1
|
Barton JJS, Duchaine B, Albonico A. Imagery and perception in acquired prosopagnosia: Functional variants and their relation to structure. Cortex 2025; 183:330-348. [PMID: 39645440 DOI: 10.1016/j.cortex.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
Current models of face perception and the face-processing network suggest that acquired prosopagnosia may not be a single disorder but rather a family of variants differing in mechanism. It has been proposed that tests of face perception and face imagery can probe component processes to support apperceptive, associative, and amnestic distinctions. However, validating this proposal is hampered by the rarity of this condition. Here we report observations gathered over two-and-a-half decades on the perception of facial shape and the imagery for famous faces of twenty-three patients. Patients with lesions limited to the occipitotemporal lobes had an apperceptive profile, with impaired perception of facial shape but no or mild deficits for face imagery. The apperceptive defect affected not just configuration but also feature size and external contour, especially in the upper face, and was more severe when subjects attended to multiple aspects of the face. An amnestic profile, with severely impaired imagery and minimally affected perception, was seen in two patients, one with right and one with bilateral anterior temporal damage. Four patients had an apperceptive/amnestic combination, all with bilateral occipitotemporal and right anterior temporal damage. Right anterior temporal damage alone often caused only mild imagery deficits: along with their relatively intact face perception, these subjects came closest to meeting proposed exclusionary criteria for an associative variant, i.e., relative preservation of both imagery and perception. These results confirm a link between apperceptive prosopagnosia and occipitotemporal lesions. Damage to the right anterior temporal lobe was common to all with a severe amnestic deficit, but often requiring additional damage.
Collapse
Affiliation(s)
- Jason J S Barton
- Department of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology, University of British Columbia, Vancouver, Canada.
| | - Brad Duchaine
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, USA
| | - Andrea Albonico
- Department of Psychology, University of the Fraser Valley, Abbotsford, Canada
| |
Collapse
|
2
|
You Y, Li Y, Yu B, Ying A, Zhou H, Zuo G, Xu J. A study on EEG differences between active counting and focused breathing tasks for more sensitive detection of consciousness. Front Neurosci 2024; 18:1341986. [PMID: 38533445 PMCID: PMC10963484 DOI: 10.3389/fnins.2024.1341986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction In studies on consciousness detection for patients with disorders of consciousness, difference comparison of EEG responses based on active and passive task modes is difficult to sensitively detect patients' consciousness, while a single potential analysis of EEG responses cannot comprehensively and accurately determine patients' consciousness status. Therefore, in this paper, we designed a new consciousness detection paradigm based on a multi-stage cognitive task that could induce a series of event-related potentials and ERD/ERS phenomena reflecting different consciousness contents. A simple and direct task of paying attention to breathing was designed, and a comprehensive evaluation of consciousness level was conducted using multi-feature joint analysis. Methods We recorded the EEG responses of 20 healthy subjects in three modes and reported the consciousness-related mean event-related potential amplitude, ERD/ERS phenomena, and the classification accuracy, sensitivity, and specificity of the EEG responses under different conditions. Results The results showed that the EEG responses of the subjects under different conditions were significantly different in the time domain and time-frequency domain. Compared with the passive mode, the amplitudes of the event-related potentials in the breathing mode were further reduced, and the theta-ERS and alpha-ERD phenomena in the frontal region were further weakened. The breathing mode showed greater distinguishability from the active mode in machine learning-based classification. Discussion By analyzing multiple features of EEG responses in different modes and stimuli, it is expected to achieve more sensitive and accurate consciousness detection. This study can provide a new idea for the design of consciousness detection methods.
Collapse
Affiliation(s)
- Yimeng You
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Yahui Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Baobao Yu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Ankai Ying
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Huilin Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jialin Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Carrier M, Dolhan K, Bobotis BC, Desjardins M, Tremblay MÈ. The implication of a diversity of non-neuronal cells in disorders affecting brain networks. Front Cell Neurosci 2022; 16:1015556. [PMID: 36439206 PMCID: PMC9693782 DOI: 10.3389/fncel.2022.1015556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system (CNS) neurons are classically considered the functional unit of the brain. Analysis of the physical connections and co-activation of neurons, referred to as structural and functional connectivity, respectively, is a metric used to understand their interplay at a higher level. A myriad of glial cell types throughout the brain composed of microglia, astrocytes and oligodendrocytes are key players in the maintenance and regulation of neuronal network dynamics. Microglia are the central immune cells of the CNS, able to affect neuronal populations in number and connectivity, allowing for maturation and plasticity of the CNS. Microglia and astrocytes are part of the neurovascular unit, and together they are essential to protect and supply nutrients to the CNS. Oligodendrocytes are known for their canonical role in axonal myelination, but also contribute, with microglia and astrocytes, to CNS energy metabolism. Glial cells can achieve this variety of roles because of their heterogeneous populations comprised of different states. The neuroglial relationship can be compromised in various manners in case of pathologies affecting development and plasticity of the CNS, but also consciousness and mood. This review covers structural and functional connectivity alterations in schizophrenia, major depressive disorder, and disorder of consciousness, as well as their correlation with vascular connectivity. These networks are further explored at the cellular scale by integrating the role of glial cell diversity across the CNS to explain how these networks are affected in pathology.
