1
|
Diachenko AI, Rodin IA, Krasnova TN, Klychnikov OI, Nefedova LN. The Role of Vitamin K in the Development of Neurodegenerative Diseases. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S57-S70. [PMID: 38621744 DOI: 10.1134/s0006297924140049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 04/17/2024]
Abstract
Neurodegenerative diseases are a growing global health problem with enormous consequences for individuals and society. The most common neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, can be caused by both genetic factors (mutations) and epigenetic changes caused by the environment, in particular, oxidative stress. One of the factors contributing to the development of oxidative stress that has an important effect on the nervous system is vitamin K, which is involved in redox processes. However, its role in cells is ambiguous: accumulation of high concentrations of vitamin K increases the content of reactive oxygen species increases, while small amounts of vitamin K have a protective effect and activate the antioxidant defense systems. The main function of vitamin K is its involvement in the gamma carboxylation of the so-called Gla proteins. Some Gla proteins are expressed in the nervous system and participate in its development. Vitamin K deficiency can lead to a decrease or loss of function of Gla proteins in the nervous system. It is assumed that the level of vitamin K in the body is associated with specific changes involved in the development of dementia and cognitive abilities. Vitamin K also influences the sphingolipid profile in the brain, which also affects cognitive function. The role of vitamin K in the regulation of biochemical processes at the cellular and whole-organism levels has been studied insufficiently. Further research can lead to the discovery of new targets for vitamin K and development of personalized diets and therapies.
Collapse
Affiliation(s)
- Anna I Diachenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatiana N Krasnova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Lidia N Nefedova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Liu YY, Gong TT, Li YZ, Xu HL, Zheng G, Liu FH, Qin X, Xiao Q, Wu QJ, Huang DH, Gao S, Zhao YH. Association of pre-diagnosis specific color groups of fruit and vegetable intake with ovarian cancer survival: results from the ovarian cancer follow-up study (OOPS). Food Funct 2023; 14:8442-8452. [PMID: 37622277 DOI: 10.1039/d3fo01443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Background: The colors of fruits and vegetables (FV) reflect the presence of pigmented bioactive compounds. The evidence of pre-diagnosis specific FV color group intake contributing to ovarian cancer (OC) survival is limited and inconsistent. Methods: A prospective cohort study was conducted between 2015 and 2020 with 700 newly diagnosed OC patients. Pre-diagnosis dietary information was assessed by a validated food frequency questionnaire. We classified FV into five groups based on the color of their edible parts (e.g., green, red/purple, orange/yellow, white, and uncategorized groups). Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of specific color groups of FV before diagnosis with OC survival. Potential multiplicative and additive interactions were assessed. Results: 130 patients died during a median follow-up of 37.57 (interquartile: 24.77-50.20) months. We observed the improved survival with a higher pre-diagnosis intake of total FV (HRtertile 3 vs. tertile 1 = 0.63, 95%CI = 0.40-0.99), total vegetables (HRtertile 3 vs. tertile 1 = 0.57, 95%CI = 0.36-0.90), and red/purple FV (HRtertile 3 vs. tertile 1 = 0.52, 95%CI = 0.33-0.82). In addition, we observed significant dose-response relationships for per standard deviation increment between total vegetable intake (HR = 0.79, 95%CI = 0.65-0.96) and red/purple group intake (HR = 0.77, 95%CI = 0.60-0.99) before diagnosis with OC survival. Additionally, pre-diagnosis green FV intake was borderline associated with better OC survival (HRper standard deviation increment = 0.83; 95%CI = 0.69-1.00). In contrast, we did not observe significant associations between pre-diagnosis intake of total fruits, orange/yellow, white, and uncategorized groups and OC survival. Conclusion: Pre-diagnosis FV intake from various color groups, especially the green and red/purple ones, may improve OC survival. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yu-Yang Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning, 110001, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Role of Vitamin K in Selected Malignant Neoplasms in Women. Nutrients 2022; 14:nu14163401. [PMID: 36014904 PMCID: PMC9413298 DOI: 10.3390/nu14163401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
The main function of vitamin K in the human organism is its activity in the blood clotting cascade. Epidemiological studies suggest that reduced intake of vitamin K may contribute to an increased risk of geriatric diseases such as atherosclerosis, dementia, osteoporosis, and osteoarthritis. A growing number of studies also indicate that vitamin K may be involved not only in preventing the development of certain cancers but it may also support classical cancer chemotherapy. This review article summarizes the results of studies on the anticancer effects of vitamin K on selected female malignancies, i.e., breast, cervical, and ovarian cancer, published over the past 20 years. The promising effects of vitamin K on cancer cells observed so far indicate its great potential, but also the need for expansion of our knowledge in this area by conducting extensive research, including clinical trials.
