1
|
Ölgen S, Demirel UU, Karaman EF, Tanol M, Özden S, Göker H. Synthesis of Novel Urea and Sulfonamide Derivatives of Isatin Schiff Bases
as Potential Anti-cancer Agents. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220224115908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Among the many types of chemical scaffolds, isatin derivatives, including their
Schiff bases, have been extensively studied to find novel therapeutic agents against cancer. Amide or urea
groups containing derivatives were also discovered to be tyrosine kinase inhibitors.
Objective:
This study aims to find potent compounds by designing 16 novel urea and sulfonamide derivatives
of isatin Schiff bases.
Method:
Compounds were tested against PC-3, HepG2, SH-SY5Y, A549 cancerous, and NIH/3T3 noncancerous
cell lines using cell culture assay.
Results:
Among the tested compounds 7a, 7b, 7c, 7d, 7h, 8a, and 8f presented potential inhibitions
against cellular proliferation activities of HepG2 cells with average IC50 values of 31.97, 42.13, 31.50,
47.98, 32.59, 43.44, and 37.81 μM, respectively. They showed better inhibition potencies than the reference
compound doxorubicin, and its value was measured as 51.15 μM in the same culture assay. The
cytotoxic activities of the compounds in other cell lines were found to be less potent compared to doxorubicin.
Conclusion:
In vitro experiments demonstrated that designed compounds have the first evidence that they
might be active against hepatocellular carcinoma. According to ADME prediction results, all compounds
presented drug-like and good metabolic properties.
Collapse
Affiliation(s)
- Süreyya Ölgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Ural U. Demirel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Ecem F. Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Pharmaceutical Toxicology,
Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Mehmet Tanol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Sibel Özden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Hakan Göker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos 2020; 48:690-697. [PMID: 32503882 DOI: 10.1124/dmd.120.090951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 μM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 μM of ERY, 75% by 15 μM of ERY, 89% by 30 μM of ERY, and 94% by 60 μM of ERY. ERY (30 μM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.
Collapse
Affiliation(s)
- Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Klairynne Raymond
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| |
Collapse
|
3
|
Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol 2013; 14:R88. [PMID: 23985316 PMCID: PMC4054779 DOI: 10.1186/gb-2013-14-8-r88] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/27/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans. RESULTS Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates. CONCLUSIONS The H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.
Collapse
Affiliation(s)
- Roz Laing
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Taisei Kikuchi
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Axel Martinelli
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Isheng J Tsai
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Division of Parasitology, Department of Infectious Disease, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 Japan
| | - Robin N Beech
- Institute of Parasitology, Macdonald Campus, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David J Bartley
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Helen Beasley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Collette Britton
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - David Curran
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Eileen Devaney
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Aude Gilabert
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Frank Jackson
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Stephanie L Johnston
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
| | - Ivan Kryukov
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Keyu Li
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Alison A Morrison
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Adam J Reid
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, Scotland, UK
| | - Gary I Saunders
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Road, Glasgow, Scotland, G61 1QH, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - James D Wasmuth
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Adrian Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia 30602, USA
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Faculty of Veterinary Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|