1
|
Li Y, Liang J, Dang H, Zhang R, Chen P, Shao Y. NCOA3 is a critical oncogene in thyroid cancer via the modulation of major signaling pathways. Endocrine 2022; 75:149-158. [PMID: 34251576 DOI: 10.1007/s12020-021-02819-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The Nuclear Receptor Coactivator (NCOA3, also known as SRC-3, AIB1, p/CIP, RAC3, ACTR, and TRAM1), acts as an oncogene in multiple tumors, but its biological function in thyroid cancer remains unclear. This study was designed to explore the role of NCOA3 in thyroid cancer. METHODS The study assessed NCOA3 expression in thyroid cancer and their matched non-cancerous thyroid tissues at mRNA and protein levels. Then we evaluated the effect of NCOA3 on malignant activities of thyroid cancer cells. To better understand the oncogenic role of NCOA3 in thyroid tumorigenesis, we tested the effect of NCOA3 on major proteins related to thyroid cancer. RESULTS Our data demonstrated that protein expression of NCOA3 was significantly upregulated in thyroid cancer tissues. NCOA3 knockdown inhibited cell proliferation and invasion, and induced cell cycle arrest and apoptosis in thyroid cancer. Conversely, ectopic expression of NCOA3 promoted cell proliferation and invasiveness in thyroid cancer. Mechanistically, NCOA3 could improve the survival and invasiveness of thyroid cancer cells through the modulation of the ErbB, AKT, ERK, and β-catenin pathways. CONCLUSION Collectively, these findings suggest that NCOA3 is critical in the initiation and development of thyroid cancer, and might be a possible marker for prognosis and therapy.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Junrong Liang
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, PR China
| | - Hui Dang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Rui Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuan Shao
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
2
|
Perri A, Catalano S, Bonofiglio D, Vizza D, Rovito D, Qi H, Aquila S, Panza S, Rizza P, Lanzino M, Andò S. T3 enhances thyroid cancer cell proliferation through TRβ1/Oct-1-mediated cyclin D1 activation. Mol Cell Endocrinol 2014; 382:205-217. [PMID: 24121026 DOI: 10.1016/j.mce.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Several studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRβ1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation. In addition, silencing of TRβ1 or Oct-1 expression by RNA interference reversed both increased cell proliferation and up-regulation of cyclin D1, underlying the important role of both transcriptional factors in mediating these effects. Finally, T3-induced increase in cell growth was abrogated after knocking down cyclin D1 expression. All these findings highlight a new molecular mechanism by which T3 promotes thyroid cancer cell growth.
Collapse
Affiliation(s)
- Anna Perri
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Stefania Catalano
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Daniela Rovito
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hongyan Qi
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Saveria Aquila
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Salvatore Panza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marilena Lanzino
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy; Centro Sanitario, University of Calabria, Rende, Italy.
