1
|
Dasgupta S, Pandya MA, Zanin JP, Liu T, Sun Q, Li H, Friedman WJ. ProNGF elicits retrograde axonal degeneration of basal forebrain neurons through p75 NTR and induction of amyloid precursor protein. Sci Signal 2024; 17:eadn2616. [PMID: 39316663 PMCID: PMC11487763 DOI: 10.1126/scisignal.adn2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple regions in the brain to regulate cognitive functions. Degeneration of BFCNs is seen with aging, after brain injury, and in neurodegenerative disorders. An increase in the amount of the immature proform of nerve growth factor (proNGF) in the cerebral cortex results in retrograde degeneration of BFCNs through activation of proNGF receptor p75NTR. Here, we investigated the signaling cascades initiated at the axon terminal that mediate proNGF-induced retrograde degeneration. We found that local axonal protein synthesis and retrograde transport mediated proNGF-induced degeneration initiated from the axon terminal. Analysis of the nascent axonal proteome revealed that proNGF stimulation of axonal terminals triggered the synthesis of numerous proteins within the axon, and pathway analysis showed that amyloid precursor protein (APP) was a key upstream regulator in cultured BFCNs and in mice. Our findings reveal a functional role for APP in mediating BFCN axonal degeneration and cell death induced by proNGF.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Mansi A. Pandya
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Juan P. Zanin
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Tong Liu
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Qian Sun
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Hong Li
- New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wilma J. Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
2
|
Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun 2021; 3:fcab044. [PMID: 34095832 PMCID: PMC8176148 DOI: 10.1093/braincomms/fcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric ‘mild’ traumatic brain injury.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Avideh Gharehgazlou
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Ibrahim
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5T 1W7
| |
Collapse
|
3
|
Disordered APP metabolism and neurovasculature in trauma and aging: Combined risks for chronic neurodegenerative disorders. Ageing Res Rev 2017; 34:51-63. [PMID: 27829172 DOI: 10.1016/j.arr.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI), advanced age, and cerebral vascular disease are factors conferring increased risk for late onset Alzheimer's disease (AD). These conditions are also related pathologically through multiple interacting mechanisms. The hallmark pathology of AD consists of pathological aggregates of amyloid-β (Aβ) peptides and tau proteins. These molecules are also involved in neuropathology of several other chronic neurodegenerative diseases, and are under intense investigation in the aftermath of TBI as potential contributors to the risk for developing AD and chronic traumatic encephalopathy (CTE). The pathology of TBI is complex and dependent on injury severity, age-at-injury, and length of time between injury and neuropathological evaluation. In addition, the mechanisms influencing pathology and recovery after TBI likely involve genetic/epigenetic factors as well as additional disorders or comorbid states related to age and central and peripheral vascular health. In this regard, dysfunction of the aging neurovascular system could be an important link between TBI and chronic neurodegenerative diseases, either as a precipitating event or related to accumulation of AD-like pathology which is amplified in the context of aging. Thus with advanced age and vascular dysfunction, TBI can trigger self-propagating cycles of neuronal injury, pathological protein aggregation, and synaptic loss resulting in chronic neurodegenerative disease. In this review we discuss evidence supporting TBI and aging as dual, interacting risk factors for AD, and the role of Aβ and cerebral vascular dysfunction in this relationship. Evidence is discussed that Aβ is involved in cyto- and synapto-toxicity after severe TBI, and that its chronic effects are potentiated by aging and impaired cerebral vascular function. From a therapeutic perspective, we emphasize that in the fields of TBI- and aging-related neurodegeneration protective strategies should include preservation of neurovascular function.
Collapse
|
4
|
Bolós M, Hu Y, Young KM, Foa L, Small DH. Neurogenin 2 mediates amyloid-β precursor protein-stimulated neurogenesis. J Biol Chem 2014; 289:31253-61. [PMID: 25217641 DOI: 10.1074/jbc.m114.581918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-β precursor protein (APP) is well studied for its role in Alzheimer disease, although its normal function remains uncertain. It has been reported that APP stimulates the proliferation and neuronal differentiation of neural stem/progenitor cells (NSPCs). In this study we examined the role of APP in NSPC differentiation. To identify proteins that may mediate the effect of APP on NSPC differentiation, we used a gene array approach to find genes whose expression correlated with APP-induced neurogenesis. We found that the expression of neurogenin 2 (Ngn2), a basic helix-loop-helix transcription factor, was significantly down-regulated in NSPCs from APP knock-out mice (APPKO) and increased in APP transgenic (Tg2576) mice. Ngn2 overexpression in APPKO NSPCs promoted neuronal differentiation, whereas siRNA knockdown of Ngn2 expression in wild-type NSPCs decreased neuronal differentiation. The results demonstrate that APP-stimulated neuronal differentiation of NSPCs is mediated by Ngn2.
Collapse
Affiliation(s)
- Marta Bolós
- From the Menzies Research Institute Tasmania and
| | - Yanling Hu
- From the Menzies Research Institute Tasmania and
| | | | - Lisa Foa
- From the Menzies Research Institute Tasmania and School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | | |
Collapse
|
5
|
Steuer E, Schaefer ML, Belluscio L. Using the olfactory system as an in vivo model to study traumatic brain injury and repair. J Neurotrauma 2014; 31:1277-91. [PMID: 24694002 DOI: 10.1089/neu.2013.3296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of olfactory function is an early indicator of traumatic brain injury (TBI). The regenerative capacity and well-defined neural maps of the mammalian olfactory system enable investigations into the degeneration and recovery of neural circuits after injury. Here, we introduce a unique olfactory-based model of TBI that reproduces many hallmarks associated with human brain trauma. We performed a unilateral penetrating impact to the mouse olfactory bulb and observed a significant loss of olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) ipsilateral to the injury, but not contralateral. By comparison, we detected the injury markers p75(NTR), β-APP, and activated caspase-3 in both the ipsi- and contralateral OE. In the olfactory bulb (OB), we observed a graded cell loss, with ipsilateral showing a greater reduction than contralateral and both significantly less than sham. Similar to OE, injury markers in the OB were primarily detected on the ipsilateral side, but also observed contralaterally. Behavioral experiments measured 4 days after impact also demonstrated loss of olfactory function, yet following a 30-day recovery period, we observed a significant improvement in olfactory function and partial recovery of olfactory circuitry, despite the persistence of TBI markers. Interestingly, by using the M71-IRES-tauLacZ reporter line to track OSN organization, we further determined that inducing neural activity during the recovery period with intense odor conditioning did not enhance the recovery process. Together, these data establish the mouse olfactory system as a new model to study TBI, serving as a platform to understand neural disruption and the potential for circuit restoration.
Collapse
Affiliation(s)
- Elizabeth Steuer
- 1 Developmental Neural Plasticity Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | | | | |
Collapse
|
6
|
Losey P, Young C, Krimholtz E, Bordet R, Anthony DC. The role of hemorrhage following spinal-cord injury. Brain Res 2014; 1569:9-18. [PMID: 24792308 DOI: 10.1016/j.brainres.2014.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/29/2014] [Accepted: 04/23/2014] [Indexed: 01/13/2023]
Abstract
Spinal-cord injury is characterized by primary damage as a direct consequence of mechanical insult, and secondary damage that is partly due to the acute inflammatory response. The extent of any hemorrhage within the injured cord is also known to be associated with the formation of intraparenchymal cavities and has been anecdotally linked to secondary damage. This study was designed to examine the contribution of blood components to the outcome of spinal-cord injury. We stereotaxically microinjected collagenase, which causes localized bleeding, into the spinal cord to model the hemorrhage associated with spinal cord injury in the absence of significant mechanical trauma. Tissue damage was observed at the collagenase injection site over time, and was associated with localized disruption of the blood-spinal-cord barrier, neuronal cell death, and the recruitment of leukocytes. The magnitude of the bleed was related to neutrophil mobilization. Interestingly, the collagenase-induced injury also provoked extended axonal damage. With this model, the down-stream effects of hemorrhage are easily discernible, and the impact of treatment strategies for spinal-cord injury on hemorrhage-related injury can be evaluated.
