1
|
Li M, Chen X, Yuan N, Lu Y, Liu Y, Gong H, Qian L, Andolina IM, Wu J, Zhang S, McLoughlin N, Sun X, Wang W. Effects of acute high intraocular pressure on red-green and blue-yellow cortical color responses in non-human primates. Neuroimage Clin 2022; 35:103092. [PMID: 35753237 PMCID: PMC9249948 DOI: 10.1016/j.nicl.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, and intraocular pressure (IOP) is an established and modifiable risk factor for both chronic and acute glaucoma. The relationship between color vision deficits and chronic glaucoma has been described previously. However, the effects of acute glaucoma or acute primary angle closure, which has high prevalence in China, on color vision remains unclear. To address the above question, red-green or blue-yellow color responses in V1, V2, and V4 of seven rhesus macaques were monitored using intrinsic-signal optical imaging while monocular anterior chamber perfusions were performed to reversibly elevate IOP acutely over a clinically observed range of 30 to 90 mmHg. We found that the cortical population responses to both red-green and blue-yellow grating stimuli, systematically decreased as IOP increased from 30 to 90 mmHg. Although a similar decrement in magnitude was noted in V1, V2, and V4, blue-yellow responses were consistently more impaired than red-green responses at all levels of acute IOP elevation and in all monitored visual areas. This physiological study in non-human primates demonstrates that acute IOP elevations substantially depress the ability of the visual cortex to register color information. This effect is more severe for blue-yellow responses than for red-green responses, suggesting selective impairment of the koniocellular pathways compared with the parvocellular pathways. Together, we infer that blue-yellow color vision might be the most vulnerable visual function in acute glaucoma patients.
Collapse
Affiliation(s)
- Mengwei Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Nini Yuan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Yiliang Lu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ye Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hongliang Gong
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Liling Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ian Max Andolina
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Niall McLoughlin
- School of Optometry and Vision Science, University of Bradford, UK
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Wei Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Abstract
In visual masking, visible targets are rendered invisible by modifying the context in which they are presented, but not by modifying the targets themselves. Here I summarize a decade of experimentation using visual masking illusions in which my colleagues and I have begun to establish the minimal set of conditions necessary to maintain the awareness of the visibility of simple unattended stimuli. We have established that spatiotemporal edges must be present for targets to be visible. These spatiotemporal edges must be encoded by transient bursts of spikes in the early visual system. If these bursts are inhibited, visibility fails. Target-correlated activity must rise within the visual hierarchy at least to the level of V3, and be processed within the occipital lobe, to achieve visibility. The specific circuits that maintain visibility are not yet known, but we have deduced that lateral inhibition plays a critical role in sculpting our perception of visibility, both by causing interactions between stimuli positioned across space, and also by shaping the responses to stimuli across time. Further, the studies have served to narrow the number of possible theories to explain visibility and visual masking. Finally, we have discovered that lateral inhibition builds iteratively in strength throughout the visual hierarchy, for both monoptic and dichoptic stimuli. Since binocular information is not integrated until inputs from the two eyes reach the primary visual cortex, it follows that the early visual areas contain differential levels of monoptic and dichoptic lateral inhibitions. We exploited this fact to discover that excitatory integration of binocular inputs occurs at an earlier level than interocular suppression. These findings are potentially fundamental to our understanding of all forms of binocular vision and to determining the role of binocular rivalry in visual awareness.
Collapse
Affiliation(s)
- Stephen L Macknik
- Department of Neurosurgery, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
5
|
MacLean JN, Watson BO, Aaron GB, Yuste R. Internal Dynamics Determine the Cortical Response to Thalamic Stimulation. Neuron 2005; 48:811-23. [PMID: 16337918 DOI: 10.1016/j.neuron.2005.09.035] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 05/17/2005] [Accepted: 09/30/2005] [Indexed: 12/20/2022]
Abstract
Although spontaneous activity occurs throughout the neocortex, its relation to the activity produced by external or sensory inputs remains unclear. To address this, we used calcium imaging of mouse thalamocortical slices to reconstruct, with single-cell resolution, the spatiotemporal dynamics of activity of layer 4 in the presence or absence of thalamic stimulation. We found spontaneous neuronal coactivations corresponded to intracellular UP states. Thalamic stimulation of sufficient frequency (>10 Hz) triggered cortical activity, and UP states, indistinguishable from those arising spontaneously. Moreover, neurons were activated in identical and precise spatiotemporal patterns in thalamically triggered and spontaneous events. The similarities between cortical activations indicate that intracortical connectivity plays the dominant role in the cortical response to thalamic inputs. Our data demonstrate that precise spatiotemporal activity patterns can be triggered by thalamic inputs and indicate that the thalamus serves to release intrinsic cortical dynamics.