Collapse
Affiliation(s)
- Micaël Carrier
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Michèle Desjardins
- Department of Physics, Physical Engineering and Optics, Université Laval, Québec City, QC, Canada
- Oncology Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
4
|
Abstract
What are mental images needed for? A variety of everyday situations calls for us to plan ahead; one of the clever ways our mind prepares and strategizes our next move is through mental simulation. A powerful tool in running these simulations is visual mental imagery, which can be conceived as a way to activate and maintain an internal representation of the to-be-imagined object, giving rise to predictions. Therefore, under normal conditions imagination is primarily an endogenous process, and only more rarely can mental images be activated exogenously, for example, by means of intracerebral stimulation. A large debate is still ongoing regarding the neural substrates supporting mental imagery, with the neuropsychological and neuroimaging literature agreeing in some cases, but not others. This chapter reviews the neuroscientific literature on mental imagery, and attempts to reappraise the neuropsychological and neuroimaging evidence by drawing a model of mental imagery informed by both structural and functional brain data. Overall, the role of regions in the ventral temporal cortex, especially of the left hemisphere, stands out unequivocally as a key substrate in mental imagery.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University, New York City, NY, United States.
| |
Collapse
|
5
|
Spagna A, Hajhajate D, Liu J, Bartolomeo P. Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 2021; 122:201-217. [PMID: 33422567 DOI: 10.1016/j.neubiorev.2020.12.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The dominant neural model of visual mental imagery (VMI) stipulates that memories from the medial temporal lobe acquire sensory features in early visual areas. However, neurological patients with damage restricted to the occipital cortex typically show perfectly vivid VMI, while more anterior damages extending into the temporal lobe, especially in the left hemisphere, often cause VMI impairments. Here we present two major results reconciling neuroimaging findings in neurotypical subjects with the performance of brain-damaged patients: (1) A large-scale meta-analysis of 46 fMRI studies, of which 27 investigated specifically visual mental imagery, revealed that VMI engages fronto-parietal networks and a well-delimited region in the left fusiform gyrus. (2) A Bayesian analysis showed no evidence for imagery-related activity in early visual cortices. We propose a revised neural model of VMI that draws inspiration from recent cytoarchitectonic and lesion studies, whereby fronto-parietal networks initiate, modulate, and maintain activity in a core temporal network centered on the fusiform imagery node, a high-level visual region in the left fusiform gyrus.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA; Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Dounia Hajhajate
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France; Dassault Systèmes, Vélizy-Villacoublay, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France.
| |
Collapse
|
6
|
Shapiro J, Ginosar Y, Gielchinsky Y, Elchalal U, Bromberg Z, Corchia-Nachmanson N, Abramovitch R. BOLD-MRI demonstrates acute placental and fetal organ hypoperfusion with fetal brain sparing in response to phenylephrine but not ephedrine. Placenta 2019; 90:52-57. [PMID: 32056552 DOI: 10.1016/j.placenta.2019.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION We previously reported blood oxygen level dependent MRI (BOLD-MRI) for monitoring placental and fetal hemodynamic changes in mice following maternal hypercapnia. Here we use BOLD-MRI to compare the placental and fetal hemodynamic effects of different maternal vasopressors in mice. METHODS Pregnant ICR mice (n = 16; E17.5) anesthetized with pentobarbital (80 mg/kg i.p.) were placed supine in a 4.7-T Bruker Biospec MRI. Following baseline images, equipotential doses of ephedrine (10 mg/kg) or phenylephrine (10mcg/kg) were administered intravenously. Changes in placental and fetal signal were analyzed from T2*-weighted gradient echo MR images (TR/TE = 147/10 ms). Different regions of interest (placenta, fetal heart, fetal liver and fetal brain) were identified. Percentage change of BOLD-MRI signal intensity (SI) were presented as time curves. RESULTS Ephedrine and phenylephrine elicited markedly different effects. Phenylephrine caused an approximate 50% reduction in placental, fetal heart and fetal liver BOLD-MRI-SI, but fetal brain BOLD-MRI-SI was unchanged (statistically different from placenta and other fetal organs; p < 0.001), and the fetal brain/liver BOLD-MRI-SI ratio was markedly increased versus baseline (p < 0.001). Following ephedrine, placental BOLD-MRI-SI increased 30% and fetal heart BOLD-MRI-SI was reduced 26%; other fetal organs were unchanged. Blood gases were unchanged. DISCUSSION Phenylephrine induced BOLD-MRI-SI changes suggestive of placental and fetal hypoperfusion with brain sparing. Ephedrine induced BOLD-MRI-SI changes suggestive of increased cardiac output; we speculate that reduced fetal heart BOLD-MRI-SI may be due to increased fetal myocardial oxygen extraction or metabolic acidosis. The result demonstrates the potential of BOLD-MRI as a non-invasive hemodynamic tool for assessing pharmacodynamics effects in the placental and fetus.
Collapse
Affiliation(s)
- Joel Shapiro
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| | - Yehuda Ginosar
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel; Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA; Wohl Institute of Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| | - Yuval Gielchinsky
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| | - Uriel Elchalal
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| | - Zohar Bromberg
- The Goldyne Savad Institute of Gene Therapy and MRI Laboratory, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| | - Nathalie Corchia-Nachmanson
- Wohl Institute of Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel; The Goldyne Savad Institute of Gene Therapy and MRI Laboratory, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| | - Rinat Abramovitch
- Wohl Institute of Translational Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel; The Goldyne Savad Institute of Gene Therapy and MRI Laboratory, Hadassah Hebrew University Medical Center, Ein Karem, Jerusalem, Israel
| |
Collapse
|
7
|
Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI. Neuroimage 2019; 206:116316. [PMID: 31672663 DOI: 10.1016/j.neuroimage.2019.116316] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/09/2019] [Accepted: 10/26/2019] [Indexed: 01/22/2023] Open
Abstract
Determining the level of consciousness in patients with disorders of consciousness (DOC) remains challenging. To address this challenge, resting-state fMRI (rs-fMRI) has been widely used for detecting the local, regional, and network activity differences between DOC patients and healthy controls. Although substantial progress has been made towards this endeavor, the identification of robust rs-fMRI-based biomarkers for level of consciousness is still lacking. Recent developments in machine learning show promise as a tool to augment the discrimination between different states of consciousness in clinical practice. Here, we investigated whether machine learning models trained to make a binary distinction between conscious wakefulness and anesthetic-induced unconsciousness would then be capable of reliably identifying pathologically induced unconsciousness. We did so by extracting rs-fMRI-based features associated with local activity, regional homogeneity, and interregional functional activity in 44 subjects during wakefulness, light sedation, and unresponsiveness (deep sedation and general anesthesia), and subsequently using those features to train three distinct candidate machine learning classifiers: support vector machine, Extra Trees, artificial neural network. First, we show that all three classifiers achieve reliable performance within-dataset (via nested cross-validation), with a mean area under the receiver operating characteristic curve (AUC) of 0.95, 0.92, and 0.94, respectively. Additionally, we observed comparable cross-dataset performance (making predictions on the DOC data) as the anesthesia-trained classifiers demonstrated a consistent ability to discriminate between unresponsive wakefulness syndrome (UWS/VS) patients and healthy controls with mean AUC's of 0.99, 0.94, 0.98, respectively. Lastly, we explored the potential of applying the aforementioned classifiers towards discriminating intermediate states of consciousness, specifically, subjects under light anesthetic sedation and patients diagnosed as having a minimally conscious state (MCS). Our findings demonstrate that machine learning classifiers trained on rs-fMRI features derived from participants under anesthesia have potential to aid the discrimination between degrees of pathological unconsciousness in clinical patients.