Collapse
Affiliation(s)
- Patrick Losey
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Christopher Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Emily Krimholtz
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Régis Bordet
- EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| | - Daniel C Anthony
- Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, UK; EA 1046, Pharmacology, Faculty of Medicine, IMPRT, University of Lille North of France, Lille, France.
| |
Collapse
|
7
|
Hook GR, Yu J, Sipes N, Pierschbacher MD, Hook V, Kindy MS. The cysteine protease cathepsin B is a key drug target and cysteine protease inhibitors are potential therapeutics for traumatic brain injury. J Neurotrauma 2014; 31:515-29. [PMID: 24083575 DOI: 10.1089/neu.2013.2944] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are currently no effective therapeutic agents for traumatic brain injury (TBI), but drug treatments for TBI can be developed by validation of new drug targets and demonstration that compounds directed to such targets are efficacious in TBI animal models using a clinically relevant route of drug administration. The cysteine protease, cathepsin B, has been implicated in mediating TBI, but it has not been validated by gene knockout (KO) studies. Therefore, this investigation evaluated mice with deletion of the cathepsin B gene receiving controlled cortical impact TBI trauma. Results indicated that KO of the cathepsin B gene resulted in amelioration of TBI, shown by significant improvement in motor dysfunction, reduced brain lesion volume, greater neuronal density in brain, and lack of increased proapoptotic Bax levels. Notably, oral administration of the small-molecule cysteine protease inhibitor, E64d, immediately after TBI resulted in recovery of TBI-mediated motor dysfunction and reduced the increase in cathepsin B activity induced by TBI. E64d outcomes were as effective as cathepsin B gene deletion for improving TBI. E64d treatment was effective even when administered 8 h after injury, indicating a clinically plausible time period for acute therapeutic intervention. These data demonstrate that a cysteine protease inhibitor can be orally efficacious in a TBI animal model when administered at a clinically relevant time point post-trauma, and that E64d-mediated improvement of TBI is primarily the result of inhibition of cathepsin B activity. These results validate cathepsin B as a new TBI therapeutic target.
Collapse
Affiliation(s)
- Gregory R Hook
- 1 American Life Science Pharmaceuticals , San Diego, California
| | | | | | | | | | | |
Collapse
|
8
|
Abner EL, Nelson PT, Schmitt FA, Browning SR, Fardo DW, Wan L, Jicha GA, Cooper GE, Smith CD, Caban-Holt AM, Van Eldik LJ, Kryscio RJ. Self-reported head injury and risk of late-life impairment and AD pathology in an AD center cohort. Dement Geriatr Cogn Disord 2014; 37:294-306. [PMID: 24401791 PMCID: PMC4057973 DOI: 10.1159/000355478] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 12/14/2022] Open
Abstract
AIMS To evaluate the relationship between self-reported head injury and cognitive impairment, dementia, mortality, and Alzheimer's disease (AD)-type pathological changes. METHODS Clinical and neuropathological data from participants enrolled in a longitudinal study of aging and cognition (n = 649) were analyzed to assess the chronic effects of self-reported head injury. RESULTS The effect of self-reported head injury on the clinical state depended on the age at assessment: for a 1-year increase in age, the OR for the transition to clinical mild cognitive impairment (MCI) at the next visit for participants with a history of head injury was 1.21 and 1.34 for the transition from MCI to dementia. Without respect to age, head injury increased the odds of mortality (OR = 1.54). Moreover, it increased the odds of a pathological diagnosis of AD for men (OR = 1.47) but not women (OR = 1.18). Men with a head injury had higher mean amyloid plaque counts in the neocortex and entorhinal cortex than men without. CONCLUSIONS Self-reported head injury is associated with earlier onset, increased risk of cognitive impairment and dementia, increased risk of mortality, and AD-type pathological changes.
Collapse
Affiliation(s)
- Erin L. Abner
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging
| | - Peter T. Nelson
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Pathology, University of Kentucky
| | - Frederick A. Schmitt
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Neurology, University of Kentucky
| | | | - David W. Fardo
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Biostatistics, University of Kentucky
| | - L. Wan
- Department of Statistics, University of Kentucky
| | - Gregory A. Jicha
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Neurology, University of Kentucky
| | | | - Charles D. Smith
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Neurology, University of Kentucky
| | - Allison M. Caban-Holt
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Behavioral Sciences, University of Kentucky
| | - Linda J. Van Eldik
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Anatomy and Neurobiology, University of Kentucky
| | - Richard J. Kryscio
- University of Kentucky Alzheimer’s Disease Center, Sanders-Brown Center on Aging,Department of Biostatistics, University of Kentucky,Department of Statistics, University of Kentucky
| |
Collapse
|
9
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
10
|
Bates K, Vink R, Martins R, Harvey A. Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain. Neurobiol Aging 2013; 35:1345-51. [PMID: 24360504 DOI: 10.1016/j.neurobiolaging.2013.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized histopathologically by the abnormal deposition of the proteins amyloid-beta (Aβ) and tau. A major issue for AD research is the lack of an animal model that accurately replicates the human disease, thus making it difficult to investigate potential risk factors for AD such as head injury. Furthermore, as age remains the strongest risk factor for most of the AD cases, transgenic models in which mutant human genes are expressed throughout the life span of the animal provide only limited insight into age-related factors in disease development. Guinea pigs (Cavia porcellus) are of interest in AD research because they have a similar Aβ sequence to humans and thus may present a useful non-transgenic animal model of AD. Brains from guinea pigs aged 3-48 months were examined to determine the presence of age-associated AD-like pathology. In addition, fluid percussion-induced brain injury was performed to characterize mechanisms underlying the association between AD risk and head injury. No statistically significant changes were detected in the overall response to aging, although we did observe some region-specific changes. Diffuse deposits of Aβ were found in the hippocampal region of the oldest animals and alterations in amyloid precursor protein processing and tau immunoreactivity were observed with age. Brain injury resulted in a strong and sustained increase in amyloid precursor protein and tau immunoreactivity without Aβ deposition, over 7 days. Guinea pigs may therefore provide a useful model for investigating the influence of environmental and non-genetic risk factors on the pathogenesis of AD.
Collapse
Affiliation(s)
- Kristyn Bates
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia.
| | - Robert Vink
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ralph Martins
- School of Psychiatry and Clinical Neuroscience, The University of Western Australia, Crawley, Western Australia, Australia; The McCusker Foundation for Alzheimer's Disease Research Inc, Nedlands, Western Australia, Australia; School of Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Alan Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Hu Y, Hung AC, Cui H, Dawkins E, Bolós M, Foa L, Young KM, Small DH. Role of cystatin C in amyloid precursor protein-induced proliferation of neural stem/progenitor cells. J Biol Chem 2013; 288:18853-62. [PMID: 23671283 DOI: 10.1074/jbc.m112.443671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The amyloid precursor protein (APP) is well studied for its role in Alzheimer disease. However, little is known about its normal function. In this study, we examined the role of APP in neural stem/progenitor cell (NSPC) proliferation. NSPCs derived from APP-overexpressing Tg2576 transgenic mice proliferated more rapidly than NSPCs from the corresponding background strain (C57Bl/6xSJL) wild-type mice. In contrast, NSPCs from APP knock-out (APP-KO) mice had reduced proliferation rates when compared with NSPCs from the corresponding background strain (C57Bl/6). A secreted factor, identified as cystatin C, was found to be responsible for this effect. Levels of cystatin C were higher in the Tg2576 conditioned medium and lower in the APP-KO conditioned medium. Furthermore, immunodepletion of cystatin C from the conditioned medium completely removed the ability of the conditioned medium to increase NSPC proliferation. The results demonstrate that APP expression stimulates NSPC proliferation and that this effect is mediated via an increase in cystatin C secretion.
Collapse
Affiliation(s)
- Yanling Hu
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel C. Characterisation of the effect of knockout of the amyloid precursor protein on outcome following mild traumatic brain injury. Brain Res 2012; 1451:87-99. [PMID: 22424792 DOI: 10.1016/j.brainres.2012.02.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/17/2012] [Accepted: 02/19/2012] [Indexed: 01/01/2023]
Abstract
The amyloid precursor protein (APP) increases following traumatic brain injury (TBI), although the functional significance of this remains unclear largely because the functions of the subsequent APP metabolites are so different: Aβ is neurotoxic whilst sAPPα is neuroprotective. To investigate this further, APP wildtype and knockout mice were subjected to mild diffuse TBI and their outcomes compared. APP knockout mice displayed significantly worse cognitive and motor deficits, as demonstrated by the Barnes Maze and rotarod respectively, than APP wildtype mice. This was associated with a significant increase in hippocampal and cortical cell loss, as well as axonal injury, in APP knockout mice and an impaired neuroreparative response as indicated by diminished GAP-43 immunoreactivity when compared to APP wildtype mice. This study is the first to demonstrate that endogenous APP is beneficial following mild TBI, suggesting that the upregulation of APP observed following injury is an acute protective response.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide SA, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 2009; 110:1227-37. [PMID: 19216653 DOI: 10.3171/2008.9.jns08584] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Damage to axons contributes to postinjury disabilities and is commonly observed following traumatic brain injury (TBI). Traumatic brain injury is an important environmental risk factor for the development of Alzheimer disease (AD). In the present feasibility study, the aim was to use intracerebral microdialysis catheters with a high molecular cutoff membrane (100 kD) to harvest interstitial total tau (T-tau) and amyloid beta 1-42 (Abeta42) proteins, which are important biomarkers for axonal injury and for AD, following moderate-to-severe TBI. METHODS Eight patients (5 men and 3 women) were included in the study; 5 of the patients had a focal/mixed TBI and 3 had a diffuse axonal injury (DAI). Following the bedside analysis of the routinely measured energy metabolic markers (that is, glucose, lactate/pyruvate ratio, glycerol, and glutamate), the remaining dialysate was pooled and two 12-hour samples per day were used to analyze T-tau and Abeta42 by enzyme-linked immunosorbent assay from Day 1 up to 8 days postinjury. RESULTS The results show high levels of interstitial T-tau and Abeta42 postinjury. Patients with a predominantly focal lesion had higher interstitial T-tau levels than in the DAI group from Days 1 to 3 postinjury (p < 0.05). In contrast, patients with DAI had consistently higher Abeta42 levels when compared with patients with focal injury. CONCLUSIONS These results suggest that monitoring of interstitial T-tau and Abeta42 by using microdialysis may be an important tool when evaluating the presence and role of axonal injury following TBI.