| |
Collapse
|
3
|
Suh JH, Sieglaff DH, Zhang A, Xia X, Cvoro A, Winnier GE, Webb P. SIRT1 is a direct coactivator of thyroid hormone receptor β1 with gene-specific actions. PLoS One 2013; 8:e70097. [PMID: 23922917 PMCID: PMC3724829 DOI: 10.1371/journal.pone.0070097] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/15/2013] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 1 (SIRT1) NAD+-dependent deacetylase regulates energy metabolism by modulating expression of genes involved in gluconeogenesis and other liver fasting responses. While many effects of SIRT1 on gene expression are mediated by deacetylation and activation of peroxisome proliferator activated receptor coactivator α (PGC-1α), SIRT1 also binds directly to DNA bound transcription factors, including nuclear receptors (NRs), to modulate their activity. Since thyroid hormone receptor β1 (TRβ1) regulates several SIRT1 target genes in liver and interacts with PGC-1α, we hypothesized that SIRT1 may influence TRβ1. Here, we confirm that SIRT1 cooperates with PGC-1α to enhance response to triiodothyronine, T3. We also find, however, that SIRT1 stimulates TRβ1 activity in a manner that is independent of PGC-1α but requires SIRT1 deacetylase activity. SIRT1 interacts with TRβ1 in vitro, promotes TRβ1 deacetylation in the presence of T3 and enhances ubiquitin-dependent TRβ1 turnover; a common response of NRs to activating ligands. More surprisingly, SIRT1 knockdown only strongly inhibits T3 response of a subset of TRβ1 target genes, including glucose 6 phosphatase (G-6-Pc), and this is associated with blockade of TRβ1 binding to the G-6-Pc promoter. Drugs that target the SIRT1 pathway, resveratrol and nicotinamide, modulate T3 response at dual TRβ1/SIRT1 target genes. We propose that SIRT1 is a gene-specific TRβ1 co-regulator and TRβ1/SIRT1 interactions could play important roles in regulation of liver metabolic response. Our results open possibilities for modulation of subsets of TR target genes with drugs that influence the SIRT1 pathway.
Collapse
Affiliation(s)
- Ji Ho Suh
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Douglas H. Sieglaff
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Aijun Zhang
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Xuefeng Xia
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Aleksandra Cvoro
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Glenn E. Winnier
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Paul Webb
- Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Joharapurkar AA, Dhote VV, Jain MR. Selective Thyromimetics Using Receptor and Tissue Selectivity Approaches: Prospects for Dyslipidemia. J Med Chem 2012; 55:5649-75. [DOI: 10.1021/jm2004706] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amit A. Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| | - Vipin V. Dhote
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| | - Mukul R. Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Sarkhej Bavla NH 8A, Moraiya,
Ahmedabad 382210, India
| |
Collapse
|
5
|
Pregnane X receptor is required for interleukin-6-mediated down-regulation of cytochrome P450 3A4 in human hepatocytes. Toxicol Lett 2010; 197:219-26. [PMID: 20538049 DOI: 10.1016/j.toxlet.2010.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 05/30/2010] [Accepted: 06/01/2010] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most abundant cytochrome P450 enzyme in human liver and metabolizes more than 60% of prescribed drugs in human body. Patients with liver conditions such as cirrhosis show increased secretion of cytokines (e.g., interleukin-6) and decreased capacity of oxidation of many drugs. In this study, we provided molecular evidence that cytokine secretion directly contributed to the decreased capacity of oxidative biotransformation in human liver. After human hepatocytes were treated with IL-6, the expression of CYP3A4 decreased at both mRNA and protein levels, so did the CYP3A4 enzymatic activity. Meanwhile, the repression of CYP3A4 by IL-6 occurred after the decrease of pregnane X receptor (PXR) in human hepatocytes. The PXR-overexpressed cells (transfected with human PXR) increased the CYP3A4 mRNA level, and the repression of CYP3A4 by IL-6 was greater in the PXR-overexpressed cells than in the control cells. Further, PXR knockdown (transfected with siPXR construct) decreased the CYP3A4 mRNA level with less repression by IL-6 than in the control cells transfected with corresponding vector. Collectively, our study suggests that PXR is necessary for IL-6-mediated repression of the CYP3A4 expression in human hepatocytes.