Collapse
|
8
|
Wang F, Hu N, Hu X, Jing S, Heine L, Thibaut A, Huang W, Yan Y, Wang J, Schnakers C, Laureys S, Di H. Detecting Brain Activity Following a Verbal Command in Patients With Disorders of Consciousness. Front Neurosci 2019; 13:976. [PMID: 31572121 PMCID: PMC6753948 DOI: 10.3389/fnins.2019.00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background The accurate assessment of patients with disorders of consciousness (DOC) is a challenge to most experienced clinicians. As a potential clinical tool, functional magnetic resonance imaging (fMRI) could detect residual awareness without the need for the patients’ actual motor responses. Methods We adopted a simple active fMRI motor paradigm (hand raising) to detect residual awareness in these patients. Twenty-nine patients were recruited. They met the diagnosis of minimally conscious state (MCS) (male = 6, female = 2; n = 8), vegetative state/unresponsive wakefulness syndrome (VS/UWS) (male = 17, female = 4; n = 21). Results We analyzed the command-following responses for robust evidence of statistically reliable markers of motor execution, similar to those found in 15 healthy controls. Of the 29 patients, four (two MCS, two VS/UWS) could adjust their brain activity to the “hand-raising” command, and they showed activation in motor-related regions (which could not be discovered in the own-name task). Conclusion Longitudinal behavioral assessments showed that, of these four patients, two in a VS/UWS recovered to MCS and one from MCS recovered to MCS+ (i.e., showed command following). In patients with no response to hand raising task, six VS/UWS and three MCS ones showed recovery in follow-up procedure. The simple active fMRI “hand-raising” task can elicit brain activation in patients with DOC, similar to those observed in healthy volunteers. Activity of the motor-related network may be taken as an indicator of high-level cognition that cannot be discerned through conventional behavioral assessment.
Collapse
Affiliation(s)
- Fuyan Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Nantu Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Shan Jing
- Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Lizette Heine
- INSERM, U1028, CNRS, UMR5292, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Yifan Yan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Caroline Schnakers
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Laureys
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Trujillo-Rodríguez D, Faymonville ME, Vanhaudenhuyse A, Demertzi A. Hypnosis for cingulate-mediated analgesia and disease treatment. HANDBOOK OF CLINICAL NEUROLOGY 2019; 166:327-339. [PMID: 31731920 DOI: 10.1016/b978-0-444-64196-0.00018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypnosis is a technique that induces changes in perceptual experience through response to specific suggestions. By means of functional neuroimaging, a large body of clinical and experimental studies has shown that hypnotic processes modify internal (self-awareness) as well as external (environmental awareness) brain networks. Objective quantifications of this kind permit the characterization of cerebral changes after hypnotic induction and its uses in the clinical setting. Hypnosedation is one such application, as it combines hypnosis with local anesthesia in patients undergoing surgery. The power of this technique lies in the avoidance of general anesthesia and its potential complications that emerge during and after surgery. Hypnosedation is associated with improved intraoperative comfort and reduced perioperative anxiety and pain. It ensures a faster recovery of the patient and diminishes the intraoperative requirements for sedative or analgesic drugs. Mechanisms underlying the modulation of pain perception under hypnotic conditions involve cortical and subcortical areas, mainly the anterior cingulate and prefrontal cortices as well as the basal ganglia and thalami. In that respect, hypnosis-induced analgesia is an effective and highly cost-effective alternative to sedation during surgery and symptom management.
Collapse
Affiliation(s)
- D Trujillo-Rodríguez
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute B34, University of Liège, Liège, Belgium
| | - M-E Faymonville
- Algology Department, Liège University Hospital and Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Liège, Belgium.
| | - A Vanhaudenhuyse
- Algology Department, Liège University Hospital and Sensation and Perception Research Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - A Demertzi
- Physiology of Cognition Research Lab, GIGA-Consciousness, GIGA Institute B34, University of Liège, Liège, Belgium; Fonds National de la Recherche Scientifique, Brussels, Belgium
| |
Collapse
|
10
|
Functional diversity of brain networks supports consciousness and verbal intelligence. Sci Rep 2018; 8:13259. [PMID: 30185912 PMCID: PMC6125486 DOI: 10.1038/s41598-018-31525-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/15/2018] [Indexed: 11/08/2022] Open
Abstract
How are the myriad stimuli arriving at our senses transformed into conscious thought? To address this question, in a series of studies, we asked whether a common mechanism underlies loss of information processing in unconscious states across different conditions, which could shed light on the brain mechanisms of conscious cognition. With a novel approach, we brought together for the first time, data from the same paradigm-a highly engaging auditory-only narrative-in three independent domains: anesthesia-induced unconsciousness, unconsciousness after brain injury, and individual differences in intellectual abilities during conscious cognition. During external stimulation in the unconscious state, the functional differentiation between the auditory and fronto-parietal systems decreased significantly relatively to the conscious state. Conversely, we found that stronger functional differentiation between these systems in response to external stimulation predicted higher intellectual abilities during conscious cognition, in particular higher verbal acuity scores in independent cognitive testing battery. These convergent findings suggest that the responsivity of sensory and higher-order brain systems to external stimulation, especially through the diversification of their functional responses is an essential feature of conscious cognition and verbal intelligence.