Collapse
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University Hospital, Uppsala, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Zhu X, Lee HG, Casadesus G, Avila J, Drew K, Perry G, Smith MA. Oxidative imbalance in Alzheimer's disease. Mol Neurobiol 2006; 31:205-17. [PMID: 15953822 DOI: 10.1385/mn:31:1-3:205] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/15/2004] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a striking feature of susceptible neurons in the Alzheimer's disease brain. Importantly, because oxidative stress is an early event in Alzheimer's disease, proximal to the development of hallmark pathologies, it likely plays an important role in the pathogenesis of the disease. Investigations into the cause of such oxidative stress show that interactions between abnormal mitochondria and disturbed metal metabolism are, at least in part, responsible for cytoplasmic oxidative damage observed in these susceptible neurons, which could ultimately lead to their demise. Oxidative stress not only temporally precedes the pathological lesions of the disease but could also contribute to their formation, which, in turn, could provide some protective mechanism to reduce oxidative stress and ensure that neurons do not rapidly succumb to oxidative insults. In this review, we present the evidence for oxidative stress in Alzheimer's disease and its likely sources and consequence in relation to other pathological changes.
Collapse
Affiliation(s)
- Xiongwei Zhu
- Institute of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abrahamson EE, Ikonomovic MD, Ciallella JR, Hope CE, Paljug WR, Isanski BA, Flood DG, Clark RSB, DeKosky ST. Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Exp Neurol 2005; 197:437-50. [PMID: 16300758 DOI: 10.1016/j.expneurol.2005.10.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/04/2005] [Accepted: 10/13/2005] [Indexed: 11/16/2022]
Abstract
The detrimental effects of traumatic brain injury (TBI) on brain tissue integrity involve progressive axonal damage, necrotic cell loss, and both acute and delayed apoptotic neuronal death due to activation of caspases. Post-injury accumulation of amyloid precursor protein (APP) and its toxic metabolite amyloid-beta peptide (Abeta) has been implicated in apoptosis as well as in increasing the risk for developing Alzheimer's disease (AD) after TBI. Activated caspases proteolyze APP and are associated with increased Abeta production after neuronal injury. Conversely, Abeta and related APP/Abeta fragments stimulate caspase activation, creating a potential vicious cycle of secondary injury after TBI. Blockade of caspase activation after brain injury suppresses apoptosis and improves neurological outcome, but it is not known whether such intervention also prevents increases in Abeta levels in vivo. The present study examined the effect of caspase inhibition on post-injury levels of soluble Abeta, APP, activated caspase-3, and caspase-cleaved APP in the hippocampus of nontransgenic mice expressing human Abeta, subjected to controlled cortical injury (CCI). CCI produced brain tissue damage with cell loss and elevated levels of activated caspase-3, Abeta(1-42) and Abeta(1-40), APP, and caspase-cleaved APP fragments in hippocampal neurons and axons. Post-CCI intervention with intracerebroventricular injection of 100 nM Boc-Asp(OMe)-CH(2)F (BAF, a pan-caspase inhibitor) significantly reduced caspase-3 activation and improved histological outcome, suppressed increases in Abeta and caspase-cleaved APP, but showed no significant effect on overall APP levels in the hippocampus after CCI. These data demonstrate that after TBI, caspase inhibition can suppress elevations in Abeta. The extent to which Abeta suppression contributes to improved outcome following inhibition of caspases after TBI is unclear, but such intervention may be a valuable therapeutic strategy for preventing the long-term evolution of Abeta-mediated pathology in TBI patients who are at risk for developing AD later in life.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Department of Neurology, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Suite 811, 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Stagi M, Dittrich PS, Frank N, Iliev AI, Schwille P, Neumann H. Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci 2005; 25:352-62. [PMID: 15647478 PMCID: PMC6725475 DOI: 10.1523/jneurosci.3887-04.2005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanism of axonal injury in inflammatory brain diseases is still unclear. Increased microglial production of nitric oxide (NO) is a common early sign in neuroinflammatory diseases. We found by fluorescence correlation spectroscopy that synaptophysin tagged with enhanced green fluorescence protein (synaptophysin-EGFP) moves anterogradely in axons of cultured neurons. Activated microglia focally inhibited the axonal movement of synaptophysin-EGFP in a NO synthase-dependent manner. Direct application of a NO donor to neurons resulted in inhibition of axonal transport of synaptophysin-EGFP and synaptotagmin I tagged with EGFP, mediated via phosphorylation of c-jun NH2-terminal kinase (JNK). Thus, overt production of reactive NO by activated microglia blocks the axonal transport of synaptic vesicle precursors via phosphorylation of JNK and could cause axonal and synaptic dysfunction.
Collapse
Affiliation(s)
- Massimiliano Stagi
- Neuroimmunology Group, European Neuroscience Institute Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O. Traumatic brain injury: cause or risk of Alzheimer's disease? A review of experimental studies. J Neural Transm (Vienna) 2005; 112:1547-64. [PMID: 15959838 DOI: 10.1007/s00702-005-0326-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 04/25/2005] [Indexed: 02/06/2023]
Abstract
Traumatic Brain Injury is the leading cause of death and disability among young individuals in our society. Moreover, according to some epidemiological studies, head trauma is one of the most potent environmental risk factors for subsequent development of Alzheimer's disease. Interestingly, pathological features that are present also in Alzheimer's disease (in particular deposition of beta-amyloid protein) were observed in traumatised brains already a few hours after the initial insult. The primary objective of this review is to present methodology and results of numerous recent human and animal studies dealing with this issue. Special emphasis was placed on head trauma experiments in transgenic mouse models of Alzheimer's disease. We further evaluate the connection between traumatic brain insults and subsequent development of dementia and try to differentiate between primary and secondary pathological mechanisms.
Collapse
Affiliation(s)
- J Szczygielski
- Department of Psychiatry, Section Neurobiology, Saarland University, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Shimamura M, Garcia JM, Prough DS, Dewitt DS, Uchida T, Shah SA, Avila MAA, Hellmich HL. Analysis of long-term gene expression in neurons of the hippocampal subfields following traumatic brain injury in rats. Neuroscience 2005; 131:87-97. [PMID: 15680694 DOI: 10.1016/j.neuroscience.2004.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2004] [Indexed: 01/19/2023]
Abstract
After experimental traumatic brain injury (TBI), widespread neuronal loss is progressive and continues in selectively vulnerable brain regions, such as the hippocampus, for months to years after the initial insult. To clarify the molecular mechanisms underlying secondary or delayed cell death in hippocampal neurons after TBI, we compared long-term changes in gene expression in the CA1, CA3 and dentate gyrus (DG) subfields of the rat hippocampus at 24 h and 3, 6, and 12 months after TBI with changes in gene expression in sham-operated rats. We used laser capture microdissection to collect several hundred hippocampal neurons from the CA1, CA3, and DG subfields and linearly amplified the nanogram samples of neuronal RNA with T7 RNA polymerase. Subsequent quantitative analysis of gene expression using ribonuclease protection assay revealed that mRNA expression of the anti-apoptotic gene, Bcl-2, and the chaperone heat shock protein 70 was significantly downregulated at 3, 6 (Bcl-2 only), and 12 months after TBI. Interestingly, the expression of the pro-apoptotic genes caspase-3 and caspase-9 was also significantly decreased at 3, 6 (caspase-9 only), and 12 months after TBI, suggesting that long-term neuronal loss after TBI is not mediated by increased expression of pro-apoptotic genes. The expression of two aging-related genes, p21 and integrin beta3 (ITbeta3), transiently increased 24 h after TBI, returned to baseline levels at 3 months and significantly decreased below sham levels at 12 months (ITbeta3 only). Expression of the gene for the antioxidant glutathione peroxidase-1 also significantly increased 6 months after TBI. These results suggest that decreased levels of neuroprotective genes may contribute to long-term neurodegeneration in animals and human patients after TBI. Conversely, long-term increases in antioxidant gene expression after TBI may be an endogenous neuroprotective response that compensates for the decrease in expression of other neuroprotective genes.
