Hervé Devanne
- Lille-Nord de France University; Department of Clinical Neurophysiology; EA 4559; Lille University Hospital; Lille Cedex France
- Lille-Nord de France University; ULCO; Calais Cedex France
| |
Collapse
|
33
|
Morecraft RJ, Ge J, Stilwell-Morecraft KS, McNeal DW, Pizzimenti MA, Darling WG. Terminal distribution of the corticospinal projection from the hand/arm region of the primary motor cortex to the cervical enlargement in rhesus monkey. J Comp Neurol 2013; 521:4205-35. [PMID: 23840034 PMCID: PMC3894926 DOI: 10.1002/cne.23410] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/08/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
To further our understanding of the corticospinal projection (CSP) from the hand/arm representation of the primary motor cortex (M1), high-resolution anterograde tracing methodology and stereology were used to investigate the terminal distribution of this connection at spinal levels C5 to T1. The highest number of labeled terminal boutons occurred contralaterally (98%) with few ipsilaterally (2%). Contralaterally, labeled boutons were located within laminae I-X, with the densest distribution found in lamina VII and, to a lesser extent, laminae IX and VI. Fewer terminals were found in other contralateral laminae. Within lamina VII, terminal boutons were most prominent in the dorsomedial, dorsolateral, and ventrolateral subsectors. Within lamina IX, the heaviest terminal labeling was distributed dorsally. Ipsilaterally, boutons were found in laminae V-X. The most pronounced distribution occurred in the dorsomedial and ventromedial sectors of lamina VII and fewer labeled boutons were located in other ipsilateral laminae. Segmentally, contralateral lamina VII labeling was highest at levels C5-C7. In contrast, lamina IX labeling was highest at C7-T1 and more widely dispersed among the quadrants at C8-T1. Our findings suggest dominant contralateral influence of the M1 hand/arm CSP, a contralateral innervation pattern in lamina VII supporting Kuypers (1982) conceptual framework of a "lateral motor system," and a projection to lamina IX indicating significant influence on motoneurons innervating flexors acting on the shoulder and elbow rostrally (C5-C7), along with flexors, extensors, abductors and adductors acting on the digits, hand and wrist caudally (C8-T1).
Collapse
Affiliation(s)
- Robert J. Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Jizhi Ge
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Kimberly S. Stilwell-Morecraft
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - David W. McNeal
- Division of Basic Biomedical Sciences, Laboratory of Neurological Sciences, The University of South Dakota, Sanford School of Medicine, Vermillion, South Dakota 57069
| | - Marc A. Pizzimenti
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - Warren G. Darling
- Department of Health and Human Physiology, Motor Control Laboratories, The University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
34
|
Abstract
Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment--from the time of the ictus itself to living with the consequences--must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, and we illustrate the model though action observation treatment, which aims to enhance brain network connectivity. The model is based on the assumptions that the mechanisms of neural repair inherently involve cellular and circuit plasticity, that brain plasticity is a synaptic phenomenon that is largely stimulus-dependent, and that brain repair required both physical and behavioural interventions that are tailored to reorganize specific brain circuits. We review current approaches to brain repair after stroke and present our new model, and discuss the biological foundations, rationales, and data to support our novel approach to upper-extremity and language rehabilitation. We believe that by enhancing plasticity at the level of brain network interactions, this neurological model for brain repair could ultimately lead to a cure for stroke.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neurology, University of California, Irvine, 200 Manchester Avenue, Suite 206, Orange, CA 92697, USA
| | | | | |
Collapse
|
35
|
Joint-specific changes in locomotor complexity in the absence of muscle atrophy following incomplete spinal cord injury. J Neuroeng Rehabil 2013; 10:97. [PMID: 23947694 PMCID: PMC3765129 DOI: 10.1186/1743-0003-10-97] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 07/26/2013] [Indexed: 12/23/2022] Open
Abstract
Background Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.