Collapse
|
11
|
Ginosar Y, Gielchinsky Y, Nachmansson N, Hagai L, Shapiro J, Elchalal U, Abramovitch R. BOLD-MRI demonstrates acute placental and fetal organ hypoperfusion with fetal brain sparing during hypercapnia. Placenta 2017; 63:53-60. [PMID: 29061514 DOI: 10.1016/j.placenta.2017.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 01/20/2023]
Abstract
INTRODUCTION We evaluated changes in placental and fetal hemodynamics in rodents during acute hypercapnia using BOLD-MRI and Doppler ultrasound. METHODS Animals were anesthetized with pentobarbital and, in consecutive 4-min periods, breathed: air, 21%O2:5%CO2, and 95%O2:5%CO2. BOLD-MRI Pregnant ICR mice (n = 6; E17.5) were scanned in a 4.7-T Bruker Biospec spectrometer. Placenta and fetal liver, heart and brain were identified on True-FISP images. Percent change in signal intensity (SI) were analyzed every 30 s from T2*-weighted GE images (TR/TE = 147/10 ms). Doppler: Pregnant Wistar rats (n = 6; E18-20) were anesthetized with pentobarbital and received abdominal Doppler ultrasound. Umbilical artery pulsatility index (PI) and fetal heart rate were assessed at baseline and after two minutes of both hypercapnic challenges. RESULTS BOLD-MRI: Normoxic-hypercapnia caused immediate marked reduction in SI in placenta (-44% ± 5.5; p < 0.001), fetal liver (-32% ± 6.4; p < 0.001) and fetal heart (-53% ± 9.9; p < 0.001) but only minor changes in fetal brain (-13% ± 3.4; p < 0.01), suggesting fetal brain sparing. Doppler: Normoxic-hypercapnia caused a marked increase in umbilical artery PI (+27.4% ± 7.2; p < 0.001) and a reduction in fetal heart rate (-48 bpm; 95%CI -9.3 to -87.0; p = 0.02), suggesting acute fetal asphyxia. CONCLUSIONS Brief maternal hypercapnic challenge caused BOLD-MRI changes consistent with acute placental and fetal hypoperfusion with fetal brain sparing. The same challenge caused increased umbilical artery PI and fetal bradycardia on Doppler ultrasound, suggestive for acute fetal asphyxia. BOLD-MRI may be a suitable noninvasive imaging strategy to assess placental and fetal organ hemodynamics.
Collapse
Affiliation(s)
- Yehuda Ginosar
- Mother and Child Anesthesia Unit, Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel; Division of Obstetric Anesthesia, Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid - Campus Box 8054 St. Louis, MO 63110-1093, USA.
| | - Yuval Gielchinsky
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| | - Nathalie Nachmansson
- The Goldyne Savad Institute of Gene Therapy, MRI Laboratory, Human Biology Research Center, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| | - Lital Hagai
- Hebrew University-Hadassah Medical School, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| | - Joel Shapiro
- Department of Anesthesiology and Critical Care Medicine, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| | - Uriel Elchalal
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| | - Rinat Abramovitch
- The Goldyne Savad Institute of Gene Therapy, MRI Laboratory, Human Biology Research Center, Hadassah Hebrew University Medical Center, POB 12000, Ein Kerem, Jerusalem 91120, Israel.
| |
Collapse
|
12
|
Demertzi A, Vanhaudenhuyse A, Noirhomme Q, Faymonville ME, Laureys S. Hypnosis modulates behavioural measures and subjective ratings about external and internal awareness. ACTA ACUST UNITED AC 2015; 109:173-179. [PMID: 26551893 DOI: 10.1016/j.jphysparis.2015.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/23/2015] [Accepted: 11/03/2015] [Indexed: 12/01/2022]
Abstract
In altered subjective states, the behavioural quantification of external and internal awareness remains challenging due to the need for reports on the subjects' behalf. With the aim to characterize the behavioural counterpart of external and internal awareness in a modified subjective condition, we used hypnosis during which subjects remain fully responsive. Eleven right-handed subjects reached a satisfactory level of hypnotisability as evidenced by subjective reports on arousal, absorption and dissociation. Compared to normal wakefulness, in hypnosis (a) participants' self-ratings for internal awareness increased and self-ratings for external awareness decreased, (b) the two awareness components tended to anticorrelate less and the switches between external and internal awareness self-ratings were less frequent, and (c) participants' reaction times were higher and lapses in key presses were more frequent. The identified imbalance between the two components of awareness is considered as of functional relevance to subjective (meta)cognition, possibly mediated by allocated attentional properties brought about by hypnosis. Our results highlight the presence of a cognitive counterpart in resting state, indicate that the modified contents of awareness are measurable behaviourally, and provide leverage for investigations of more challenging altered conscious states, such as anaesthesia, sleep and disorders of consciousness.
Collapse
Affiliation(s)
- Athena Demertzi
- Coma Science Group, GICA Research and Cyclotron Research Centre, Avenue de l'hôpital 11, 4000 Liège, Belgium.
| | - Audrey Vanhaudenhuyse
- Coma Science Group, GICA Research and Cyclotron Research Centre, Avenue de l'hôpital 11, 4000 Liège, Belgium
| | - Quentin Noirhomme
- Coma Science Group, GICA Research and Cyclotron Research Centre, Avenue de l'hôpital 11, 4000 Liège, Belgium
| | - Marie-Elisabeth Faymonville
- CHU Department of Algology and Palliative Care, Domaine Universitaire du Sart Tilman B35, 4000 Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GICA Research and Cyclotron Research Centre, Avenue de l'hôpital 11, 4000 Liège, Belgium
| |
Collapse
|
13
|
Differential magnetic resonance neurofeedback modulations across extrinsic (visual) and intrinsic (default-mode) nodes of the human cortex. J Neurosci 2015; 35:2588-95. [PMID: 25673851 DOI: 10.1523/jneurosci.3098-14.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous advances in magnetic resonance imaging allow the analysis of blood oxygen level-dependent signals in real time, thus opening the possibility of feeding an index of these signals back to scanned human participants. However, it is still not known to what extent different cortical networks may differ in their sensitivity to such internally generated neurofeedback (NF). Here, we compare NF efficacy across six cortical regions including: early and high-order visual areas and the posterior parietal lobe, a prominent node of the default mode network (DMN). Our results reveal a consistent difference in NF activation across these areas. Sham controls ruled out a role of attention/arousal in these effects. These differences are suggestive of a relationship to the relative reliance on intrinsic information, moving from early visual cortex (lowest) to the DMN (highest). Interestingly, the visual parahippocampal place area showed NF activation closer to the DMN node. The results are compatible with the notion of the DMN as an intrinsically oriented system.