Collapse
|
6
|
Liao CS, Tai PJ, Huang YH, Chen RN, Wu SM, Kuo LW, Yeh CT, Tsai MM, Chen WJ, Lin KH. Regulation of AKR1B1 by thyroid hormone and its receptors. Mol Cell Endocrinol 2009; 307:109-17. [PMID: 19422879 DOI: 10.1016/j.mce.2009.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 04/01/2009] [Accepted: 04/24/2009] [Indexed: 11/15/2022]
Abstract
The objective of this study was to identify genes regulated by thyroid hormone (T(3)) mediated by its receptor (TR) and associated with tumorigenesis. The gene encoding aldo-keto reductase family 1, member B1 (AKR1B1), as previously identified by c-DNA microarray, is known to be up-regulated by T(3) treatment. Enzyme AKR1B1 was elevated roughly 3-fold in HepG2-TRalpha1 cells at the protein level and 4.6-fold increase at the mRNA level after 48 h T(3) treatment. Similar findings were obtained from thyroidectomized rats after T(3) application. To identify and localize the critical TR element (TRE), series deletion of the promoter mutant were constructed and electrophoretic mobility shift assays were carried out. The TRE on the AKR1B1 promoter was localized to the -1099/-1028 region. Further, this study demonstrated that AKR1B1 over-expression in some types of hepatocellular carcinomas (HCCs) is TR-dependent and might play a crucial role in the development of HCC. Thus, T(3) regulates AKR1B1 gene expression via a TRE-dependant mechanism and associates liver cancer.
Collapse
Affiliation(s)
- Chen-Shin Liao
- Department of Biochemistry, Chang-Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tai PJ, Huang YH, Shih CH, Chen RN, Chen CD, Chen WJ, Wang CS, Lin KH. Direct regulation of androgen receptor-associated protein 70 by thyroid hormone and its receptors. Endocrinology 2007; 148:3485-95. [PMID: 17412801 DOI: 10.1210/en.2006-1239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) regulates multiple physiological processes during development, growth, differentiation, and metabolism. Most T3 actions are mediated via thyroid hormone receptors (TRs) that are members of the nuclear hormone receptor superfamily of ligand-dependent transcription factors. The effects of T3 treatment on target gene regulation was previously examined in TRalpha1-overexpressing hepatoma cell lines (HepG2-TRalpha1). Androgen receptor (AR)-associated protein 70 (ARA70) was one gene found to be up-regulated by T3. The ARA70 is a ligand-dependent coactivator for the AR and was significantly increased by 4- to 5-fold after T3 treatment by Northern blot analyses in the HepG2-TRalpha1 stable cell line. T3 induced a 1- to 2-fold increase in the HepG2-TRbeta1 stable cell line. Both stable cell lines attained the highest fold expression after 24 h treatment with 10 nM T3. The ARA70 protein was increased up to 1.9-fold after T3 treatment in HepG2-TRalpha1 cells. Similar findings were obtained in thyroidectomized rats after T3 application. Cycloheximide treatment did not suppress induction of ARA70 transcription by T3, suggesting that this regulation is direct. A series of deletion mutants of ARA70 promoter fragments in pGL2 plasmid were generated to localize the thyroid hormone response element (TRE). The DNA fragments (-234/-190 or +56/+119) gave 1.55- or 2-fold enhanced promoter activity by T3. Thus, two TRE sites exist in the upstream-regulatory region of ARA70. The TR-TRE interaction was further confirmed with EMSAs. Additionally, ARA70 could interfere with TR/TRE complex formation. Therefore, the data indicated that ARA70 suppresses T3 signaling in a TRE-dependent manner. These experimental results suggest that T3 directly up-regulates ARA70 gene expression. Subsequently, ARA70 negatively regulates T3 signaling.