Collapse
|
36
|
The representation of egocentric space in the posterior parietal cortex. Behav Brain Sci 2013; 15 Spec No 4:691-700. [PMID: 23842408 DOI: 10.1017/s0140525x00072605] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The posterior parietal cortex (PPC) is the most likely site where egocentric spatial relationships are represented in the brain. PPC cells receive visual, auditory, somaesthetic, and vestibular sensory inputs; oculomotor, head, limb, and body motor signals; and strong motivational projections from the limbic system. Their discharge increases not only when an animal moves towards a sensory target, but also when it directs its attention to it. PPC lesions have the opposite effect: sensory inattention and neglect. The PPC does not seem to contain a "map" of the location of objects in space but a distributed neural network for transforming one set of sensory vectors into other sensory reference frames or into various motor coordinate systems. Which set of transformation rules is used probably depends on attention, which selectively enhances the synapses needed for making a particular sensory comparison or aiming a particular movement.
Collapse
|
37
|
Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci 2013; 37:1090-102. [PMID: 23360401 DOI: 10.1111/ejn.12119] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 11/30/2022]
Abstract
We previously showed that electrical stimulation of motor cortex (M1) after unilateral pyramidotomy in the rat increased corticospinal tract (CST) axon length, strengthened spinal connections, and restored forelimb function. Here, we tested: (i) if M1 stimulation only increases spinal axon length or if it also promotes connections to brain stem forelimb control centers, especially magnocellular red nucleus; and (ii) if stimulation-induced increase in axon length depends on whether pyramidotomy denervated the structure. After unilateral pyramidotomy, we electrically stimulated the forelimb area of intact M1, to activate the intact CST and other corticofugal pathways, for 10 days. We anterogradely labeled stimulated M1 and measured axon length using stereology. Stimulation increased axon length in both the spinal cord and magnocellular red nucleus, even though the spinal cord is denervated by pyramidotomy and the red nucleus is not. Stimulation also promoted outgrowth in the cuneate and parvocellular red nuclei. In the spinal cord, electrical stimulation caused increased axon length ipsilateral, but not contralateral, to stimulation. Thus, stimulation promoted outgrowth preferentially to the sparsely corticospinal-innervated and impaired side. Outgrowth resulted in greater axon density in the ipsilateral dorsal horn and intermediate zone, resembling the contralateral termination pattern. Importantly, as in spinal cord, increase in axon length in brain stem also was preferentially directed towards areas less densely innervated by the stimulated system. Thus, M1 electrical stimulation promotes increases in corticofugal axon length to multiple M1 targets. We propose the axon length change was driven by competition into an adaptive pattern resembling lost connections.
Collapse
Affiliation(s)
- Jason B Carmel
- Departments of Neurology & Neuroscience and Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
38
|
Guo X, Ayala JE, Gonzalez M, Stancescu M, Lambert S, Hickman JJ. Tissue engineering the monosynaptic circuit of the stretch reflex arc with co-culture of embryonic motoneurons and proprioceptive sensory neurons. Biomaterials 2012; 33:5723-31. [PMID: 22594977 DOI: 10.1016/j.biomaterials.2012.04.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
The sensory circuit of the stretch reflex arc is composed of intrafusal muscle fibers and their innervating proprioceptive neurons that convert mechanical information regarding muscle length and tension into action potentials that synapse onto the homonymous motoneurons in the ventral spinal cord which innervate the extrafusal fibers of the same muscle. To date, the in vitro synaptic connection between proprioceptive sensory neurons and spinal motoneurons has not been demonstrated. A functional in vitro system demonstrating this connection would enable the understanding of feedback by the integration of sensory input into the spinal reflex arc. Here we report a co-culture of rat embryonic motoneurons and proprioceptive sensory neurons from dorsal root ganglia (DRG) in a defined serum-free medium on a synthetic silane substrate (DETA). Furthermore, we have demonstrated functional synapse formation in the co-culture by immunocytochemistry and electrophysiological analysis. This work will be valuable for enabling in vitro model systems for the study of spinal motor control and related pathologies such as spinal cord injury, muscular dystrophy and spasticity by improving our understanding of the integration of the mechanosensitive feedback mechanism.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