Collapse
Affiliation(s)
- M Shimamura
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0830, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN. Amyloid-beta: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-beta. ACTA ACUST UNITED AC 2004; 43:1-16. [PMID: 14499458 DOI: 10.1016/s0165-0173(03)00174-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although much maligned, the amyloid-beta (Abeta) protein has been shown to possess a number of trophic properties that emanate from the protein's ability to bind Cu, Fe and Zn. Abeta belongs to a group of proteins that capture redox metal ions (even under mildly acidotic conditions), thereby preventing them from participating in redox cycling with other ligands. The coordination of Cu appears to be crucial for Abeta's own antioxidant activity that has been demonstrated both in vitro as well as in the brain, cerebrospinal fluid and plasma. The chelation of Cu by Abeta would therefore be predicted to dampen oxidative stress in the mildly acidotic and oxidative environment that accompanies acute brain trauma and Alzheimer's disease (AD). Given that oxidative stress promotes Abeta generation, the formation of diffuse amyloid plaques is likely to be a compensatory response to remove reactive oxygen species. This review weighs up the evidence supporting both the trophic and toxic properties of Abeta, and while evidence for direct Abeta neurotoxicity in vivo is scarce, we postulate that the product of Abeta's antioxidant activity, hydrogen peroxide (H(2)O(2)), is likely to mediate toxicity as the levels of this oxidant rise with the accumulation of Abeta in the AD brain. We propose that metal ion chelators, antioxidants, antiinflammatories and amyloid-lowering drugs that target the reduction of H(2)O(2) and/or Abeta generation may be efficacious in decreasing neurotoxicity. However, given the antioxidant activity of Abeta, we suggest that the excessive removal of Abeta may prevent adequate chelation of metal ions and removal of O(2)(-z.ccirf;), leading to enhanced, rather than reduced, neuronal oxidative stress.
Collapse
Affiliation(s)
- Craig S Atwood
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bates KA, Fonte J, Robertson TA, Martins RN, Harvey AR. Chronic gliosis triggers Alzheimer's disease-like processing of amyloid precursor protein. Neuroscience 2002; 113:785-96. [PMID: 12182886 DOI: 10.1016/s0306-4522(02)00230-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease is a progressively dementing illness characterized by the extracellular accumulation and deposition of beta-amyloid. Early onset Alzheimer's disease is linked to mutations in three genes, all of which lead to increased beta-amyloid production. Inflammatory changes and gliosis may also play a role in the disease process, but the importance of these reactive events remains unclear. We recently reported that chronic cortical gliosis in heterotopic fetal rat cortical transplants is associated with significant changes in the levels of some of the proteins implicated in the pathogenesis of Alzheimer's disease. Because rodent beta-amyloid does not form extracellular amyloid deposits, we have now extended this model of chronic cortical gliosis to transgenic mice expressing the Swedish mutant form of human amyloid precursor protein. In addition, apolipoprotein E knockout mice were used to elucidate the role of this protein in reactive gliosis. The expression of mutant and murine proteins was assayed 6 or 10 months after transplantation using immunohistochemical and western blot methods. Heterotopic transplantation of fetal cortex onto the midbrain of neonatal mice consistently resulted in reactive gliosis, independent of apolipoprotein E status. In contrast, in homotopic cortex-to-cortex grafts there was little alteration in glial reactivity, a result similar to that obtained previously in rats. By 10 months post-transplantation the level of presenilin-1 expression was lower in heterotopic grafts than in host cortex and there was increased expression of transgenic amyloid precursor protein, but only in the gliotic cortex-to-midbrain grafts. Most importantly, increased levels of beta-amyloid, and particularly its precursor, C-99, were selectively found in these heterotopic transplants. Our results show that chronic gliosis is associated with altered processing of the amyloid precursor protein in vivo and thus may initiate or exacerbate pathological changes associated with Alzheimer's disease.
Collapse
Affiliation(s)
- K A Bates
- School of Anatomy and Human Biology, The University of Western Australia, Nedlands, WA 6009, Australia
| | | | | | | | | |
Collapse
|
21
|
Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJM, Rozemuller JM, Veerhuis R, Williams A. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002; 40:232-239. [PMID: 12379910 DOI: 10.1002/glia.10146] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors, acute-phase protein, pro-inflammatory cytokines) and clusters of activated microglia. The present data suggest that the cerebral Abeta and PrP deposits are closely associated with a locally induced, non-immune-mediated chronic inflammatory response. Epidemiological studies indicate that polymorphisms of certain cytokines and acute-phase proteins, which are associated with Abeta plaques, are genetic risk factors for AD. Transgenic mice studies have established the role of amyloid associated acute-phase proteins in Alzheimer amyloid formation. In contrast to AD, there is a lack of evidence that cytokines and acute-phase proteins can influence disease progression in prion disease. Clinicopathological and neuroradiological studies have shown that activation of microglia is a relatively early pathogenetic event that precedes the process of neuropil destruction in AD patients. It has also been found that the onset of microglial activation coincided in mouse models of prion disease with the earliest changes in neuronal morphology, many weeks before neuronal loss and subsequent clinical signs of disease. In the present work, we review the similarities and differences between the involvement of inflammatory mechanisms in AD and prion disease. We also discuss the concept that the demonstration of a chronic inflammatory-like process relatively early in the pathological cascade of both diseases suggests potential therapeutic strategies to prevent or to retard these chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Psychiatry, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - C Bate
- Department of Veterinary Pathology, Institute of Comparative Medicine, Glasgow University Veterinary School,. Glasgow, Scotland
| | - W A Van Gool
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - J J M Hoozemans
- Department of Pathology, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - J M Rozemuller
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - R Veerhuis
- Department of Pathology, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - A Williams
- Department of Veterinary Pathology, Institute of Comparative Medicine, Glasgow University Veterinary School,. Glasgow, Scotland
| |
Collapse
|
22
|
Griffin WST, Mrak RE. Interleukin‐1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.2.233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- W. Sue T. Griffin
- Department of Geriatrics, Medicine, and Psychiatry, Veterans Affairs Medical Center, Little Rock
- Department of Geriatric and Mental Health Research Education and Clinical Centers, Veterans Affairs Medical Center, Little Rock
| | - Robert E. Mrak
- Department of Pathology, University of Arkansas for Medical Sciences, Veterans Affairs Medical Center, Little Rock
| |
Collapse
|
23
|
Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosci 2002. [PMID: 11784789 DOI: 10.1523/jneurosci.22-02-00446.2002] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) increases susceptibility to Alzheimer's disease (AD), but it is not known how TBI contributes to the onset or progression of this common late life dementia. To address this question, we studied neuropathological and behavioral consequences of single versus repetitive mild TBI (mTBI) in transgenic (Tg) mice (Tg2576) that express mutant human Abeta precursor protein, and we demonstrate elevated brain Abeta levels and increased Abeta deposition. Nine-month-old Tg2576 and wild-type mice were subjected to single (n = 15) or repetitive (n = 39) mTBI or sham treatment (n = 37). At 2 d and 9 and 16 weeks after treatment, we assessed brain Abeta deposits and levels in addition to brain and urine isoprostanes generated by lipid peroxidation in these mice. A subset of mice also was studied behaviorally at 16 weeks after injury. Repetitive but not single mTBI increased Abeta deposition as well as levels of Abeta and isoprostanes only in Tg mice, and repetitive mTBI alone induced cognitive impairments but no motor deficits in these mice. This is the first experimental evidence linking TBI to mechanisms of AD by showing that repetitive TBI accelerates brain Abeta accumulation and oxidative stress, which we suggest could work synergistically to promote the onset or drive the progression of AD. Additional insights into the role of TBI in mechanisms of AD pathobiology could lead to strategies for reducing the risk of AD associated with previous episodes of brain trauma and for preventing progressive brain amyloidosis in AD patients.
Collapse
|
24
|
Martins RN, Taddei K, Kendall C, Evin G, Bates KA, Harvey AR. Altered expression of apolipoprotein E, amyloid precursor protein and presenilin-1 is associated with chronic reactive gliosis in rat cortical tissue. Neuroscience 2002; 106:557-69. [PMID: 11591456 DOI: 10.1016/s0306-4522(01)00289-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A major characteristic feature of Alzheimer's disease is the formation of compact, extracellular deposits of beta-amyloid (senile plaques). These deposits are surrounded by reactive astrocytes, microglia and dystrophic neurites. Mutations in three genes have been implicated in early-onset familial Alzheimer's disease. However, inflammatory changes and astrogliosis are also believed to play a role in Alzheimer's pathology. What is unclear is the extent to which these factors initiate or contribute to the disease progression. Previous rat studies demonstrated that heterotopic transplantation of foetal cortical tissue onto the midbrain of neonatal hosts resulted in sustained glial reactivity for many months. Similar changes were not seen in cortex-to-cortex grafts. Using this model of chronic cortical gliosis, we have now measured reactive changes in the levels of the key Alzheimer's disease proteins, namely the amyloid precursor protein, apolipoprotein E and presenilin-1. These changes were visualised immunohistochemically and were quantified by western blot analysis. We report here that chronic cortical gliosis in the rat results in a sustained increase in the levels of apolipoprotein E and total amyloid precursor protein. Reactive astrocytes in heterotopic cortical grafts were immunopositive for both of these proteins. Using a panel of amyloid precursor protein antibodies we demonstrate that chronic reactive gliosis is associated with alternative cleavage of the peptide. No significant changes in apolipoprotein E or amyloid precursor protein expression were seen in non-gliotic cortex-to-cortex transplants. Compared to host cortex, the levels of both N-terminal and C-terminal fragments of presenilin-1 were significantly lower in gliotic heterotopic grafts.The changes described here largely mirror those seen in the cerebral cortex of humans with Alzheimer's disease and are consistent with the proposal that astrogliosis may be an important factor in the pathogenesis of this disease.
