1
|
Oliveira AL, Sousa EC, Silva NA, Sousa N, Salgado AJ, Reis RL. Peripheral mineralization of a 3D biodegradable tubular construct as a way to enhance guidance stabilization in spinal cord injury regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2821-2830. [PMID: 22903600 DOI: 10.1007/s10856-012-4741-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/02/2012] [Indexed: 06/01/2023]
Abstract
Spinal cord injuries (SCI) present a major challenge to therapeutic development due to its complexity. Combinatorial approaches using biodegradable polymers that can simultaneously provide a tissue scaffold, a cell vehicle, and a reservoir for sustained drug delivery have shown very promising results. In our previous studies we have developed a novel hybrid system consisting of starch/poly-e-caprolactone (SPCL) semi-rigid tubular porous structure, based on a rapid prototyping technology, filled by a gellan gum hydrogel concentric core for the regeneration within spinal-cord injury sites. In the present work we intend to promote enhanced osteointegration on these systems by pre-mineralizing specifically the external surfaces of the SPCL tubular structures, though a biomimetic strategy, using a sodium silicate gel as nucleating agent. The idea is to create two different cell environments to promote axonal regeneration in the interior of the constructs while inducing osteogenic activity on its external surface. By using a Teflon cylinder to isolate the interior of the scaffold, it was possible to observe the formation of a bone-like poorly crystalline carbonated apatite layer continuously formed only in the external side of the tubular structure. This biomimetic layer was able to support the adhesion of Bone Marrow Mesenchymal Stem Cells, which have gone under cytoskeleton reorganization in the first hours of culture when compared to cells cultured on uncoated scaffolds. This strategy can be a useful route for locally stimulate bone tissue regeneration and facilitating early bone ingrowth.
Collapse
Affiliation(s)
- A L Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Taipas, Guimarães, Portugal.
| | | | | | | | | | | |
Collapse
|
2
|
Becker D, McDonald JW. Approaches to repairing the damaged spinal cord: overview. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:445-61. [PMID: 23098730 DOI: 10.1016/b978-0-444-52137-8.00028-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affecting young people during the most productive period of their lives, spinal cord injury (SCI) is a devastating problem for modern society. In the past, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. In this chapter, we provide an overview of various repair strategies for the injured spinal cord. Special attention will be paid to strategies that promote spontaneous regeneration, including functional electrical stimulation, cell replacement, neuroprotection, and remyelination. The concept that limited rebuilding can provide a disproportionate improvement in quality of life is emphasized throughout. New surgical procedures, pharmacological treatments, and functional neuromuscular stimulation methods have evolved over the last decades and can improve functional outcomes after spinal cord injury; however, limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci 2011; 31:9332-44. [PMID: 21697383 DOI: 10.1523/jneurosci.0983-11.2011] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chondroitinase ABC (ChABC) in combination with rehabilitation has been shown to promote functional recovery in acute spinal cord injury. For clinical use, the optimal treatment window is concurrent with the beginning of rehabilitation, usually 2-4 weeks after injury. We show that ChABC is effective when given 4 weeks after injury combined with rehabilitation. After C4 dorsal spinal cord injury, rats received no treatment for 4 weeks. They then received either ChABC or penicillinase control treatment followed by hour-long daily rehabilitation specific for skilled paw reaching. Animals that received both ChABC and task-specific rehabilitation showed the greatest recovery in skilled paw reaching, approaching similar levels to animals that were treated at the time of injury. There was also a modest increase in skilled paw reaching ability in animals receiving task-specific rehabilitation alone. Animals treated with ChABC and task-specific rehabilitation also showed improvement in ladder and beam walking. ChABC increased sprouting of the corticospinal tract, and these sprouts had more vGlut1(+ve) presynaptic boutons than controls. Animals that received rehabilitation showed an increase in perineuronal net number and staining intensity. Our results indicate that ChABC treatment opens a window of opportunity in chronic spinal cord lesions, allowing rehabilitation to improve functional recovery.
Collapse
|
4
|
Salazar DL, Uchida N, Hamers FPT, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 2010; 5:e12272. [PMID: 20806064 PMCID: PMC2923623 DOI: 10.1371/journal.pone.0012272] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/28/2010] [Indexed: 12/20/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133+ and CD24−/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. Methods and Findings hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. Conclusions The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the “window of opportunity” for intervention.