Collapse
Affiliation(s)
- Jason N MacLean
- Howard Hughes Medical Institute, Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
6
|
Shapley R, Hawken M, Ringach DL. Dynamics of orientation selectivity in the primary visual cortex and the importance of cortical inhibition. Neuron 2003; 38:689-99. [PMID: 12797955 DOI: 10.1016/s0896-6273(03)00332-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To test theories of orientation selectivity in primary visual cortex (V1), we have done experiments to measure the dynamics of orientation tuning of single neurons in the V1 cortex of macaque monkeys. Based on our dynamics results, we propose that a V1 cell's orientation selectivity is generated mainly by both tuned enhancement and global suppression. Enhancement near the preferred orientation is probably caused by feed-forward input from LGN (plus amplification by cortical-cortical interaction). Global suppression could be supplied by cortical inhibition. Additionally, in about 1/3 of V1 neurons (usually the most sharply tuned) there is tuned suppression, centered near the cell's preferred orientation but broader than tuned enhancement. These mechanisms also can explain important features of steady-state selectivity in the V1 neuron population. Furthermore, similar neuronal mechanisms may be used generally throughout the cerebral cortex.
Collapse
Affiliation(s)
- Robert Shapley
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | | | | |
Collapse
|
7
|
Smith PH, Populin LC. Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 2001; 436:508-19. [PMID: 11447593 DOI: 10.1002/cne.1084] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In visual and somatosensory cortices of several species, spiny stellate cells in layer 4 are the first elements in signal processing where thalamic information is integrated and emergent receptive field properties are generated and sent on to more superficial cortical layers. In vivo and in vitro experiments have provided important information about how the anatomy and physiology of these cells and this layer fit into the functional cortical circuitry. No such data exist for the auditory cortex but are requisite if we are to understand whether ideas about information processing in one sensory cortical area can be generalized to another. Accordingly, we used in vitro slices from which to record and labeled cells in the middle layers of the cat auditory and visual cortices to compare basic anatomical and physiological features of cells recovered in similar layers using the same methods. Our results demonstrate a striking difference in a basic characteristic of two primary sensory cortical areas. In the visual cortex, spiny stellate cells predominate, receive short-latency synaptic inputs, and project to supergranular layers. No such spiny stellate population is encountered in the middle layers of the auditory cortex. Spiny cells that are not stellate or pyramidal are occasionally encountered but, as a group, do not display consistent anatomical or physiological features that might allow them to function as auditory cortical versions of the visual spiny stellates. Rather, pyramidal cells in the lower half of layer 3 and layer 4 appear to have assumed this role.
Collapse
Affiliation(s)
- P H Smith
- Department of Anatomy, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
8
|
Deyoe EA, Trusk TC, Wong-Riley MT. Activity correlates of cytochrome oxidase-defined compartments in granular and supragranular layers of primary visual cortex of the macaque monkey. Vis Neurosci 1995; 12:629-39. [PMID: 8527365 DOI: 10.1017/s0952523800008920] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To determine if changes in metabolic capacity revealed by cytochrome oxidase (CO) histochemistry are related to sustained changes in energy-utilizing neuronal activity, we assayed CO levels and recorded multiunit firing rates along nearly tangential penetrations of V1 in seven adult macaque monkeys before and after single, monocular injections of TTX. Within as little as 14 h, TTX blockade began to reduce CO staining in zones of layer 4C that received dominant input from the injected eye. Since simple monocular occlusion has only minor effects on cortical CO levels (Trusk et al., 1990), the changes in activity that were specifically associated with CO depletion were isolated by comparing spike rates during monocular TTX blockade and during monocular occlusion. Five second samples of multiunit spike rate were obtained after 2-min adaptation to each of four adapting fields: black, gray, white, and textured. Results were similar for these four conditions. In layer 4C, ocular dominance zones with input from the TTX eye had ongoing spike rates that were 48% of the rates in zones with input from a normal but occluded eye. In six animals, it was possible to record activity at a single site before, during, and after the onset of TTX blockade. Background activity at these interpuff sites decreased as much as 3-fold in less than 1 h but stabilized within 3-4 h to an average of 53% of pre-TTX rates. These data support the interpretation that energy utilization linked to sustained spike rates partially regulates CO levels under normal conditions, at least in layer 4. Furthermore, changes in neuronal activity induced by retinal TTX preceded the detectable reduction in CO activity in V1 suggesting that the adjustment of CO levels was in response to the altered activity.
Collapse
Affiliation(s)
- E A Deyoe
- Department of Cellular Biology and Anatomy, Medical Collegy of Wisconsin, Milwaukee 53226, USA
| | | | | |
Collapse
|