Collapse
Affiliation(s)
- R N Martins
- Sir James McCusker Alzheimer Research Unit and University Department of Surgery, The University of Western Australia, Nedlands, Austalia.
| | | | | | | | | | | |
Collapse
|
25
|
Laurer HL, Bareyre FM, Lee VM, Trojanowski JQ, Longhi L, Hoover R, Saatman KE, Raghupathi R, Hoshino S, Grady MS, McIntosh TK. Mild head injury increasing the brain's vulnerability to a second concussive impact. J Neurosurg 2001; 95:859-70. [PMID: 11702878 DOI: 10.3171/jns.2001.95.5.0859] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECT Mild, traumatic repetitive head injury (RHI) leads to neurobehavioral impairment and is associated with the early onset of neurodegenerative disease. The authors developed an animal model to investigate the behavioral and pathological changes associated with RHI. METHODS Adult male C57BL/6 mice were subjected to a single injury (43 mice), repetitive injury (two injuries 24 hours apart; 49 mice), or no impact (36 mice). Cognitive function was assessed using the Morris water maze test, and neurological motor function was evaluated using a battery of neuroscore, rotarod, and rotating pole tests. The animals were also evaluated for cardiovascular changes, blood-brain barrier (BBB) breakdown, traumatic axonal injury, and neurodegenerative and histopathological changes between 1 day and 56 days after brain trauma. No cognitive dysfunction was detected in any group. The single-impact group showed mild impairment according to the neuroscore test at only 3 days postinjury, whereas RHI caused pronounced deficits at 3 days and 7 days following the second injury. Moreover, RHI led to functional impairment during the rotarod and rotating pole tests that was not observed in any animal after a single impact. Small areas of cortical BBB breakdown and axonal injury. observed after a single brain injury, were profoundly exacerbated after RHI. Immunohistochemical staining for microtubule-associated protein-2 revealed marked regional loss of immunoreactivity only in animals subjected to RHI. No deposits of beta-amyloid or tau were observed in any brain-injured animal. CONCLUSIONS On the basis of their results, the authors suggest that the brain has an increased vulnerability to a second traumatic insult for at least 24 hours following an initial episode of mild brain trauma.
Collapse
Affiliation(s)
- H L Laurer
- The Head Injury Center, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6316, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bramlett HM, Dietrich WD. Neuropathological protection after traumatic brain injury in intact female rats versus males or ovariectomized females. J Neurotrauma 2001; 18:891-900. [PMID: 11565601 DOI: 10.1089/089771501750451811] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An important consideration in traumatic brain injury (TBI) in females is the influence of hormones on recovery. Recent studies in both cerebral ischemia and TBI have demonstrated an attenuation in both damage and neurologic recovery following hormonal treatment. However, the ability of endogenous hormone levels to provide neuropathological protection after fluid percussion (FP) brain injury has not been studied. The purpose of this experiment was to determine whether endogenous circulating hormones in the female rat could provide neuroprotection compared to males and ovariectomized female animals. Sixty-four Sprague-Dawley rats underwent a moderate (1.7-2.2 atm) right parasagittal FP injury. Intact females (i.e., nonovariectomized) were subjected to injury either during the proestrous (TBI-FP, n = 18) phase of their cycle or nonproestrous (TBI-FNP, n = 19) phase. A separate group of females were ovariectomized (TBI-OVX, n = 10) 10 days prior to FP injury in order to reduce hormone levels. Male animals were also traumatized (TBI-M, n = 17). Appropriate sham controls (Sham-FP, n = 2; Sham-FNP, n = 2; Sham-OVX, n = 2; Sham-M, n = 2) also underwent all aspects of surgery except for the actual FP injury. All groups were sacrificed 3 days following TBI for analysis. Both intact female groups had significantly (p < 0.05) smaller cortical contusions compared to male animals. In addition to this finding, the TBI-FNP group was significantly (p < 0.04) different from the ovariectomized female animals. Ovariectomized rats had larger areas of damage compared to intact females. The TBI-OVX group's cortical contusion volume was similar to male animals. These results provide evidence for endogenous hormonal histopathological protection following parasagittal FP brain injury. The use of hormone therapy after TBI warrants continued exploration.
Collapse
Affiliation(s)
- H M Bramlett
- Department of Neurological Surgery, Neurotrauma Research Center, University of Miami School of Medicine, Florida 33101, USA.
| | | |
Collapse
|
27
|
Vaucher E, Aumont N, Pearson D, Rowe W, Poirier J, Kar S. Amyloid beta peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and -unimpaired rats. J Chem Neuroanat 2001; 21:323-9. [PMID: 11429273 DOI: 10.1016/s0891-0618(01)00120-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Excessive extracellular deposition of amyloid beta (Abeta) peptide in neuritic plaques and degeneration of forebrain cholinergic neurones, which innervate the hippocampus and the neocortex, are the invariant characteristic features of Alzheimer's disease (AD). Studies of the pathological changes that characterize AD, together with several other lines of evidence, indicate that Abeta accumulation in vivo may initiate and/or contribute to the process of neurodegeneration observed in the AD brain. However, the underlying mechanisms by which Abeta peptide influences/causes degeneration of the basal forebrain cholinergic neurones in AD brains remain obscure. We reported earlier that nM concentrations of Abeta-related peptides, under acute conditions, can potently inhibit K+-evoked endogenous acetylcholine (ACh) release from the hippocampus and the cortex but not from striatum in young adult rats (J. Neurosci. 16 (1996) 1034). In the present study, to determine whether the effects of Abeta peptides alter with normal aging and/or cognitive state, we have measured Abeta1-40 levels and the effects of exogenous Abeta1-40 on hippocampal ACh release in young adult as well as aged cognitively-unimpaired (AU) and -impaired (AI) rats. Endogenous levels of Abeta(1-40) in the hippocampus are significantly increased in aged rats. Additionally, 10 nM Abeta1-40 potently inhibited endogenous ACh release from the hippocampus of the three groups of rats, but the time-course of the effects clearly indicate that the cholinergic neurones of AI rats are more sensitive to Abeta peptides than either AU or young adult rats. These results, together with earlier reports, suggest that the processing of the precursor protein of Abeta peptide alters with normal aging and the response of the cholinergic neurones to the peptide possibly varies with the cognitive status of the animals.
Collapse
Affiliation(s)
- E Vaucher
- Department of Psychiatry, Douglas Hospital Research Center, McGill University, Quebec, H4H 1R3, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Sabo T, Lomnitski L, Nyska A, Beni S, Maronpot RR, Shohami E, Roses AD, Michaelson DM. Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatalities. Neuroscience 2001; 101:879-84. [PMID: 11113336 DOI: 10.1016/s0306-4522(00)00438-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apolipoprotein E, the major brain lipid-binding protein, is expressed in humans as three common isoforms (E2, E3 and E4). Previous studies revealed that the allele apolipoprotein E4 is a major genetic risk factor of Alzheimer's disease and that traumatic brain injury is associated with increased risk for developing this disease. Furthermore, it has been suggested that the effects of traumatic head injury and apolipoprotein E4 in Alzheimer's disease are synergistic. To test the hypothesis that the apolipoprotein E genotype affects susceptibility to brain injury, we subjected transgenic mice, expressing either human apolipoprotein E3 or human apolipoprotein E4 on a null mouse apolipoprotein E background and apolipoprotein E-deficient knockouts, to closed head injury and compared mortality, neurological recovery and the extent of brain damage of the survivors. More than 50% of the transgenic mice expressing human apolipoprotein E4 died following closed head injury, whereas only half as many of the transgenic mice expressing human apolipoprotein E3, and of the control and apolipoprotein E-deficient mice died during this period (P<0.02). A neurological severity score used for clinical assessment of the surviving mice up to 11 days after closed head injury revealed that the four mouse groups displayed similar severity of damage at 1h following injury. At three and 11 days post-injury, however, the neurological severity scores of the transgenic mice expressing human apolipoprotein E3 were significantly lower than those of the other three groups whose scores were similar, indicating better recovery of the transgenic mice expressing human apolipoprotein E3. Histopathological examination of the mice performed 11 days post-injury revealed, consistent with the above neurological results, that the size of the damaged brain area of the transgenic mice expressing human apolipoprotein E3 was smaller than that of the other head-injured groups. These findings show that transgenic mice expressing human apolipoprotein E4 are more susceptible than those expressing apolipoprotein E3 to closed head injury. We suggest that this effect is due to both a protective effect of apolipoprotein E3 and an apolipoprotein E4-related pathological function.