Collapse
|
14
|
Berkovich-Ohana A, Glicksohn J, Goldstein A. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity. Soc Cogn Affect Neurosci 2014; 9:1616-24. [PMID: 24194576 PMCID: PMC4187278 DOI: 10.1093/scan/nst153] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 08/29/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
The default mode network (DMN) has been largely studied by imaging, but not yet by neurodynamics, using electroencephalography (EEG) functional connectivity (FC). mindfulness meditation (MM), a receptive, non-elaborative training is theorized to lower DMN activity. We explored: (i) the usefulness of EEG-FC for investigating the DMN and (ii) the MM-induced EEG-FC effects. To this end, three MM groups were compared with controls, employing EEG-FC (-MPC, mean phase coherence). Our results show that: (i) DMN activity was identified as reduced overall inter-hemispheric gamma MPC during the transition from resting state to a time production task and (ii) MM-induced a state increase in alpha MPC as well as a trait decrease in EEG-FC. The MM-induced EEG-FC decrease was irrespective of expertise or band. Specifically, there was a relative reduction in right theta MPC, and left alpha and gamma MPC. The left gamma MPC was negatively correlated with MM expertise, possibly related to lower internal verbalization. The trait lower gamma MPC supports the notion of MM-induced reduction in DMN activity, related with self-reference and mind-wandering. This report emphasizes the possibility of studying the DMN using EEG-FC as well as the importance of studying meditation in relation to it.
Collapse
Affiliation(s)
- Aviva Berkovich-Ohana
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel. The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel.
| | - Joseph Glicksohn
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel. The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel
| | - Abraham Goldstein
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel. The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Department of Criminology, and Department of Psychology, Bar-Ilan University, Ramat Gan 52900 Israel
| |
Collapse
|
15
|
Cruse D, Gantner I, Soddu A, Owen AM. Lies, damned lies and diagnoses: Estimating the clinical utility of assessments of covert awareness in the vegetative state. Brain Inj 2014; 28:1197-201. [PMID: 24911058 DOI: 10.3109/02699052.2014.920517] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Damian Cruse
- Brain and Mind Institute, University of Western Ontario , London, ON , Canada
| | | | | | | |
Collapse
|
16
|
Berkovich-Ohana A, Glicksohn J. The consciousness state space (CSS)-a unifying model for consciousness and self. Front Psychol 2014; 5:341. [PMID: 24808870 PMCID: PMC4010789 DOI: 10.3389/fpsyg.2014.00341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model.
Collapse
Affiliation(s)
| | - Joseph Glicksohn
- Department of Criminology, Bar-Ilan University Ramat Gan, Israel ; The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat Gan, Israel
| |
Collapse
|
17
|
Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014; 10:99-114. [PMID: 24468878 DOI: 10.1038/nrneurol.2013.279] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The concept of consciousness continues to defy definition and elude the grasp of philosophical and scientific efforts to formulate a testable construct that maps to human experience. Severe acquired brain injury results in the dissolution of consciousness, providing a natural model from which key insights about consciousness may be drawn. In the clinical setting, neurologists and neurorehabilitation specialists are called on to discern the level of consciousness in patients who are unable to communicate through word or gesture, and to project outcomes and recommend approaches to treatment. Standards of care are not available to guide clinical decision-making for this population, often leading to inconsistent, inaccurate and inappropriate care. In this Review, we describe the state of the science with regard to clinical management of patients with prolonged disorders of consciousness. We review consciousness-altering pathophysiological mechanisms, specific clinical syndromes, and novel diagnostic and prognostic applications of advanced neuroimaging and electrophysiological procedures. We conclude with a provocative discussion of bioethical and medicolegal issues that are unique to this population and have a profound impact on care, as well as raising questions of broad societal interest.
Collapse
|
18
|
Affiliation(s)
- Zoran Josipovic
- Psychology Department; New York University; New York New York
| |
Collapse
|
19
|
Demertzi A, Vanhaudenhuyse A, Brédart S, Heine L, di Perri C, Laureys S. Looking for the self in pathological unconsciousness. Front Hum Neurosci 2013. [PMID: 24027519 DOI: 10.3389/fnhum.2013.00538.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an intimate relationship between consciousness and the notion of self. By studying patients with disorders of consciousness, we are offered with a unique lesion approach to tackle the neural correlates of self in the absence of subjective reports. Studies employing neuroimaging techniques point to the critical involvement of midline anterior and posterior cortices in response to the passive presentation of self-referential stimuli, such as the patient's own name and own face. Also, resting state studies show that these midline regions are severely impaired as a function of the level of consciousness. Theoretical frameworks combining all this progress surpass the functional localization of self-related cognition and suggest a dynamic system-level approach to the phenomenological complexity of subjectivity. Importantly for non-communicating patients suffering from disorders of consciousness, the clinical translation of these technologies will allow medical professionals and families to better comprehend these disorders and plan efficient medical management for these patients.
Collapse
Affiliation(s)
- Athena Demertzi
- Coma Science Group, Cyclotron Research Center and Neurology Department, University of Liège , Liège , Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Demertzi A, Vanhaudenhuyse A, Brédart S, Heine L, di Perri C, Laureys S. Looking for the self in pathological unconsciousness. Front Hum Neurosci 2013; 7:538. [PMID: 24027519 PMCID: PMC3759827 DOI: 10.3389/fnhum.2013.00538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022] Open
Abstract
There is an intimate relationship between consciousness and the notion of self. By studying patients with disorders of consciousness, we are offered with a unique lesion approach to tackle the neural correlates of self in the absence of subjective reports. Studies employing neuroimaging techniques point to the critical involvement of midline anterior and posterior cortices in response to the passive presentation of self-referential stimuli, such as the patient’s own name and own face. Also, resting state studies show that these midline regions are severely impaired as a function of the level of consciousness. Theoretical frameworks combining all this progress surpass the functional localization of self-related cognition and suggest a dynamic system-level approach to the phenomenological complexity of subjectivity. Importantly for non-communicating patients suffering from disorders of consciousness, the clinical translation of these technologies will allow medical professionals and families to better comprehend these disorders and plan efficient medical management for these patients.