Collapse
Affiliation(s)
- Desirée L. Salazar
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | | | - Brian J. Cummings
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
| | - Aileen J. Anderson
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Physical Medicine and Rehabilitation, University of California Irvine, Irvine, California United States of America
- * E-mail:
| |
Collapse
|
5
|
Zurita M, Vaquero J. Bone marrow stromal cells can achieve cure of chronic paraplegic rats: Functional and morphological outcome one year after transplantation. Neurosci Lett 2006; 402:51-6. [PMID: 16713677 DOI: 10.1016/j.neulet.2006.03.069] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 03/20/2006] [Accepted: 03/30/2006] [Indexed: 11/18/2022]
Abstract
Chronic paraplegia resulting from severe spinal cord injury (SCI) is considered to be an irreversible condition. Nevertheless, recent studies utilizing adult stem cells appear to offer promise in the treatment of this and other neurological diseases. Here, we show that progressive functional motor recovery is achieved over the course of the year following the administration of bone marrow stromal cells (BMSC) in traumatic central spinal cord cavities of adult rats with chronic paraplegia. At this time, functional recovery is almost complete and associated with evident nervous tissue regeneration in the previously injured spinal cord.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit of the Mapfre-Medicine Foundation, Neurosurgical Service, Puerta de Hierro Hospital, Autonomus University, San Martin de Porres 4, 28035 Madrid, Spain
| | | |
Collapse
|
6
|
Vaquero J, Zurita M, Oya S, Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: Systemic or local administration? Neurosci Lett 2006; 398:129-34. [PMID: 16423458 DOI: 10.1016/j.neulet.2005.12.072] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/24/2005] [Indexed: 11/17/2022]
Abstract
Recent studies showed the therapeutic effect of bone marrow stromal cells (BMSC) after spinal cord injury (SCI). In the present study, we compared the effect of systemic and local administration of BMSC in adult Wistar rats suffering chronic paraplegia as consequence of severe SCI. Adult Wistar rats were subjected to a weight-drop impact causing complete paraplegia, and 3 months later, all the animals remained without signs of functional recovery. At this moment, 3 x 10(6) BMSC were injected intravenously (n: 20) or into traumatic spinal cord cavity (n: 20). Outcome was evaluated until sacrifice of the animals, 6 months later, using the Basso-Beattie-Bresnehan (BBB) score, the cold spray test, and measuring the thigh perimeter. After sacrifice, samples of spinal cord tissue were studied histologically. The results showed that intravenous administration of BMSC achieves some degree of functional recovery when compared to controls. Nevertheless, administration of BMSC into postraumatic spinal cord cavity promotes a clear and progressive functional recovery, significantly superior to the recovery obtained by means of the intravenous administration. This effect is associated to long-term presence of BMSC in the injured spinal cord tissue, with images suggesting neuronal differentiation and spinal cord reconstruction.
Collapse
Affiliation(s)
- Jesús Vaquero
- Neuroscience Research Unit of the Mapfre-Medicine Foundation, Neurosurgical and Experimental Surgery Services, Puerta de Hierro Hospital, Autonomous University, San Martín de Porres, 4, 28035 Madrid, Spain.
| | | | | | | |
Collapse
|
7
|
Zurita M, Vaquero J, Oya S, Miguel M. Schwann cells induce neuronal differentiation of bone marrow stromal cells. Neuroreport 2005; 16:505-8. [PMID: 15770160 DOI: 10.1097/00001756-200504040-00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone marrow stromal cells are multipotent stem cells that have the potential to differentiate into bone, cartilage, fat and muscle. Recently, bone marrow stromal cells have been shown to have the capacity to differentiate into neurons under specific experimental conditions, using chemical factors. We now describe how bone marrow stromal cells can be induced to differentiate into neuron-like cells when they are co-cultured with Schwann cells. When compared with chemical differentiation, expression of neuronal differentiation markers begins later, but one week after beginning co-culture, most bone marrow stromal cells showed a typical neuronal morphology. Our present findings support the transdifferentiation of bone marrow stromal cells, and the potential utility of these cells for the treatment of degenerative and acquired disorders of the nervous system.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit of the Mapfre-Medicine Foundation, Puerta de Hierro Hospital, Autonomous University, San Martin de Porres, 4, 28035 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Ramer LM, Ramer MS, Steeves JD. Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 2005; 43:134-61. [PMID: 15672094 DOI: 10.1038/sj.sc.3101715] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we review mechanisms and molecules that necessitate protection and oppose axonal growth in the injured spinal cord, representing not only a cast of villains but also a company of therapeutic targets, many of which have yet to be fully exploited. We next discuss recent progress in the fields of bridging, overcoming conduction block and rehabilitation after spinal cord injury (SCI), where several treatments in each category have entered the spotlight, and some are being tested clinically. Finally, studies that combine treatments targeting different aspects of SCI are reviewed. Although experiments applying some treatments in combination have been completed, auditions for each part in the much-sought combination therapy are ongoing, and performers must demonstrate robust anatomical regeneration and/or significant return of function in animal models before being considered for a lead role.