Collapse
|
4
|
Ausili A, Clemente J, Pons-Belda ÓD, de Godos A, Corbalán-García S, Torrecillas A, Teruel JA, Gomez-Fernández JC. Interaction of Vitamin K 1 and Vitamin K 2 with Dimyristoylphosphatidylcholine and Their Location in the Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1062-1073. [PMID: 31927934 DOI: 10.1021/acs.langmuir.9b03552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vitamin K1 and vitamin K2 play very important biological roles as members of chains of electron transport as antioxidants in membranes and as cofactors for the posttranslational modification of proteins that participate in a number of physiological functions such as coagulation. The interaction of these vitamins with dimyristoylphosphatidylcholine (DMPC) model membranes has been studied by using a biophysical approach. It was observed by using differential scanning calorimetry that both vitamins have a very limited miscibility with DMPC and they form domains rich in the vitamins at high concentrations. Experiments using X-ray diffraction also showed the formation of different phases as a consequence of the inclusion of either vitamin K at temperatures below the phase transition. However, in the fluid state, a homogeneous phase was detected, and a decrease in the thickness of the membrane was accompanied by an increase in the water layer thickness. 2H NMR spectroscopy showed that both vitamins K induced a decrease in the onset of the phase transition, which was bigger for vitamin K1, and both vitamins decreased the order of the membrane as seen through the first moment (M1). 1H NOESY MAS-NMR showed that protons located at the rings or at the beginning of the lateral chain of both vitamins K interacted with a clear preference with protons located in the polar part of DMPC. On the other hand, protons located on the lateral chain have a nearer proximity with the methyl end of the myristoyl chains of DMPC. In agreement with the 2H NMR, ATR-FTIR (attenuated total reflectance Fourier transform infrared spectroscopy) indicated that both vitamins decreased the order parameters of DMPC. It was additionally deduced that the lateral chains of both vitamins were oriented almost in parallel to the myristoyl chains of the phospholipid.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Javier Clemente
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Óscar D Pons-Belda
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Ana de Godos
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Senena Corbalán-García
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Alejandro Torrecillas
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - José A Teruel
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| | - Juan C Gomez-Fernández
- Departamento de Bioquı́mica y Biologı́a Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , Apartado de Correos 4021 , E-30080 Murcia , Spain
| |
Collapse
|
5
|
Zuo W, Zhang X, Chang J, Ma W, Wei J. Bromadiolone poisoning leading to subarachnoid haemorrhage: A case report and review of the literature. J Clin Pharm Ther 2019; 44:958-962. [PMID: 31556967 DOI: 10.1111/jcpt.13005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/11/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Zuo
- Department of Pharmacy Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| | - Xiao Zhang
- Department of Neurosurgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| | - Jian‐Bo Chang
- Department of Neurosurgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| | - Wen‐Bin Ma
- Department of Neurosurgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| | - Jun‐Ji Wei
- Department of Neurosurgery Peking Union Medical College Hospital Peking Union Medical College Chinese Academy of Medical Sciences Beijing China
| |
Collapse
|
6
|
Saputra WD, Aoyama N, Komai M, Shirakawa H. Menaquinone-4 Suppresses Lipopolysaccharide-Induced Inflammation in MG6 Mouse Microglia-Derived Cells by Inhibiting the NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:E2317. [PMID: 31083359 PMCID: PMC6540242 DOI: 10.3390/ijms20092317] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