Collapse
Affiliation(s)
- T Sabo
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kerr ME, DeKosky ST, Kay A, Marion DW. Role of Genetic Background: Influence of Apolipoprotein E Genotype in Alzheimer’s Disease and After Head Injury. Brain Inj 2001. [DOI: 10.1007/978-1-4615-1721-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Abstract
Apolipoprotein E (apo E) is a lipoprotein produced by astrocytes and microglia and has a proposed role in transporting lipids to injured neurons. There are three known isoforms of apo E, coded for by the APOE epsilon2, APOE epsilon3, and APOE epsilon4 genes. The APOE epsilon4 genotype has been implicated as a risk factor for Alzheimer's disease. Recent studies have suggested that APOE epsilon4 may influence the central nervous system's response to injury. This article presents an overview of the relationship between apo E, Alzheimer's disease, and head injury and reviews recent studies implicating APOE epsilon4 as a possible genetic determinant in recovery from head injury.
Collapse
Affiliation(s)
- R A Samatovicz
- Department of Physical Medicine and Rehabilitation, Kaiser Foundation Rehabilitation Center, Vallejo, California 94589-2485, USA.
| |
Collapse
|
31
|
Abstract
Established genetic causes of familial Alzheimer disease (AD) involve genes for beta-amyloid precursor protein (betaAPP), presenilin-1, and presenilin-2. For the more common sporadic forms of AD, increased risk has been associated with a number of genes; the most important of which is the epsilon4 allele of apolipoprotein E. Two recent studies, one clinical and one using postmortem material, now show increased risk for AD associated with certain polymorphisms in the genes encoding the alpha and beta isoforms of interleukin-1 (IL-1). IL-1 levels are elevated in Alzheimer brain, and overexpression of IL-1 is associated with beta-amyloid plaque progression. IL-1 interacts with the gene products of several other known or suspected genetic risk factors for AD, including betaAPP, apolipoprotein E, alpha1-antichymotrypsin, and alpha2-macroglobulin. IL-1 overexpression is also associated with environmental risk factors for AD, including normal aging and head trauma. These observations suggest an important pathogenic role for IL-1, and for IL-1-driven cascades, in the pathogenesis of AD.
Collapse
Affiliation(s)
- R E Mrak
- Pathology and Laboratory Medicine Service, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas, USA
| | | |
Collapse
|
32
|
Han SH, Chung SY. Marked hippocampal neuronal damage without motor deficits after mild concussive-like brain injury in apolipoprotein E-deficient mice. Ann N Y Acad Sci 2000; 903:357-65. [PMID: 10818526 DOI: 10.1111/j.1749-6632.2000.tb06387.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Of various biological factors, only allele epsilon 4 of apolipoprotein E (apoE, protein; APOE4, gene) has been thus far suggested as a major determinant of genetic risk for sporadic and late-onset familial Alzheimer's disease (AD). Environmental influences such as lack of education, traumatic brain injury, oxidative stress, environmental toxins, hormonal imbalances, and alterations in immune or inflammatory responses may also contribute to the pathogenesis of AD. Thus genetic susceptibility and environmental risk factors may have synergistic effects on the development of AD. The purpose of present report was to assess whether the gene (APOE) and the environmental risk factor (traumatic brain injury) could interact in hippocampal neuronal degeneration. We investigated the histopathological changes of hipoccampal regions after mild concussive-like brain injury without motor deficits in apoE-deficient mice using the recently described novel weight-drop device. Control mice revealed minimal neurodegenerative changes limited to CA2 and CA3, while apoE-deficient mice showed widespread neuronal degeneration throughout hippocampal subfields and part of dentate gyrus. We also observed widespread glial fibrillary acidic protein (GFAP) immunoreactivity throughout the hippocampus, which was more intense in apoE-deficient mice. The results of this study indicate that even very mild traumatic brain injury could result in widespread hippocampal damage in apoE-deficient mice. This again supports the hypothesis that apoE might play a neurotrophic or neuroprotective function in the central nervous system.
Collapse
Affiliation(s)
- S H Han
- Department of Neurology, Chungbuk National University Hospital, Korea.
| | | |
Collapse
|
33
|
Masumura M, Hata R, Uramoto H, Murayama N, Ohno T, Sawada T. Altered expression of amyloid precursors proteins after traumatic brain injury in rats: in situ hybridization and immunohistochemical study. J Neurotrauma 2000; 17:123-34. [PMID: 10709870 DOI: 10.1089/neu.2000.17.123] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The expression of alternatively spliced mRNAs for amyloid precursor protein (APP) isoforms and their translation products were examined in the rat cerebral cortex 1, 3, 6, and 12 h and 1, 3, and 7 days (n = 4-5 in each group) after fluid-percussion brain injury. In situ hybridization studies demonstrated that the expression of APP695 mRNA decreased in and around the damaged area of the cerebral cortex exposed to fluid-percussion injury 1 h after the insult. On the other hand, APP751/770 mRNAs were increased in the regions surrounding the damaged cortical areas 1 day after the injury. An increase of immunoreactive APP was detected in the regions around the damaged cortical areas 3 h after traumatic injury and maintained for the following 3 days. The APP immunoreactivity in the damaged cortices declined to the level of sham-operated animals by post-experimental day 7. Using an anti-amyloid beta (Abeta) protein (17-24) antibody, no deposits of immunoreactive Abeta (17-24) were observed in any of the samples examined in these experiments. These results suggest that the induction of Kunitz-type protease inhibitor (KPI) domain-containing APP mRNAs and the increased accumulation of APP are involved in the physiological and neuropathological responses of brains under various neurodegenerative conditions, including head trauma.
Collapse
Affiliation(s)
- M Masumura
- BF Research Institute, c/o National Cardiovascular Center, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Weinstock M, Goren T, Youdim MBH. Development of a novel neuroprotective drug (TV3326) for the treatment of Alzheimer's disease, with cholinesterase and monoamine oxidase inhibitory activities. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200007/08)50:3/4<216::aid-ddr4>3.0.co;2-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
36
|
Van den Heuvel C, Blumbergs PC, Finnie JW, Manavis J, Jones NR, Reilly PL, Pereira RA. Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp Neurol 1999; 159:441-50. [PMID: 10506515 DOI: 10.1006/exnr.1999.7150] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that the amyloid precursor protein (APP) plays an important role in neuronal growth and synaptic plasticity and that its increased expression following traumatic brain injury represents an acute phase response to trauma. We hypothesized that the previously described increased APP expression in response to injury (Van den Heuvel et al., Acta Neurochir. Suppl. 71, 209-211) is due to increased mRNA expression and addressed this by examining the expression of APP mRNA and APP within neuronal cell bodies over time in an ovine head impact model. Twenty-five anesthetized and ventilated 2-year-old Merino ewes sustained a left temporal head impact using a humane stunner and 9 normal sheep were used as nonimpact controls. Following postimpact survival periods of 15, 30, 45, 60, and 120 min, brains were perfusion fixed in 4% paraformaldehyde and examined according to standard neuropathological protocol. APP mRNA and antigen expression were examined in 5-microm sections by nonisotopic in situ hybridization and APP immunocytochemistry. The percentage of brain area with APP immunoreactivity within neuronal cell bodies in the impacted animals increased with time from a mean of 7.5% at 15 min to 54.5% at 2 h. Control brains showed only very small numbers of weakly APP-positive neuronal cell bodies ranging from 2 to 14% (mean 7%). Increased expression of APP mRNA was first evident in impacted hemispheres at 30 min after impact and progressively increased over time to involve neurons in all sampled regions of the brain, suggesting increased transcription of APP. In contrast, APP mRNA was undetectable in tissue from nonimpacted sheep. These data show that APP mRNA and antigen expression are sensitive early indicators of neuronal injury with widespread upregulation occurring as early as 30 min after head impact.
Collapse
Affiliation(s)
- C Van den Heuvel
- Department of Pathology, University of Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Graham DI, Gentleman SM, Nicoll JA, Royston MC, McKenzie JE, Roberts GW, Mrak RE, Griffin WS. Is there a genetic basis for the deposition of beta-amyloid after fatal head injury? Cell Mol Neurobiol 1999; 19:19-30. [PMID: 10079962 DOI: 10.1023/a:1006956306099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. Alzheimer's disease is a heterogeneous disorder that may be caused by genetic or environmental factors or by a combination of both. Abnormalities in chromosomes 1, 14, and 21 have all been implicated in the pathogenesis of the early-onset form of the disease, while the epsilon 4 allele of the apolipoprotein E gene (on chromosome 19) is now recognized as a risk factor for early- and late-onset sporadic and familial Alzheimer's disease. 2. The best-established environmental trigger for the disease is a head injury, based on epidemiological and neuropathological evidence. Approximately 30% of patients who die after a single episode of severe head injury show intracerebral deposition of beta-amyloid protein (A beta), a protein that is thought to be central to the pathogenesis of Alzheimer's disease. 3. Recent studies have revealed an over-representation of the apoE epsilon 4 allele in those head-injured patients displaying A beta pathology, thus providing the first evidence for a link between a genetic susceptibility (apoE epsilon 4) and an environmental trigger (head injury) in the development of Alzheimer-type pathology.