Collapse
Affiliation(s)
- Athena Demertzi
- Coma Science Group, Cyclotron Research Center and Neurology Department, University of Liège , Liège , Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Zoran Josipovic
- Contemplative Science Lab, Department of Psychology, New York University New York, NY, USA
| |
Collapse
|
22
|
Philippi CL, Feinstein JS, Khalsa SS, Damasio A, Tranel D, Landini G, Williford K, Rudrauf D. Preserved self-awareness following extensive bilateral brain damage to the insula, anterior cingulate, and medial prefrontal cortices. PLoS One 2012; 7:e38413. [PMID: 22927899 PMCID: PMC3425501 DOI: 10.1371/journal.pone.0038413] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 05/09/2012] [Indexed: 12/31/2022] Open
Abstract
It has been proposed that self-awareness (SA), a multifaceted phenomenon central to human consciousness, depends critically on specific brain regions, namely the insular cortex, the anterior cingulate cortex (ACC), and the medial prefrontal cortex (mPFC). Such a proposal predicts that damage to these regions should disrupt or even abolish SA. We tested this prediction in a rare neurological patient with extensive bilateral brain damage encompassing the insula, ACC, mPFC, and the medial temporal lobes. In spite of severe amnesia, which partially affected his “autobiographical self”, the patient's SA remained fundamentally intact. His Core SA, including basic self-recognition and sense of self-agency, was preserved. His Extended SA and Introspective SA were also largely intact, as he has a stable self-concept and intact higher-order metacognitive abilities. The results suggest that the insular cortex, ACC and mPFC are not required for most aspects of SA. Our findings are compatible with the hypothesis that SA is likely to emerge from more distributed interactions among brain networks including those in the brainstem, thalamus, and posteromedial cortices.
Collapse
Affiliation(s)
- Carissa L. Philippi
- Division of Behavioral Neurology and Cognitive Neuroscience, Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Justin S. Feinstein
- Division of Behavioral Neurology and Cognitive Neuroscience, Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (DR); (JSF)
| | - Sahib S. Khalsa
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, United States of America
| | - Antonio Damasio
- Brain and Creativity Institute and Dornsife Cognitive Neuroscience Imaging Center, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Tranel
- Division of Behavioral Neurology and Cognitive Neuroscience, Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregory Landini
- Department of Philosophy, University of Iowa, Iowa City, Iowa, United States of America
| | - Kenneth Williford
- Department of Philosophy, University of Texas Arlington, Arlington, Texas, United States of America
| | - David Rudrauf
- Division of Behavioral Neurology and Cognitive Neuroscience, Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail: (DR); (JSF)
| |
Collapse
|
23
|
Laureys S, Schiff ND. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage 2012; 61:478-91. [PMID: 22227888 DOI: 10.1016/j.neuroimage.2011.12.041] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
- Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
24
|
Boly M, Massimini M, Garrido MI, Gosseries O, Noirhomme Q, Laureys S, Soddu A. Brain connectivity in disorders of consciousness. Brain Connect 2012; 2:1-10. [PMID: 22512333 DOI: 10.1089/brain.2011.0049] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The last 10 years witnessed a considerable increase in our knowledge of brain function in survivors to severe brain injuries with disorders of consciousness (DOC). At the same time, a growing interest developed for the use of functional neuroimaging as a new diagnostic tool in these patients. In this context, particular attention has been devoted to connectivity studies-as these, more than measures of brain metabolism, may be more appropriate to capture the dynamics of large populations of neurons. Here, we will review the pros and cons of various connectivity methods as potential diagnostic tools in brain-damaged patients with DOC. We will also discuss the relevance of the study of the level versus the contents of consciousness in this context.
Collapse
Affiliation(s)
- Mélanie Boly
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University of Liège and CHU Sart Tilman Hospital, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bonfiglio L, Olcese U, Rossi B, Frisoli A, Arrighi P, Greco G, Carozzo S, Andre P, Bergamasco M, Carboncini MC. Cortical source of blink-related delta oscillations and their correlation with levels of consciousness. Hum Brain Mapp 2012; 34:2178-89. [PMID: 22431380 DOI: 10.1002/hbm.22056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 12/09/2011] [Accepted: 01/18/2012] [Indexed: 11/07/2022] Open
Abstract
Recently, blink-related delta oscillations (delta BROs) have been observed in healthy subjects during spontaneous blinking at rest. Delta BROs have been linked with continuous gathering of information from the surrounding environment, which is classically attributed to the precuneus. Furthermore, fMRI studies have shown that precuneal activity is reduced or missing when consciousness is low or absent. We therefore hypothesized that the source of delta BROs in healthy subjects could be located in the precuneus and that delta BROs could be absent or reduced in patients with disorders of consciousness (DOC). To test these hypotheses, electroencephalographic (EEG) activity at rest was recorded in 12 healthy controls and nine patients with DOC (four vegetative states, and five minimally conscious states). Three-second-lasting EEG epochs centred on each blink instance were analyzed in both time- (BROs) and frequency domains (event-related spectral perturbation or ERSP and intertrial coherence or ITC). Cortical sources of the maximum blink-related delta power, corresponding to the positive peak of the delta BROs, were estimated by standardized Low Resolution Electromagnetic Tomography. In control subjects, as expected, the source of delta BROs was located in the precuneus, whereas in DOC patients, delta BROs were not recognizable and no precuneal localization was possible. Furthermore, we observed a direct relationship between spectral indexes and levels of cognitive functioning in all subjects participating in the study. This reinforces the hypothesis that delta BROs reflect neural processes linked with awareness of the self and of the environment.