Collapse
Affiliation(s)
- L M Ramer
- ICORD (International Collaboration on Repair Discoveries), The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
9
|
Schouten JW, Fulp CT, Royo NC, Saatman KE, Watson DJ, Snyder EY, Trojanowski JQ, Prockop DJ, Maas AIR, McIntosh TK. A Review and Rationale for the Use of Cellular Transplantation as a Therapeutic Strategy for Traumatic Brain Injury. J Neurotrauma 2004; 21:1501-38. [PMID: 15684646 DOI: 10.1089/neu.2004.21.1501] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Experimental research during the past decade has greatly increased our understanding of the pathophysiology of traumatic brain injury (TBI) and allowed us to develop neuroprotective pharmacological therapies. Encouraging results of experimental pharmacological interventions, however, have not been translated into successful clinical trials, to date. Traumatic brain injury is now believed to be a progressive degenerative disease characterized by cell loss. The limited capacity for self-repair of the brain suggests that functional recovery following TBI is likely to require cellular transplantation of exogenous cells to replace those lost to trauma. Recent advances in central nervous system transplantation techniques involve technical and experimental refinements and the analysis of the feasibility and efficacy of transplantation of a range of stem cells, progenitor cells and postmitotic cells. Cellular transplantation has begun to be evaluated in several models of experimental TBI, with promising results. The following is a compendium of these new and exciting studies, including a critical discussion of the rationale and caveats associated with cellular transplantation techniques in experimental TBI research. Further refinements in future research are likely to improve results from transplantation-based treatments for TBI.
Collapse
Affiliation(s)
- Joost W Schouten
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fraidakis MJ, Spenger C, Olson L. Partial recovery after treatment of chronic paraplegia in rat. Exp Neurol 2004; 188:33-42. [PMID: 15191800 DOI: 10.1016/j.expneurol.2004.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 01/30/2004] [Indexed: 11/15/2022]
Abstract
While acute spinal cord injury has been the object of intensive research, chronic spinal cord injury has received less attention although most clinical cases of spinal cord injury become chronic. We attempted to surgically "repair" chronic and acute spinal cord injury in a complete transection rat model using a multiple peripheral nerve grafting protocol. The lesion extent was assessed by magnetic resonance imaging (MRI) before the repair procedure. Rats were treated immediately after injury or at 2, 4, or 8 months postinjury. Standard behavioral methods were used to evaluate functional recovery. Two novel tests, the Bipedal Test and the Head-scratch test, were also employed to evaluate hindpaw positioning, interlimb coordination, and stepping rhythmicity, and to indicate rostrocaudal pathway regeneration. MRI helped guide the treatment procedure that was applied to animals with chronic injury. Treated animals demonstrated significant motor recovery. Axonal regeneration resultant to treatment was demonstrated histologically. The results suggest that not only acute but also chronic total paraplegia can be reversed to a moderate degree in rats with regard to hindlimb motor function.
Collapse
Affiliation(s)
- Matthew J Fraidakis
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
11
|
Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 2004; 15:1105-8. [PMID: 15129154 DOI: 10.1097/00001756-200405190-00004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous reports showed the therapeutic effect of transplants of bone marrow stromal cells (BMSC) after incomplete traumatic spinal cord lesions. We studied the effect of this form of therapy in chronically paraplegic Wistar rats due to severe spinal cord injury (SCI). Rats were subjected to weight-drop impact causing paraplegia, and BMSC or phosphate buffered saline (PBS) was injected into spinal cord 3 months after injury. Functional outcome was measured using the Basso-Beattie-Bresnehan score until sacrifice of the animals, 4 weeks after transplantation. At this time, samples of spinal cord tissue were studied histologically. The results showed a clear and progressive functional recovery of the animals treated with BMSC transplantation, compared to controls. Grafted BMSC survived into spinal cord tissue, forming cell bridges within the traumatic centromedullary cavity. In this tissue, cells expressing neuronal and astroglial markers can be seen, together with a marked ependymal proliferation, showing nestin-positivity. These findings suggest the utility of BMSC transplantation in chronically established paraplegia.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit of the Mapfre-Medicine Foundation, Neurosurgical Service, Puerta de Hierro Hospital, Department of Surgery, Autonomous University, Madrid, Spain
| | | |
Collapse
|
12
|
Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci 2003. [PMID: 14561871 DOI: 10.1523/jneurosci.23-28-09428.2003] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult rats were trained to use their forepaws to retrieve a piece of food. Destruction of the dorsal corticospinal tract on one side at the level of the first cervical segment abolished the use of the ipsilateral forepaw for retrieval for at least 6 months after operation. Where a variable amount of the corticospinal tract was spared, there was a proportionate persistence of retrieval. In lesioned rats that had shown no retrieval for 8 weeks after operation, a suspension of olfactory ensheathing cells was injected into the lesion site. Starting between 1 and 3 weeks after transplantation, all rats with transplants bridging the lesion site resumed retrieval by the ipsilateral forepaw. Biotin dextran anterograde tracing shows regenerating corticospinal axons crossing the bridge, traveling caudally for approximately 10 mm in the distal part of the corticospinal tract and forming terminal arborizations in the spinal gray matter. Functional recovery can occur when only approximately 1% of the corticospinal tract axons are present.