Collapse
Affiliation(s)
- D I Graham
- Department of Neuropathology, University of Glasgow, Scotland, U.K
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Eikelenboom P, Rozemuller JM, van Muiswinkel FL. Inflammation and Alzheimer's disease: relationships between pathogenic mechanisms and clinical expression. Exp Neurol 1998; 154:89-98. [PMID: 9875271 DOI: 10.1006/exnr.1998.6920] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past 15 years a variety of inflammatory proteins has been identified in the brains of patients with Alzheimer's disease (AD) postmortem. There is now considerable evidence that in AD the deposition of amyloid-beta (A beta) protein precedes a cascade of events that ultimately leads to a local "brain inflammatory response." Here we reviewed the evidence (i) that inflammatory mechanisms can be a part of the relevant etiological factors for AD in patients with head trauma, ischemia, and Down's syndrome; (ii) that in cerebral A beta disorders the clinical symptoms are determined to a great extent by the site of inflammation; and (iii) that a brain inflammatory response can explain some poorly understood characteristics of the clinical picture, among others the susceptibility of AD patients to delirium. The present data indicate that inflammatory processes in the brain contribute to the etiology, the pathogenesis, and the clinical expression of AD.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Psychiatry, Graduate School Neurosciences Amsterdam, Vrije Universiteit, Valeriuskliniek, The Netherlands
| | | | | |
Collapse
|
39
|
Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK. Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 1998; 87:359-69. [PMID: 9740398 DOI: 10.1016/s0306-4522(98)00142-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clinical studies have demonstrated that patients sustain prolonged behavioral deficits following traumatic brain injury, in some cases culminating in the cognitive and histopathological hallmarks of Alzheimer's disease. However, few studies have examined the long-term consequences of experimental traumatic brain injury. In the present study, anesthetized male Sprague-Dawley rats (n = 185) were subjected to severe lateral fluid-percussion brain injury (n = 115) or sham injury (n = 70) and evaluated up to one year post-injury for cognitive and neurological deficits and histopathological changes. Compared with sham-injured controls, brain-injured animals showed a spatial learning impairment that persisted up to one year post-injury. In addition, deficits in specific neurologic motor function tasks also persisted up to one year post-injury. Immunohistochemistry using multiple antibodies to the amyloid precursor protein and/or amyloid precursor protein-like proteins revealed novel axonal degeneration in the striatum, corpus callosum and injured cortex up to one year post-injury and in the thalamus up to six months post-injury. Histologic evaluation of injured brains demonstrated a progressive expansion of the cortical cavity, enlargement of the lateral ventricles, deformation of the hippocampus, and thalamic calcifications. Taken together, these findings indicate that experimental traumatic brain injury can cause long-term cognitive and neurologic motor dysfunction accompanied by continuing neurodegeneration.
Collapse
Affiliation(s)
- J E Pierce
- Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
40
|
McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ. The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 1998; 24:251-67. [PMID: 9775390 DOI: 10.1046/j.1365-2990.1998.00121.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms underlying secondary or delayed cell death following traumatic brain injury (TBI) are poorly understood. Recent evidence from experimental models of TBI suggest that diffuse and widespread neuronal damage and loss is progressive and prolonged for months to years after the initial insult in selectively vulnerable regions of the cortex, hippocampus, thalamus, striatum, and subcortical nuclei. The development of new neuropathological and molecular techniques has generated new insights into the cellular and molecular sequelae of brain trauma. This paper will review the literature suggesting that alterations in intracellular calcium with resulting changes in gene expression, activation of reactive oxygen species (ROS), activation of intracellular proteases (calpains), expression of neurotrophic factors, and activation of cell death genes (apoptosis) may play a role in mediating delayed cell death after trauma. Recent data suggesting that TBI should be considered as both an inflammatory and/or a neurodegenerative disease is also presented. Further research concerning the complex molecular and neuropathological cascades following brain trauma should be conducted, as novel therapeutic strategies continue to be developed.
Collapse
Affiliation(s)
- T K McIntosh
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:243-56. [PMID: 9729408 DOI: 10.1016/s0165-0173(98)00015-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A traumatic impact to the brain induces an intracranial inflammatory response, which consequently leads to the development of brain edema and delayed neuronal death. Evidence from experimental, clinical, and in vitro studies highlight an important role for the complement system in contributing to inflammation within the injured brain. The present review summarizes the current understanding of the mechanisms of complement-mediated secondary brain injury after head trauma.
Collapse
Affiliation(s)
- P F Stahel
- Division of Trauma Surgery, Department of Surgery, University Hospital, CH-8091 Zürich, Switzerland.
| | | | | |
Collapse
|
42
|
Abstract
OBJECTIVES Both genetic and environmental risk factors for Alzheimer's disease have been identified. The best established environmental risk factor, head trauma, is thought to act through the triggering of an inflammatory response. Another stimulus to an inflammatory response in the brain is AIDS. Whether there is an increased prevalence of beta/A4 amyloid deposits in the form of argyrophilic plaques in the brains of patients with AIDS has therefore been investigated. METHODS The prevalence of argyrophilic amyloid plaques in the cerebral cortex of frontal and temporal lobes was compared in 97 cases of AIDS dying at ages 30-69 years with that in 125 age matched, non-HIV infected controls. RESULTS In the control group, and in AIDS, the prevalence of plaques increased with age (p=0.005 and 0.048 respectively). There was a significantly greater prevalence of argyrophilic plaques in the AIDS group as a whole (29%) (p < 0.004) and in those in the fourth decade (18%) (p < 0.014) than in control subjects (13% and 0% respectively). CONCLUSION There is a predisposition to argyrophilic plaque formation in the brain in AIDS. The findings support the view that a stimulus to an inflammatory response in the brain favours argyrophilic plaque formation. The clinical relevance of our findings is, as yet, unclear.
Collapse
Affiliation(s)
- M M Esiri
- Department of Neuropathology and Neurology, Radcliffe Infirmary, Oxford, UK
| | | | | |
Collapse
|
43
|
Chen Y, Shohami E, Constantini S, Weinstock M. Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse. J Neurotrauma 1998; 15:231-7. [PMID: 9555969 DOI: 10.1089/neu.1998.15.231] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of Rivastigmine, a novel centrally-acting anticholinesterase agent, were evaluated on cerebral edema, neurological and motor deficits, and impairment of spatial memory induced in mice by closed-head injury (CHI). Severe injury was induced in the left hemisphere of mice under ether anesthesia. Rivastigmine (1 or 2 mg/kg) or saline (10 ml/kg) was injected SC 5 min later. Rivastigmine (2 mg/kg) reduced cerebral edema by at least 50% (p < 0.01), 24 h after CHI and accelerated the recovery of motor function 7 and 14 days after CHI. Control mice (n = 24), previously trained to find the goal platform in a Morris water maze failed to recall or relearn its position for at least 11 days post-injury. Those given a single injection of Rivastigmine (2 mg/kg) regained their pre-test latencies by the third day after CHI. The neuroprotective effects of Rivastigmine on brain edema, neurological and motor function, and performance in the Morris water maze were completely antagonized by simultaneous SC injection of either scopolamine (0.5 mg/kg) or mecamylamine (2.5 mg/kg). The antagonists alone had no significant effect on any of these parameters. These data show that the reduction by Rivastigmine of the immediate and long-term sequelae of brain injury are mediated by increased cholinergic activity at both muscarinic and nicotinic receptors.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, School of Pharmacy, The Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
44
|
Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE. Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression. Brain Pathol 1998; 8:65-72. [PMID: 9458167 PMCID: PMC8098321 DOI: 10.1111/j.1750-3639.1998.tb00136.x] [Citation(s) in RCA: 500] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of glial inflammatory processes in Alzheimer's disease has been highlighted by recent epidemiological work establishing head trauma as an important risk factor, and the use of anti-inflammatory agents as an important ameliorating factor, in this disease. This review advances the hypothesis that chronic activation of glial inflammatory processes, arising from genetic or environmental insults to neurons and accompanied by chronic elaboration of neuroactive glia-derived cytokines and other proteins, sets in motion a cytokine cycle of cellular and molecular events with neurodegenerative consequences. In this cycle, interleukin-1 is a key initiating and coordinating agent. Interleukin-1 promotes neuronal synthesis and processing of the beta-amyloid precursor protein, thus favoring continuing deposition of beta-amyloid, and activates astrocytes and promotes astrocytic synthesis and release of a number of inflammatory and neuroactive molecules. One of these, S100beta, is a neurite growth-promoting cytokine that stresses neurons through its trophic actions and fosters neuronal cell dysfunction and death by raising intraneuronal free calcium concentrations. Neuronal injury arising from these cytokine-induced neuronal insults can activate microglia with further overexpression of interleukin-1, thus producing feedback amplification and self-propagation of this cytokine cycle. Additional feedback amplification is provided through other elements of the cycle. Chronic propagation of this cytokine cycle represents a possible mechanism for progression of neurodegenerative changes culminating in Alzheimer's disease.