The overactivation of microglia is known to trigger inflammatory reactions in the central nervous system, which ultimately induce neuroinflammatory disorders including Alzheimer's disease. However, increasing evidence has shown that menaquinone-4 (MK-4), a subtype of vitamin K2, can attenuate inflammation in the peripheral system. Whereas it was also observed at high levels within the brain, its function in this organ has not been well characterized. Therefore, we investigated the effect of MK-4 on microglial activation and clarified the underlying mechanism. Mouse microglia-derived MG6 cells were exposed to lipopolysaccharide (LPS) either with or without MK-4 pretreatment. Cell responses with respect to inflammatory cytokines (Il-1β, Tnf-α, and Il-6) were measured by qRT-PCR. We further analyzed the phosphorylation of TAK1, IKKα/β, and p65 of the NF-κB subunit by Western blotting. We observed that in LPS-induced MG6 cells, MK-4 dose-dependently suppressed the upregulation of inflammatory cytokines at the mRNA level. It also significantly decreased the phosphorylation of p65, but did not affect that TAK1 and IKKα/β. Furthermore, the nuclear translocation of NF-κB in LPS-induced MG6 cells was inhibited by MK-4. These results indicate that MK-4 attenuates microglial inflammation by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Wahyu Dwi Saputra
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Nao Aoyama
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| |
Collapse
|
7
|
Zhang D, Wang A, Feng J, Zhang Q, Liu L, Ren H. Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide‑3 kinase/protein kinase B signaling pathway. Mol Med Rep 2019; 19:4019-4026. [PMID: 30942438 PMCID: PMC6471319 DOI: 10.3892/mmr.2019.10093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 12/03/2022] Open
Abstract
The role of ginsenoside in the prevention of cancer has been well established. Ginsenoside Rg5 is one of the main components isolated from red ginseng, which has been demonstrated to have anti-tumor effects by inhibiting cell proliferation and causing DNA damage. However, the role of ginsenoside Rg5 and its molecular mechanisms remain unclear in human esophageal cancer. In the present study, Rg5 was investigated as a novel drug for the chemotherapy of esophageal cancer in in vitro experiments. Esophageal cancer Eca109 cells were exposed to various concentrations of ginsenoside Rg5 (0–32 µΜ) for 24 h. Subsequent cell proliferation assays demonstrated that treatment with ginsenoside Rg5 resulted in the dose-dependent inhibition of proliferation, while a significant increase in apoptotic rate and increased activities of caspase-3, −8 and −9 were observed. In addition, the mitochondrial membrane potential was decreased and the cytoplasmic free calcium level increased following treatment with ginsenoside Rg5. Furthermore, the expression of B-cell lymphoma 2 and phosphorylated-protein kinase B (p-Akt) decreased. The specific phosphoinositide-3 kinase (PI3K) inhibitor LY294002 promoted this effect, while insulin-like growth factor-1, a specific PI3K activator, inhibited this action. Taken together, the results suggested that ginsenoside Rg5 may have a tumor-suppressive effect on esophageal cancer by promoting apoptosis and may be associated with the downregulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Daoming Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Aifu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jueping Feng
- Department of Oncology, Wuhan Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430035, P.R. China
| | - Qi Zhang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Linlin Liu
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Hui Ren
- Department of General Surgery, The China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
8
|
Kalinin S, Marangoni N, Kowal K, Dey A, Lis K, Brodsky S, van Breemen R, Hauck Z, Ripper R, Rubinstein I, Weinberg G, Feinstein DL. The Long-Lasting Rodenticide Brodifacoum Induces Neuropathology in Adult Male Rats. Toxicol Sci 2018; 159:224-237. [PMID: 28903499 DOI: 10.1093/toxsci/kfx134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Superwarfarins are very long-lasting rodenticides effective in warfarin-resistant rodents at extremely low doses. The consequences of chronic superwarfarin levels in tissues, due to biological half-lives on the order of 20 days, have not been examined. We now characterized the neurological effects of brodifacoum (BDF), one of the most widely used superwarfarins, in adult male Sprague Dawley rats. Dosing curves established the acute oral lethal dose for BDF as 221 ± 14 μg/kg. Measurement of tissue BDF levels showed accumulation throughout the body, including the central nervous system, with levels diminishing over several days. Immunocytochemical staining showed that both astrocyte and microglial