39
|
Popa T, Velayudhan B, Hubsch C, Pradeep S, Roze E, Vidailhet M, Meunier S, Kishore A. Cerebellar processing of sensory inputs primes motor cortex plasticity. Cereb Cortex 2012; 23:305-14. [PMID: 22351647 DOI: 10.1093/cercor/bhs016] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Plasticity of the human primary motor cortex (M1) has a critical role in motor control and learning. The cerebellum facilitates these functions using sensory feedback. We investigated whether cerebellar processing of sensory afferent information influences the plasticity of the primary motor cortex (M1). Theta-burst stimulation protocols (TBS), both excitatory and inhibitory, were used to modulate the excitability of the posterior cerebellar cortex and to condition an ongoing M1 plasticity. M1 plasticity was subsequently induced in 2 different ways: by paired associative stimulation (PAS) involving sensory processing and TBS that exclusively involves intracortical circuits of M1. Cerebellar excitation attenuated the PAS-induced M1 plasticity, whereas cerebellar inhibition enhanced and prolonged it. Furthermore, cerebellar inhibition abolished the topography-specific response of PAS-induced M1 plasticity, with the effects spreading to adjacent motor maps. Conversely, cerebellar excitation had no effect on the TBS-induced M1 plasticity. This demonstrates the key role of the cerebellum in priming M1 plasticity, and we propose that it is likely to occur at the thalamic or olivo-dentate nuclear level by influencing the sensory processing. We suggest that such a cerebellar priming of M1 plasticity could shape the impending motor command by favoring or inhibiting the recruitment of several muscle representations.
Collapse
Affiliation(s)
- T Popa
- Centre de NeuroImagerie de Recherche-CENIR, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jankowska E, Nilsson E, Hammar I. Do spinocerebellar neurones forward information on spinal actions of neurones in the feline red nucleus? J Physiol 2011; 589:5727-39. [PMID: 21986203 DOI: 10.1113/jphysiol.2011.213694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We recently demonstrated that feline ventral spinocerebellar tract (VSCT) neurones monitor descending commands for voluntary movements initiated by pyramidal tract (PT) neurones as well as locomotor movements relayed by reticulospinal (RS) neurones. The aim of the present study was to examine whether VSCT neurones likewise monitor descending commands from the red nucleus (RN). Extracellular records from the spinal border (SB) subpopulation of VSCT neurons revealed that a third (31%) of SB neurones may be discharged by trains of stimuli applied in the RN. Moreover, when RN stimuli failed to discharge SB neurones they facilitated activation of some of these neurones by RS and/or PT neurones, while activation of other SB neurones was depressed. We propose that the facilitation and depression of actions of RS neurones by RN neurones might serve to reflect a higher or lower excitability of motoneurones and therefore a likely higher or lower efficacy of the RS descending commands, prompting the cerebellum to adjust the activation of reticulospinal neurones. Activation of SB neurones by RN stimuli alone would also allow monitoring and adjusting the RN descending commands. Intracellular records from SB neurones revealed both monosynaptic and disynaptic EPSPs and disynaptic IPSPs evoked by RN stimuli. The disynaptic actions remained following transection of axons of reticulospinal neurones within the medullary longitudinal fascicle (MLF) and were therefore taken to be relayed primarily by spinal neurones, in contrast to EPSPs and IPSPs evoked by PT stimuli found to be relayed by reticulospinal rather than spinal neurones.
Collapse
Affiliation(s)
- E Jankowska
- Department Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
41
|
Abstract
Abstract The primate reticulospinal tract is usually considered to control proximal and axial muscles, and to be involved mainly in gross movements such as locomotion, reaching and posture. This contrasts with the corticospinal tract, which is thought to be involved in fine control, particularly of independent finger movements. Recent data provide evidence that the reticulospinal tract can exert some influence over hand movements. Although clearly secondary to the corticospinal tract in healthy function, this could assume considerable importance after corticospinal lesion (such as following stroke), when reticulospinal systems could provide a substrate for some recovery of function. We need to understand more about the abilities of the reticular formation to process sensory input and guide motor output, so that rehabilitation strategies can be optimised to work with the innate capabilities of reticular motor control.