Collapse
|
13
|
Resnick DK, Cechvala CF, Yan Y, Witwer BP, Sun D, Zhang S. Adult olfactory ensheathing cell transplantation for acute spinal cord injury. J Neurotrauma 2003; 20:279-85. [PMID: 12820682 DOI: 10.1089/089771503321532860] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cellular transplantation strategies have been explored for the treatment of spinal cord injury. In particular, olfactory nerve ensheathing cell (OEC) transplantation has been reported to improve functional outcome following injury. We investigated the effect of OEC transplantation using cells derived from adult animals on the restoration of function following a contusion injury to the spinal cord. The NYU impactor was used to create a moderate to severe spinal cord injury in 17 rats. Hoescht stained cultured OECs derived from adult rats (n = 7) or culture medium alone (n = 10) were injected into the injury site immediately following injury. Histological and functional outcomes were measured using immunohistochemistry and the Basso, Beattie, and Bresnahan (BBB) scale. All animals transplanted with OECs were found to have surviving Hoescht positive cells within the spinal cord when sacrificed 6 weeks following injury. Immunohistochemical staining of the explanted cords revealed that the surviving cells stained positively for nerve growth factor receptor. Functional outcomes were not different between the transplanted and control groups. OECs transplanted immediately following a contusion injury to the spinal cord survive during the first 6 weeks following injury. These cells do not appear to influence functional outcome during the first 6 weeks following injury. Additional studies are required in order to definitively determine the utility of this type of cellular transplantation for spinal cord injury.
Collapse
Affiliation(s)
- Daniel K Resnick
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
BACKGROUND By affecting young people during the most productive period of their lives, spinal cord injury is a devastating problem for modern society. A decade ago, treating SCI seemed frustrating and hopeless because of the tremendous morbidity and mortality, life-shattering impact, and limited therapeutic options associated with the condition. Today, however, an understanding of the underlying pathophysiological mechanisms, the development of neuroprotective interventions, and progress toward regenerative interventions are increasing hope for functional restoration. REVIEW SUMMARY This study addresses the present understanding of SCI, including the etiology, pathophysiology, treatment, and scientific advances. The discussion of treatment options includes a critical review of high-dose methylprednisolone and GM-1 ganglioside therapy. The concept that limited rebuilding can provide a disproportionate improvement in quality of life is emphasized throughout. CONCLUSIONS New surgical procedures, pharmacologic treatments, and functional neuromuscular stimulation methods have evolved over the last decades that can improve functional outcomes after spinal cord injury, but limiting secondary injury remains the primary goal. Tissue replacement strategies, including the use of embryonic stem cells, become an important tool and can restore function in animal models. Controlled clinical trials are now required to confirm these observations. The ultimate goal is to harness the body's own potential to replace lost central nervous system cells by activation of endogenous progenitor cell repair mechanisms.
Collapse
Affiliation(s)
- Daniel Becker
- Department of Neurology, Spinal Cord Injury Neuro-Rehabilitation Section, Restorative Treatment and Research Program, Washington University School of Medicine, St Louis, Missouri 63108, USA
| | | | | |
Collapse
|
15
|
Lu D, Li Y, Mahmood A, Wang L, Rafiq T, Chopp M. Neural and marrow-derived stromal cell sphere transplantation in a rat model of traumatic brain injury. J Neurosurg 2002; 97:935-40. [PMID: 12405384 DOI: 10.3171/jns.2002.97.4.0935] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECT This study was designed to investigate the effect of treatment with a novel composite material consisting of embryonic neurospheres and bone marrow-derived stromal cell spheres (NMSCSs) in a rat model of traumatic brain injury (TBI). METHODS The NMSCS composite was injected into the TBI contusion site 24 hours after injury, and all rats were killed on Day 14 after the transplantation. The Rotarod test and the neurological severity score were used to evaluate neurological function. The transplanted NMSCS was analyzed in recipient rat brains by using histological staining and laser scanning confocal microscopy. The lesion volumes in the brains were also calculated using computer image analysis. CONCLUSIONS Rats that received NMSCS transplants had reduced lesion volume and showed improved motor and neurological function when compared with control groups 14 days after the treatment. These results suggest that transplantation of this novel biological material (NMSCS) may be useful in the treatment of TBI.
Collapse
Affiliation(s)
- Dunyue Lu
- Department of Neurosurgery, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | | | | | |
Collapse
|