activation was increased 4 days after BDF administration, as were levels of carbonylated proteins, and neuronal damage assessed by fluorojade B staining. Direct toxic effects of BDF on neurons and glia were observed using enriched cultures of cerebellar neurons and cortical astrocytes. Proteomic analysis of cerebellar lysates revealed that BDF altered expression of 667 proteins in adult rats. Gene ontology and pathway analysis identified changes in several functional pathways including cell metabolism, mitochondria function, and RNA handling with ribosomal proteins comprising the largest group. In vitro studies using primary astrocytes showed that BDF suppressed de novo protein synthesis. These findings demonstrate that superwarfarin accumulation increases indices of neuroinflammation and neuropathology in adult rodents, suggesting that methods which minimize BDF toxicity may not address delayed neurological sequelae.
Collapse
Affiliation(s)
- Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Natalia Marangoni
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Katarzyna Kowal
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Arunangsu Dey
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612
| | - Kinga Lis
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Sergey Brodsky
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | | | - Zane Hauck
- Department of Medicinal Chemistry and Pharmacognosy
| | - Richard Ripper
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Israel Rubinstein
- Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612.,Department of Medicine, University of Illinois, Chicago, Illinois
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois 60612.,Research and Development, Jesse Brown VA Medical Center, Chicago, Illinois 60612
| |
Collapse
|
9
|
Dasari S, Ali SM, Zheng G, Chen A, Dontaraju VS, Bosland MC, Kajdacsy-Balla A, Munirathinam G. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget 2017; 8:57782-57799. [PMID: 28915711 PMCID: PMC5593683 DOI: 10.18632/oncotarget.17997] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/15/2017] [Indexed: 01/27/2023] Open
Abstract
Epidemiological studies have demonstrated a relationship between cancer incidence and dietary habits. Especially intake of certain essential nutrients like vitamins has been shown to be beneficial in experimental studies and some clinical trials. Vitamin K (VK) is an essential nutrient involved in the blood clotting cascade, and there are considerable experimental data demonstrating its potential anticancer activity in several cancer types including prostate cancer. Previous in vitro and in vivo studies have focused mainly on anti-oxidative effects as the underlying anticancer mechanism of VK. However, recent studies reveal that VK inhibits the growth of cancer cells through other mechanisms, including apoptosis, cell cycle arrest, autophagy, and modulation of various transcription factors such as Myc and Fos. In the present review, we focus on the anticancer effect of dietary VK and its analogs on prostate cancer, with an emphasis on the signaling pathways that are activated following exposure to these compounds. This review also highlights the potential of VK and its derivatives as an adjuvant treatment in combination with other vitamins or with chemotherapeutic drugs. Based on our recent results and a review of the existing literature, we present evidence that VK and its derivatives can potentially be explored as cancer therapy, especially for prostate cancer.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Syed M Ali
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Guoxing Zheng
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | - Aoshuang Chen
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| | | | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL, USA
| |
Collapse
|
10
|