Collapse
Affiliation(s)
- Stuart N Baker
- Institute of Neuroscience, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
42
|
|
43
|
Abstract
Abstract
This target article draws together two groups of experimental studies on the control of human movement through peripheral feedback and centrally generated signals of motor commands. First, during natural movement, feedback from muscle, joint, and cutaneous afferents changes; in human subjects these changes have reflex and kinesthetic consequences. Recent psychophysical and microneurographic evidence suggests that joint and even cutaneous afferents may have a proprioceptive role. Second, the role of centrally generated motor commands in the control of normal movements and movements following acute and chronic deafferentation is reviewed. There is increasing evidence that subjects can perceive their motor commands under various conditions, but that this is inadequate for normal movement; deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of pathology. During natural movement, the CNS appears to have access to functionally useful input from a range of peripheral receptors as well as from internally generated command signals. The unanswered questions that remain suggest a number of avenues for further research.
Collapse
|
44
|
Equilibrium-point hypothesis, minimum effort control strategy and the triphasic muscle activation pattern. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00073209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
|
46
|
Successive approximation in targeted movement: An alternative hypothesis. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00072848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Abstract
AbstractEngineers use neural networks to control systems too complex for conventional engineering solutions. To examine the behavior of individual hidden units would defeat the purpose of this approach because it would be largely uninterpretable. Yet neurophysiologists spend their careers doing just that! Hidden units contain bits and scraps of signals that yield only arcane hints about network function and no information about how its individual units process signals. Most literature on single-unit recordings attests to this grim fact. On the other hand, knowing a system's function and describing it with elegant mathematics tell one very little about what to expect of interneuronal behavior. Examples of simple networks based on neurophysiology are taken from the oculomotor literature to suggest how single-unit interpretability might decrease with increasing task complexity. It is argued that trying to explain how any real neural network works on a cell-by-cell, reductionist basis is futile and we may have to be content with trying to understand the brain at higher levels of organization.
Collapse
|
48
|
Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 2011; 15:603-13. [PMID: 23302290 DOI: 10.1017/s0140525x00072538] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
|
50
|
Asante CO, Chu A, Fisher M, Benson L, Beg A, Scheiffele P, Martin J. Cortical control of adaptive locomotion in wild-type mice and mutant mice lacking the ephrin-Eph effector protein alpha2-chimaerin. J Neurophysiol 2010; 104:3189-202. [PMID: 20881205 DOI: 10.1152/jn.00671.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In voluntary control, supraspinal motor systems select the appropriate response and plan movement mechanics to match task constraints. Spinal circuits translate supraspinal drive into action. We studied the interplay between motor cortex (M1) and spinal circuits during voluntary movements in wild-type (WT) mice and mice lacking the α2-chimaerin gene (Chn1(-/-)), necessary for ephrinB3-EphA4 signaling. Chn1(-/-) mice have aberrant bilateral corticospinal systems, aberrant bilateral-projecting spinal interneurons, and disordered voluntary control because they express a hopping gait, which may be akin to mirror movements. We addressed three issues. First, we determined the role of the corticospinal system in adaptive control. We trained mice to step over obstacles during treadmill locomotion. We compared performance before and after bilateral M1 ablation. WT mice adaptively modified their trajectory to step over obstacles, and M1 ablation increased substantially the incidence of errant steps over the obstacle. Chn1(-/-) mice randomly stepped or hopped during unobstructed locomotion but hopped over the obstacle. Bilateral M1 ablation eliminated this obstacle-dependent hop selection and increased forelimb obstacle contact errors. Second, we characterized the laterality of corticospinal action in Chn1(-/-) mice using pseudorabies virus retrograde transneuronal transport and intracortical microstimulation. We showed bilateral connections between M1 and forelimb muscles in Chn1(-/-) and unilateral connections in WT mice. Third, in Chn1(-/-) mice, we studied adaptive responses before and after unilateral M1 ablation. We identified a more important role for contralateral than ipsilateral M1 in hopping over the obstacle. Our findings suggest an important role for M1 in the mouse in moment-to-moment adaptive control, and further, using Chn1(-/-) mice, a role in mediating task-dependent selection of mirror-like hopping movements over the obstacle. Our findings also stress the importance of subcortical control during adaptive locomotion because key features of the trajectory remained largely intact after M1 ablation.
Collapse
|