Collapse
Affiliation(s)
- Luca Bonfiglio
- Unit of Neurorehabilitation, Department of Neuroscience, University of Pisa, Via Roma 67, Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gupta AA, Ding D, Lee RK, Levy RB, Bhattacharya SK. Spontaneous ocular and neurologic deficits in transgenic mouse models of multiple sclerosis and noninvasive investigative modalities: a review. Invest Ophthalmol Vis Sci 2012; 53:712-24. [PMID: 22331505 DOI: 10.1167/iovs.11-8351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, neurodegenerative, demyelinating disease of the central nervous system, predominantly involving myelinated neurons of the brain, spinal cord, and optic nerve. Optic neuritis is frequently associated with MS and often precedes other neurologic deficits associated with MS. A large number of patients experience visual defects and have abnormalities concomitant with neurologic abnormalities. Transgenic mice manifesting spontaneous neurologic and ocular disease are unique models that have revolutionized the study of MS. Spontaneous experimental autoimmune encephalomyelitis (sEAE) presents with spontaneous onset of demyelination, without the need of an injectable immunogen. This review highlights the various models of sEAE, their disease characteristics, and applicability for future research. The study of optic neuropathy and neurologic manifestations of demyelination in sEAE will expand our understanding of the pathophysiological mechanisms underlying MS. Early and precise diagnosis of MS with different noninvasive methods has opened new avenues in managing symptoms, reducing morbidity, and limiting disease burden. This review discusses the spectrum of available noninvasive techniques, such as electrophysiological and behavioral assessment, optical coherence tomography, scanning laser polarimetry, confocal scanning laser ophthalmoscopy, pupillometry, magnetic resonance imaging, positron emission tomography, gait, and cardiovascular monitoring, and their clinical relevance.
Collapse
Affiliation(s)
- Archana A Gupta
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
27
|
Josipovic Z, Dinstein I, Weber J, Heeger DJ. Influence of meditation on anti-correlated networks in the brain. Front Hum Neurosci 2012. [PMID: 22287947 DOI: 10.3389/fnhum.2011.00183.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human experiences can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an "extrinsic" system composed of brain areas that respond more to external stimuli and tasks and an "intrinsic" system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are "at rest" and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation) can be modulated by cognitive strategy. Participants either fixated without meditation (fixation), or engaged in non-dual awareness (NDA) or focused attention (FA) meditations. We computed inter-area correlations ("functional connectivity") between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation). However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.
Collapse
Affiliation(s)
- Zoran Josipovic
- Department of Psychology and Center for Neural Science, New York University New York, NY, USA
| | | | | | | |
Collapse
|
28
|
Josipovic Z, Dinstein I, Weber J, Heeger DJ. Influence of meditation on anti-correlated networks in the brain. Front Hum Neurosci 2012; 5:183. [PMID: 22287947 PMCID: PMC3250078 DOI: 10.3389/fnhum.2011.00183] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
Human experiences can be broadly divided into those that are external and related to interaction with the environment, and experiences that are internal and self-related. The cerebral cortex appears to be divided into two corresponding systems: an "extrinsic" system composed of brain areas that respond more to external stimuli and tasks and an "intrinsic" system composed of brain areas that respond less to external stimuli and tasks. These two broad brain systems seem to compete with each other, such that their activity levels over time is usually anti-correlated, even when subjects are "at rest" and not performing any task. This study used meditation as an experimental manipulation to test whether this competition (anti-correlation) can be modulated by cognitive strategy. Participants either fixated without meditation (fixation), or engaged in non-dual awareness (NDA) or focused attention (FA) meditations. We computed inter-area correlations ("functional connectivity") between pairs of brain regions within each system, and between the entire extrinsic and intrinsic systems. Anti-correlation between extrinsic vs. intrinsic systems was stronger during FA meditation and weaker during NDA meditation in comparison to fixation (without mediation). However, correlation between areas within each system did not change across conditions. These results suggest that the anti-correlation found between extrinsic and intrinsic systems is not an immutable property of brain organization and that practicing different forms of meditation can modulate this gross functional organization in profoundly different ways.
Collapse
Affiliation(s)
- Zoran Josipovic
- Department of Psychology and Center for Neural Science, New York UniversityNew York, NY, USA
| | - Ilan Dinstein
- Neurobiology Department, Weizmann Institute of ScienceRehovot, Israel
| | - Jochen Weber
- Department of Psychology and SCAN, Columbia UniversityNew York, USA
| | - David J. Heeger
- Department of Psychology and Center for Neural Science, New York UniversityNew York, NY, USA
| |
Collapse
|
29
|
Assessment of consciousness with electrophysiological and neurological imaging techniques. Curr Opin Crit Care 2011; 17:146-51. [PMID: 21206267 DOI: 10.1097/mcc.0b013e328343476d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Brain MRI (diffusion tensor imaging and spectroscopy) and functional neuroimaging (PET, functional MRI, EEG and evoked potential studies) are changing our understanding of patients with disorders of consciousness encountered after coma such as the 'vegetative' or minimally conscious states. RECENT FINDINGS Increasing evidence from functional neuroimaging and electrophysiology demonstrates some residual cognitive processing in a subgroup of patients who clinically fail to show any response to commands, leading to the recent proposal of 'unresponsive wakefulness syndrome' as an alternative name for patients previously coined 'vegetative' or 'apallic'. SUMMARY Consciousness can be viewed as the emergent property of the collective behavior of widespread thalamocortical frontoparietal network connectivity. Data from physiological, pharmacological and pathological alterations of consciousness provide evidence in favor of this hypothesis. Increasing our understanding of the neural correlates of consciousness is helping clinicians to do a better job in terms of diagnosis, prognosis and finally treatment and drug development for these severely brain-damaged patients. The current challenge remains to continue translating this research from the bench to the bedside. Only well controlled large multicentric neuroimaging and electrophysiology studies will enable to identify which paraclinical diagnostic or prognostic test is necessary for our routine evidence-based assessment of individuals with disorders of consciousness.