Feinstein DL, Akpa BS, Ayee MA, Boullerne AI, Braun D, Brodsky SV, Gidalevitz D, Hauck Z, Kalinin S, Kowal K, Kuzmenko I, Lis K, Marangoni N, Martynowycz MW, Rubinstein I, van Breemen R, Ware K, Weinberg G. The emerging threat of superwarfarins: history, detection, mechanisms, and countermeasures. Ann N Y Acad Sci 2016; 1374:111-22. [PMID: 27244102 DOI: 10.1111/nyas.13085] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Superwarfarins were developed following the emergence of warfarin resistance in rodents. Compared to warfarin, superwarfarins have much longer half-lives and stronger affinity to vitamin K epoxide reductase and therefore can cause death in warfarin-resistant rodents. By the mid-1970s, the superwarfarins brodifacoum and difenacoum were the most widely used rodenticides throughout the world. Unfortunately, increased use was accompanied by a rise in accidental poisonings, reaching >16,000 per year in the United States. Risk of exposure has become a concern since large quantities, up to hundreds of kilograms of rodent bait, are applied by aerial dispersion over regions with rodent infestations. Reports of intentional use of superwarfarins in civilian and military scenarios raise the specter of larger incidents or mass casualties. Unlike warfarin overdose, for which 1-2 days of treatment with vitamin K is effective, treatment of superwarfarin poisoning with vitamin K is limited by extremely high cost and can require daily treatment for a year or longer. Furthermore, superwarfarins have actions that are independent of their anticoagulant effects, including both vitamin K-dependent and -independent effects, which are not mitigated by vitamin K therapy. In this review, we summarize superwarfarin development, biology and pathophysiology, their threat as weapons, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Manuela A Ayee
- Department of Medicine, University of Illinois, Chicago, Illinois
| | - Anne I Boullerne
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Sergey V Brodsky
- Department of Pathology, the Ohio State University, Columbus, Ohio
| | - David Gidalevitz
- Department of Physics and the Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Zane Hauck
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Kathy Kowal
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Ivan Kuzmenko
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois
| | - Kinga Lis
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Natalia Marangoni
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Michael W Martynowycz
- Department of Physics and the Center for the Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.,X-ray Science Division, Argonne National Laboratory, Lemont, Illinois
| | - Israel Rubinstein
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Department of Medicine, University of Illinois, Chicago, Illinois
| | | | - Kyle Ware
- Department of Pathology, the Ohio State University, Columbus, Ohio
| | - Guy Weinberg
- Department of Anesthesiology, University of Illinois, Chicago, Illinois.,Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Ferland G, Doucet I, Mainville D. Phylloquinone and Menaquinone-4 Tissue Distribution at Different Life Stages in Male and Female Sprague-Dawley Rats Fed Different VK Levels Since Weaning or Subjected to a 40% Calorie Restriction since Adulthood. Nutrients 2016; 8:141. [PMID: 26959054 PMCID: PMC4808870 DOI: 10.3390/nu8030141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Whether through the vitamin K-dependent proteins or the individual K vitamers, vitamin K (VK) is associated with a number of age-related conditions (e.g., osteoporosis, atherosclerosis, insulin resistance, cognitive decline). In light of this, we investigated the influence of lifetime dietary VK exposure on the tissue distribution of phylloquinone (K1) and menaquinone-4 (MK-4) vitamers in 3-, 12- and 22-month-old male and female rats fed different K1 diets since weaning or subjected to a 40% calorie restricted diet (CR) since adulthood. Dietary K1 intakes around the minimal amount required for normal blood coagulation had no significant influence on body weights of both male and female rats at different life stages. Tissue contents of the K vitamers differed according to organs, were generally higher in females than in males, and increased with K1 intake. The MK-4/total VK ratios tended to be increased in old age possibly reflecting an increased physiological demand for MK-4 during aging. Our study also confirmed the greater susceptibility of male rats to low VK containing diet, notably at a younger age. Despite lifelong higher K1 intakes per unit body weight, tissue K1 and MK-4 contents at 20 months were generally lower in CR rats compared to their ad libitum (AL) counterparts. Whether the lower tissue MK-4 content is the result of lower synthesis from K1 or greater tissue utilization remains to be determined. However, the more youthful coagulation profile observed in old CR rats (vs. AL rats) tends to support the notion that CR is associated with greater utilization of the K vitamers to sustain physiological functions.