Collapse
Affiliation(s)
- W S Griffin
- Department of Veterans' Affairs Medical Center, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shohami E, Beit-Yannai E, Horowitz M, Kohen R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab 1997; 17:1007-19. [PMID: 9346425 DOI: 10.1097/00004647-199710000-00002] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been suggested that reactive oxygen species (ROS) play a role in the pathophysiology of brain damage. A number of therapeutic approaches, based on scavenging these radicals, have been attempted both in experimental models and in the clinical setting. In an experimental rat and mouse model of closed-head injury (CHI), we have studied the total tissue nonenzymatic antioxidant capacity to combat ROS. A major mechanism for neutralizing ROS uses endogenous low-molecular weight antioxidants (LMWA). This review deals with the source and nature of ROS in the brain, along with the endogenous defense mechanisms that fight ROS. Special emphasis is placed on LMWA such as ascorbate, urate, tocopherol, lipoic acid, and histidine-related compounds. A novel electrochemical method, using cyclic voltammetry for the determination of total tissue LMWA, is described. The temporal changes in brain LMWA after CHI, as part of the response of the tissue to high ROS levels, and the correlation between the ability of the brain to elevate LMWA and clinical outcome are addressed. We relate to the beneficial effects observed in heat-acclimated rats and the detrimental effects of injury found in apolipoprotein E-deficient mice. Finally, we summarize the effects of cerebroprotective pharmacological agents including the iron chelator desferal, superoxide dismutase, a stable radical from the nitroxide family, and HU-211, a nonpsychotoropic cannabinoid with antioxidant properties. We conclude that ROS play a key role in the pathophysiology of brain injury, and that their neutralization by endogenous or exogenous antioxidants has a protective effect. It is suggested, therefore, that the brain responds to ROS by increasing LMWA, and that the degree of this response is correlated with clinical recovery. The greater the response, the more favorable the outcome.
Collapse
Affiliation(s)
- E Shohami
- Department of Pharmacology, The Hebrew University, School of Pharmacy, Jerusalem, Israel
| | | | | | | |
Collapse
|
46
|
Chen Y, Lomnitski L, Michaelson DM, Shohami E. Motor and cognitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 1997; 80:1255-62. [PMID: 9284075 DOI: 10.1016/s0306-4522(97)00007-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previous studies suggest that traumatic brain injury is associated with increased risk factor for developing Alzheimer's disease. Furthermore, the extent of the risk seems to be most pronounced in Alzheimer's disease patients who carry the epsilon4 allele of apolipoprotein E, suggesting a connection between susceptibility to head trauma and the apolipoprotein E genotype. Apolipoprotein E-deficient mice provide a useful model for investigating the role of this lipoprotein in neuronal maintenance and repair. In the present study apolipoprotein E-deficient mice and a closed head injury experimental paradigm were used to examine the role of apolipoprotein E in brain susceptibility to head trauma and in neuronal repair. Apolipoprotein E-deficient mice were assessed up to 40 days after closed head injury for neurological and cognitive functions, as well as for histopathological changes in the hippocampus. A neurological severity score used for clinical assessment revealed more severe motor and behavioural deficits in the apolipoprotein E-deficient mice than in the controls, the impairment persisting for at least 40 days after injury. Performance in the Morris water maze, which tests spatial memory, showed a marked learning deficit of the apolipoprotein E-deficient mice when compared with injured controls, which was apparent for at least 40 days. At this time, histopathological examination revealed overt neuronal cell death bilaterally in the hippocampus of the injured apolipoprotein E-deficient mice. The finding that apolipoprotein E-deficient mice exhibit an impaired ability to recover from closed head injury suggests that apolipoprotein E plays an important role in neuronal repair following injury and highlights the applicability of this mouse model to the study of the cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Y Chen
- Department of Pharmacology, School of Pharmacy, The Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
47
|
Gentleman SM, Greenberg BD, Savage MJ, Noori M, Newman SJ, Roberts GW, Griffin WS, Graham DI. A beta 42 is the predominant form of amyloid beta-protein in the brains of short-term survivors of head injury. Neuroreport 1997; 8:1519-22. [PMID: 9172166 DOI: 10.1097/00001756-199704140-00039] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fatal head injury results in the formation of diffuse parenchymal deposits of amyloid beta-protein (A beta) in the brains of approximately 30% of individuals. We used carboxyl terminal-specific antisera to examine the exact nature of these deposits in paraffin sections of neocortex from seven head-injured patients. Immunostaining for A beta 42 was observed in all parenchymal deposits whereas staining for A beta 40, the form of the protein which predominates in serum and cerebrospinal fluid, was seen in only a small proportion of deposits. The relative paucity of A beta 40 suggests that post-traumatic deposits do not arise as a result of passive leakage from damaged cerebral blood vessels but are similar to the early A beta 42 parenchymal deposits seen in Down's syndrome and Alzheimer's disease.
Collapse
Affiliation(s)
- S M Gentleman
- Department of Anatomy, Charing Cross & Westminster Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lomnitski L, Kohen R, Chen Y, Shohami E, Trembovler V, Vogel T, Michaelson DM. Reduced levels of antioxidants in brains of apolipoprotein E-deficient mice following closed head injury. Pharmacol Biochem Behav 1997; 56:669-73. [PMID: 9130293 DOI: 10.1016/s0091-3057(96)00412-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent animal model studies using apolipoprotein E (apoE)-deficient (knockout) mice revealed that these mice have memory deficits and neurochemical derangements and that they recover from closed head injury less adequately than control mice. In the present study, we examined the possibility that the diminished recovery of apoE-deficient mice from head injury is related to a reduction in their ability to counteract oxidative damage. Measurements of reducing agents by cyclic voltammetry revealed that cortical homogenates of apoE-deficient and control mice contain similar levels of these compounds whose oxidation potentials for the two groups of mice are at 400 +/- 40 mV and 900 +/- 50 mV. The responses of the apoE-deficient and control groups to closed head injury were both biphasic and were composed of initial reductions followed by subsequent increases in the levels of reducing antioxidant equivalents. However, the two groups differed markedly in the magnitude of their response. This difference was most pronounced with the 400-mV reducing compounds, such that at 4 h after injury their levels in injured control mice increased over twofold relative to the noninjured control mice, whereas the corresponding anodic current of the apoE-deficient mice recovered only to its original level and did not increase further even by 24 h after injury. In vitro studies using recombinant apoE allele E3 and beta very low density lipoprotein revealed that this lipoprotein can delay Cu(2+)-induced lipid peroxidation. This suggests that the inability of the apoE-deficient mice to respond to brain injury by a surge in brain reducing compounds may be related, at least in part to direct antioxidant activity of apoE.
Collapse
Affiliation(s)
- L Lomnitski
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
In the past, structural changes in the brain with aging have been studied using a variety of animal models, with rats and nonhuman primates being the most popular. With the rapid evolution of mouse genetics, murine models have gained increased attention in the neurobiology of aging. The genetic contribution of age-related traits as well as specific mechanistic hypotheses underlying brain aging and age-related neurodegenerative diseases can now be assessed by using genetically-selected and genetically-manipulated mice. Against this background of increased demand for aging research in mouse models, relatively few studies have examined structural alterations with aging in the normal mouse brain, and the data available are almost exclusively restricted to the C57BL/6 strain. Moreover, many older studies have used quantitative techniques which today can be questioned regarding their accuracy. Here we review the state of knowledge about structural changes with aging in outbred, inbred, genetically-selected, and genetically-engineered murine models. Moreover, we suggest several new opportunities that are emerging to study brain aging and age-related neurodegenerative diseases using genetically-defined mouse models. By reviewing the literature, it has become clear to us that in light of the rapid progress in genetically-engineered and selected mouse models for brain aging and age-related neurodegenerative diseases, there is a great and urgent need to study and define morphological changes in the aging brain of normal inbred mice and to analyze the structural changes in genetically-engineered mice more carefully and completely than accomplished to date. Such investigations will broaden knowledge in the neurobiology of aging, particularly regarding the genetics of aging, and possibly identify the most useful murine models.
Collapse
Affiliation(s)
- M Jucker
- Gerontology Research Centre, Nathan W. Shock Laboratories, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
50
|
Abstract
The distribution of amyloid-beta protein (A beta) in the canine brain was demonstrated by immunochemistry on serially sectioned tissues from 10 aged mixed breed dogs. Summation of quantitative data and relegation to anatomical sites for the 10 dogs showed A beta to be widely distributed in the cortex and hippocampus while completely absent in the brain stem and cerebellum. The highest density of A beta was in the dentate gyrus of the hippocampus. Cortical areas exhibiting the greatest A beta deposition were the posterior and medial suprasylvius gyrus and the proreus gyrus of the frontal lobe. Unlike humans the canine entorhinal cortex, amygdala, basal ganglia and olfactory bulbs were rarely affected. This suggested that the highly developed olfactory pathways of the canine are generally spared from A beta deposition.
Collapse
Affiliation(s)
- Y Hou
- Department of Anesthesiology and Otolaryngology, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|