Collapse
Affiliation(s)
- Pei-Ju Tai
- Department of Biochemistry, Chang-Gung University, and First Cardiovascular Division, Chang Gung Memorial Hospital, 259 Wen-hwa 1 Road, Taoyuan, Taiwan 333, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fava G, Ueno Y, Glaser S, Francis H, Demorrow S, Marucci L, Marzioni M, Benedetti A, Venter J, Vaculin B, Vaculin S, Alpini G. Thyroid hormone inhibits biliary growth in bile duct-ligated rats by PLC/IP(3)/Ca(2+)-dependent downregulation of SRC/ERK1/2. Am J Physiol Cell Physiol 2006; 292:C1467-75. [PMID: 17192280 DOI: 10.1152/ajpcell.00575.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of the thyroid hormone agonist 3,3',5 l-tri-iodothyronine (T3) on cholangiocytes is unknown. We evaluated the in vivo and in vitro effects of T3 on cholangiocyte proliferation of bile duct-ligated (BDL) rats. We assessed the expression of alpha(1)-, alpha(2)-, beta(1)-, and beta(2)-thyroid hormone receptors (THRs) by immunohistochemistry in liver sections from normal and BDL rats. BDL rats were treated with T3 (38.4 mug/day) or vehicle for 1 wk. We evaluated 1) biliary mass and apoptosis in liver sections and 2) proliferation in cholangiocytes. Serum-free T3 levels were measured by chemiluminescence. Purified BDL cholangiocytes were treated with 0.2% BSA or T3 (1 muM) in the absence/presence of U-73122 (PLC inhibitor) or BAPTA/AM (intracellular Ca(2+) chelator) before measurement of PCNA protein expression by immunoblots. The in vitro effects of T3 (1 muM) on 1) cAMP, IP(3), and Ca(2+) levels and 2) the phosphorylation of Src Tyr139 and Tyr530 (that, together, regulate Src activity) and ERK1/2 of BDL cholangiocytes were also evaluated. alpha(1)-, alpha(2)-, beta(1)-, and beta(2)-THRs were expressed by bile ducts of normal and BDL rats. In vivo, T3 decreased cholangiocyte proliferation of BDL rats. In vitro, T3 inhibition of PCNA protein expression was blocked by U-73122 and BAPTA/AM. Furthermore, T3 1) increased IP(3) and Ca(2+) levels and 2) decreased Src and ERK1/2 phosphorylation of BDL cholangiocytes. T3 inhibits cholangiocyte proliferation of BDL rats by PLC/IP(3)/Ca(2+)-dependent decreased phosphorylation of Src/ERK1/2. Activation of the intracellular signals triggered by T3 may modulate the excess of cholangiocyte proliferation in liver diseases.
Collapse
Affiliation(s)
- Giammarco Fava
- Central Texas Veterans Health Care System, Department of Medicine Temple, Texas 76504, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tan JH, Quek SI, Chan WK. Cloning, Genomic Organization, and Expression Analysis of Zebrafish Nuclear Receptor Coactivator, TIF2. Zebrafish 2005; 2:33-46. [DOI: 10.1089/zeb.2005.2.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jee-Hian Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sue-Ing Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Woon-Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
10
|
Abstract
The action of thyroid hormones (thyroxine, T4; triiodothyronine, T3) on brain development and function is gaining renewed interest. It has been known for many years that thyroid hormones are very important in mammalian brain maturation, influencing many aspects related to neural cell migration, differentiation, and signaling. In the last 10 years, genes regulated by thyroid hormones have been identified in the rodent brain, and understanding of the role of thyroid hormone nuclear receptors has been facilitated with the analysis of the phenotype of mutant mice for the different receptor isoforms. The general picture that emerges is that T4 and T3 may enter the brain through specific transporters. T4 is converted to the active hormone, T3, in glial cells, astrocytes, and tanycytes, although the main target cells are neurons and maturing oligodendrocytes. T3, acting through the nuclear receptors, controls the expression of genes involved in myelination, cell differentiation, migration, and signaling. In addition to transducing the T3 signal, the nuclear receptors also have activity in the unliganded state (i.e., as aporeceptors), mainly as repressors of transcription. The physiological meaning of aporreceptor action is not known, but they may play a role in the genesis of the hypothyroid phenotype. Among the questions that remain to be explored in more detail is the role of thyroid hormones and the T3 receptors, both liganded and unliganded, in the fetal brain, especially before onset of fetal thyroid gland function. These questions are relevant for human health and the management of thyroid diseases during pregnancy.
Collapse
Affiliation(s)
- Juan Bernal
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientificas and Universidad Autonoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|