Collapse
Affiliation(s)
- Guylaine Ferland
- Département de nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | - Isabelle Doucet
- Département de nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- Hôpital de la Cité-de-la-Santé, Laval, QC H7M 3L9, Canada.
| | - Dominique Mainville
- Département de nutrition, Université de Montréal, Montréal, QC H3C 3J7, Canada.
- CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Centre de réadaptation Lucie-Bruneau, Montréal, QC H2H 2N8, Canada.
| |
Collapse
|
12
|
Fredericks WJ, McGarvey T, Wang H, Zheng Y, Fredericks NJ, Yin H, Wang LP, Hsiao W, Lee R, Weiss JS, Nickerson ML, Kruth HS, Rauscher FJ, Malkowicz SB. The TERE1 protein interacts with mitochondrial TBL2: regulation of trans-membrane potential, ROS/RNS and SXR target genes. J Cell Biochem 2013; 114:2170-87. [PMID: 23564352 DOI: 10.1002/jcb.24567] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/02/2013] [Indexed: 12/12/2022]
Abstract
We originally discovered TERE1 as a potential tumor suppressor protein based upon reduced expression in bladder and prostate cancer specimens and growth inhibition of tumor cell lines/xenografts upon ectopic expression. Analysis of TERE1 (aka UBIAD1) has shown it is a prenyltransferase enzyme in the natural bio-synthetic pathways for both vitamin K-2 and COQ10 production and exhibits multiple subcellular localizations including mitochondria, endoplasmic reticulum, and golgi. Vitamin K-2 is involved in mitochondrial electron transport, SXR nuclear hormone receptor signaling and redox cycling: together these functions may form the basis for tumor suppressor function. To gain further insight into mechanisms of growth suppression and enzymatic regulation of TERE1 we isolated TERE1 associated proteins and identified the WD40 repeat, mitochondrial protein TBL2. We examined whether disease specific mutations in TERE1 affected interactions with TBL2 and the role of each protein in altering mitochondrial function, ROS/RNS production and SXR target gene regulation. Biochemical binding assays demonstrated a direct, high affinity interaction between TERE1 and TBL2 proteins; TERE1 was localized to both mitochondrial and non-mitochondrial membranes whereas TBL2 was predominantly mitochondrial; multiple independent single amino acid substitutions in TERE1 which cause a human hereditary corneal disease reduced binding to TBL2 strongly suggesting the relevance of this interaction. Ectopic TERE1 expression elevated mitochondrial trans-membrane potential, oxidative stress, NO production, and activated SXR targets. A TERE1-TBL2 complex likely functions in oxidative/nitrosative stress, lipid metabolism, and SXR signaling pathways in its role as a tumor suppressor.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, Tomaszewski J, Rauscher FJ, Malkowicz SB. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol 2013; 43:638-52. [PMID: 23759948 DOI: 10.3892/ijo.2013.1985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/21/2013] [Indexed: 11/05/2022] Open
Abstract
Current studies of the TERE1 (UBIAD1) protein emphasize its multifactorial influence on the cell, in part due to its broad sub-cellular distribution to mitochondria, endoplasmic reticulum and golgi. However, the profound effects of TERE1 relate to its prenyltransferase activity for synthesis of the bioactive quinones menaquinone and COQ10. Menaquinone (aka, vitamin K-2) serves multiple roles: as a carrier in mitochondrial electron transport, as a ligand for SXR nuclear hormone receptor activation, as a redox modulator, and as an alkylator of cellular targets. We initially described the TERE1 (UBIAD1) protein as a tumor suppressor based upon reduced expression in urological cancer specimens and the inhibition of growth of tumor cell lines/xenografts upon ectopic expression. To extend this potential tumor suppressor role for the TERE1 protein to renal cell carcinoma (RCC), we applied TERE1 immunohistochemistry to a TMA panel of 28 RCC lesions and determined that in 57% of RCC lesions, TERE1 expression was reduced (36%) or absent (21%). Ectopic TERE1 expression caused an 80% decrease in growth of Caki-1 and Caki-2 cell lines, a significantly decreased colony formation, and increased caspase 3/7 activity in a panel of RCC cell lines. Furthermore, TERE1 expression increased mitochondrial oxygen consumption and hydrogen production, oxidative stress and NO production. Based on the elevated cholesterol and altered metabolic phenotype of RCC, we also examined the effects of TERE1 and the interacting protein TBL2 on cellular cholesterol. Ectopic TERE1 or TBL2 expression in Caki-1, Caki-2 and HEK 293 cells reduced cholesterol by up to 40%. RT-PCR analysis determined that TERE1 activated several SXR targets known to regulate lipid metabolism, consistent with predictions based on its role in menaquinone synthesis. Loss of TERE1 may contribute to the altered lipid metabolic phenotype associated with progression in RCC via an uncoupling of ROS/RNS and SXR signaling from apoptosis by elevation of cholesterol.