Collapse
|
30
|
Ramot M, Wilf M, Goldberg H, Weiss T, Deouell LY, Malach R. Coupling between spontaneous (resting state) fMRI fluctuations and human oculo-motor activity. Neuroimage 2011; 58:213-25. [PMID: 21703354 DOI: 10.1016/j.neuroimage.2011.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/05/2011] [Accepted: 06/07/2011] [Indexed: 11/29/2022] Open
Abstract
The recent discovery of incessant spontaneous fluctuations in human brain activity (also termed resting state fMRI) has been a focus of intense research in brain imaging. The spontaneous BOLD activity shows organized anatomical specialization as well as disruption in a number of brain pathologies. The link between the spontaneous fMRI fluctuations and human behavior is therefore of acute interest and importance. Here we report that a highly significant correlation exists between spontaneous BOLD fluctuations and eye movements which occur subliminally and spontaneously in the absence of any visual stimulation. Of the various eye movement parameters tested, we found robust and anatomically consistent correlations with both the amplitude and velocity of spontaneous eye movements. Control experiments ruled out a contribution of spatial and visual attention as well as smooth pursuit eye movements to the effect. The consistent anatomical specificity of the correlation patterns and their tight temporal link at the proper hemodynamic delay argues against a non-neuronal explanation of the effect, such as cardiac or respiratory cycles. Our results thus demonstrate a link between resting state and spontaneously emerging subconscious oculo-motor behavior.
Collapse
Affiliation(s)
- Michal Ramot
- The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Demertzi A, Schnakers C, Soddu A, Bruno MA, Gosseries O, Vanhaudenhuyse A, Laureys S. Neural plasticity lessons from disorders of consciousness. Front Psychol 2011; 1:245. [PMID: 21833298 PMCID: PMC3153849 DOI: 10.3389/fpsyg.2010.00245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 12/24/2010] [Indexed: 11/20/2022] Open
Abstract
Communication and intentional behavior are supported by the brain's integrity at a structural and a functional level. When widespread loss of cerebral connectivity is brought about as a result of a severe brain injury, in many cases patients are not capable of conscious interactive behavior and are said to suffer from disorders of consciousness (e.g., coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious states). This lesion paradigm has offered not only clinical insights, as how to improve diagnosis, prognosis, and treatment, but also put forward scientific opportunities to study the brain's plastic abilities. We here review interventional and observational studies performed in severely brain-injured patients with regards to recovery of consciousness. The study of the recovered conscious brain (spontaneous and/or after surgical or pharmacologic interventions), suggests a link between some specific brain areas and the capacity of the brain to sustain conscious experience, challenging at the same time the notion of fixed temporal boundaries in rehabilitative processes. Altered functional connectivity, cerebral structural reorganization as well as behavioral amelioration after invasive treatments will be discussed as the main indices for plasticity in these challenging patients. The study of patients with chronic disorders of consciousness may, thus, provide further insights not only at a clinical level (i.e., medical management and rehabilitation) but also from a scientific-theoretical perspective (i.e., the brain's plastic abilities and the pursuit of the neural correlate of consciousness).
Collapse
Affiliation(s)
- Athena Demertzi
- Coma Science Group, Cyclotron Research Centre and Neurology Department, Sart Tilman, University and University Hospital of Liège Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Demertzi A, Soddu A, Faymonville ME, Bahri MA, Gosseries O, Vanhaudenhuyse A, Phillips C, Maquet P, Noirhomme Q, Luxen A, Laureys S. Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. PROGRESS IN BRAIN RESEARCH 2011; 193:309-22. [PMID: 21854971 DOI: 10.1016/b978-0-444-53839-0.00020-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Resting state fMRI (functional magnetic resonance imaging) acquisitions are characterized by low-frequency spontaneous activity in a default mode network (encompassing medial brain areas and linked to self-related processes) and an anticorrelated "extrinsic" system (encompassing lateral frontoparietal areas and modulated via external sensory stimulation). In order to better determine the functional contribution of these networks to conscious awareness, we here sought to transiently modulate their relationship by means of hypnosis. We used independent component analysis (ICA) on resting state fMRI acquisitions during normal wakefulness, under hypnotic state, and during a control condition of autobiographical mental imagery. As compared to mental imagery, hypnosis-induced modulation of resting state fMRI networks resulted in a reduced "extrinsic" lateral frontoparietal cortical connectivity, possibly reflecting a decreased sensory awareness. The default mode network showed an increased connectivity in bilateral angular and middle frontal gyri, whereas its posterior midline and parahippocampal structures decreased their connectivity during hypnosis, supposedly related to an altered "self" awareness and posthypnotic amnesia. In our view, fMRI resting state studies of physiological (e.g., sleep or hypnosis), pharmacological (e.g., sedation or anesthesia), and pathological modulation (e.g., coma or related states) of "intrinsic" default mode and anticorrelated "extrinsic" sensory networks, and their interaction with other cerebral networks, will further improve our understanding of the neural correlates of subjective awareness.
Collapse
Affiliation(s)
- A Demertzi
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bruno MA, Soddu A, Demertzi A, Laureys S, Gosseries O, Schnakers C, Boly M, Noirhomme Q, Thonnard M, Chatelle C, Vanhaudenhuyse A. Disorders of consciousness: Moving from passive to resting state and active paradigms. Cogn Neurosci 2010; 1:193-203. [DOI: 10.1080/17588928.2010.485677] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Lundervold A. On consciousness, resting state fMRI, and neurodynamics. NONLINEAR BIOMEDICAL PHYSICS 2010; 4 Suppl 1:S9. [PMID: 20522270 PMCID: PMC2880806 DOI: 10.1186/1753-4631-4-s1-s9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively. RESULTS The present work deals with a pluralistic approach to "consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics - in particular the Wilson-Cowan model and stochastic resonance. CONCLUSIONS Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during "resting state", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of "consiousness" in neurocognitive and neurophilosophy research.
Collapse
Affiliation(s)
- Arvid Lundervold
- Department of Biomedicine, Neuroinformatics and Image Analysis Laboratory, University of Bergen Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
36
|
Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010; 30:214-26. [DOI: 10.3109/10799893.2010.488650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|