Collapse
Affiliation(s)
- William J Fredericks
- Division of Urology, Department of Surgery, University of Pennsylvania and Veterans Affairs Medical Center Philadelphia, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ito A, Shirakawa H, Takumi N, Minegishi Y, Ohashi A, Howlader ZH, Ohsaki Y, Sato T, Goto T, Komai M. Menaquinone-4 enhances testosterone production in rats and testis-derived tumor cells. Lipids Health Dis 2011; 10:158. [PMID: 21914161 PMCID: PMC3180407 DOI: 10.1186/1476-511x-10-158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/13/2011] [Indexed: 12/04/2022] Open
Abstract
Background Vitamin K is essential for the posttranslational modification of various Gla proteins. Although it is widespread in several organs, including the testis, the function of vitamin K in these organs is not well characterized. In this study, we investigated the function of vitamin K in the testis and analyzed its role in steroidogenesis. Methods Eight-week-old male Wistar rats were fed a diet supplemented with menaquinone-4 (MK-4, 75 mg/kg diet), one of the predominant K2 vitamins present in the testis, for 5 weeks. In vivo testosterone levels of the rats' plasma and testes were measured by enzyme-linked immunosorbent assay, and in vitro testosterone levels of testis-derived tumor cells (I-10 cells) maintained in Ham's F-10 medium with 10% fetal bovine serum were measured following treatment with MK-4 (0 to 100 μM) at several time points. Testosterone and cellular protein levels were analyzed with respect to their effects on steroidogenesis. Results Testosterone levels in the plasma and testes of MK-4-fed rats were significantly increased compared to those of control rats, with no obvious differences in plasma luteinizing hormone levels. Secreted testosterone levels from I-10 cells were elevated by MK-4, but not by vitamin K1, in a dose-dependent manner independent of cAMP treatment. Western blot analysis revealed that expression of CYP11A, the rate-limiting enzyme in steroidogenesis, and phosphorylation levels of protein kinase A (PKA) and the cAMP response element-binding protein were all stimulated by the presence of MK-4. Enhancement of testosterone production was inhibited by H89, a specific inhibitor of PKA, but not by warfarin, an inhibitor of γ-glutamylcarboxylation. Conclusions MK-4 stimulates testosterone production in rats and testis-derived tumor cells via activation of PKA. MK-4 may be involved in steroidogenesis in the testis, and its supplementation could reverse the downregulation of testosterone production in elders.
Collapse
Affiliation(s)
- Asagi Ito
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takumi N, Shirakawa H, Ohsaki Y, Ito A, Watanabe T, Giriwono PE, Sato T, Komai M. Dietary vitamin K alleviates the reduction in testosterone production induced by lipopolysaccharide administration in rat testis. Food Funct 2011; 2:406-11. [DOI: 10.1039/c1fo10058k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Im YS, Chung Y, Won DY, Kwon SH, Kim HR, Lee DG, Kim SR, Park KD, Lee HK, Choi JK. Apoptotic effect of Naphthoquinone derivatives on HCT116 colon cancer cells. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0145-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|