1
|
Peró M, Casani L, Castells-Sala C, Pérez ML, Moga Naranjo E, Juan-Babot O, Alserawan De Lamo L, López-Chicón P, Vilarrodona Serrat A, Badimon L, Porta Roda O. Rabbit as an animal model for the study of biological grafts in pelvic floor dysfunctions. Sci Rep 2021; 11:10545. [PMID: 34006889 PMCID: PMC8131625 DOI: 10.1038/s41598-021-89698-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/22/2021] [Indexed: 11/28/2022] Open
Abstract
The aims of this study were to evaluate the feasibility of the New Zealand White (NZW) rabbit for studying implanted biomaterials in pelvic reconstructive surgery; and to compare the occurrence of graft-related complications of a commercial polypropylene (PP) mesh and new developed human dermal matrix implanted at vaginal and abdominal level. 20 white female NZW rabbits were randomized into two groups, experimental group (human acellular dermal matrices-hADM-graft) and control group (commercial PP graft). In each animal, grafts were surgically implanted subcutaneously in the abdominal wall and in the vaginal submucosa layer for 180 days. The graft segments were then removed and the surgical and clinical results were analyzed. The main surgical challenges during graft implantation were: (a) an adequate vaginal exposure while maintaining the integrity of the vaginal mucosa layer; (b) to keep aseptic conditions; (c) to locate and dissect the breast vein abdominal surgery; and (d) to withdraw blood samples from the ear artery. The most abnormal findings during the explant surgery were found in the PP group (33% of vaginal mesh extrusion) in comparison with the hADM group (0% of vaginal graft extrusion), p = 0.015. Interestingly, macroscopic observation showed that the integration of the vaginal grafts was more common in the hADM group (40%) than in the PP group, in which the vaginal mesh was identified in 100% of the animals (p = 0.014). The NZW rabbit is a good model for assessing materials to be used as grafts for pelvic reconstructive surgery and vaginal surgery. Animals are easily managed during the procedures, including surgical intervention and vaginal mucosa approach. Additionally, hADM is associated with fewer clinical complications, as well as better macroscopic tissue integration, compared to PP mesh.
Collapse
Affiliation(s)
- Marta Peró
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Carrer Sant Quintí, 89, 08041, Barcelona, Spain.
| | - Laura Casani
- Research Institute of the Hospital de Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Cristina Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Maria Luisa Pérez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Esther Moga Naranjo
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Juan-Babot
- Research Institute of the Hospital de Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Leticia Alserawan De Lamo
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patricia López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Anna Vilarrodona Serrat
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain.,Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Lina Badimon
- Research Institute of the Hospital de Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Oriol Porta Roda
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Carrer Sant Quintí, 89, 08041, Barcelona, Spain
| |
Collapse
|
2
|
Powers SA, Burleson LK, Hannan JL. Managing female pelvic floor disorders: a medical device review and appraisal. Interface Focus 2019; 9:20190014. [PMID: 31263534 DOI: 10.1098/rsfs.2019.0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Pelvic floor disorders (PFDs) will affect most women during their lifetime. Sequelae such as pelvic organ prolapse, stress urinary incontinence, chronic pain and dyspareunia significantly impact overall quality of life. Interventions to manage or eliminate symptoms from PFDs aim to restore support of the pelvic floor. Pessaries have been used to mechanically counteract PFDs for thousands of years, but do not offer a cure. By contrast, surgically implanted grafts or mesh offer patients a more permanent resolution but have been in wide use within the pelvis for less than 30 years. In this perspective review, we provide an overview of the main theories underpinning PFD pathogenesis and the animal models used to investigate it. We highlight the clinical outcomes of mesh and grafts before exploring studies performed to elucidate tissue level effects and bioengineering considerations. Considering recent turmoil surrounding transvaginal mesh, the role of pessaries, an impermanent method, is examined as a means to address patients with PFDs.
Collapse
Affiliation(s)
- Shelby A Powers
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| | - Lindsey K Burleson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Mailstop 634, Greenville, NC 27834-4354, USA
| |
Collapse
|
3
|
Osteoinduction within BMP-2 transduced muscle tissue fragments with and without a fascia layer: implications for bone tissue engineering. Gene Ther 2018; 26:16-28. [PMID: 30368527 DOI: 10.1038/s41434-018-0047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Abstract
Bone can be engineered in vivo by implantation of gene-activated muscle tissue fragments. This expedited approach may be further improved by use of muscle tissue with attached fascia. The aim of this in vitro study was to provide an in depth comparison of the osteogenic differentiation capacity of muscle alone and muscle with fascia after BMP-2 transduction. Skeletal muscle tissue from rats was cut into pieces with and without a fascia layer on the surface. Adenoviral BMP-2 or GFP vectors were used for transduction. Osteogenic differentiation within the tissue fragments was evaluated and compared by qRT-PCR, alizarin red S staining, histomorphometry and immunohistology. Transduction efficiency and level of transgene expression were higher for muscle with fascia than muscle alone. Transduction with BMP-2 led to a significant upregulation of bone marker genes, proteins, and calcium deposition in both groups. Interestingly, histological evaluation revealed that osteoinduction did not occur within the fascia layer itself. The upregulation of bone marker genes in muscle with fascia was significantly lower after 2 weeks but similar after 4 weeks of in vitro culture in comparison to muscle alone. The fascia layer led to higher transduction efficiency and enhanced BMP-2 expression. Despite fascia's lower capacity for osteogenic differentiation, muscle implants may benefit from the fascia layer by the improved ability to deliver BMP-2. The presented data may contribute to the development of a novel, cost-effective, single-surgery bone engineering technology and encourage the evaluation of the osteoregenerative potential of muscle with fascia in an animal model.
Collapse
|
4
|
Halfwerk FR, Rouwkema J, Gossen JA, Grandjean JG. Supercritical carbon dioxide decellularised pericardium: Mechanical and structural characterisation for applications in cardio-thoracic surgery. J Mech Behav Biomed Mater 2017; 77:400-407. [PMID: 29020662 DOI: 10.1016/j.jmbbm.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/11/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Many biomaterials are used in cardio-thoracic surgery with good short-term results. However, calcification, dehiscence, and formation of scar tissue are reported. The aim of this research is to characterise decellularised pericardium after supercritical carbon dioxide (scCO2) processing as an alternative biological material for uses in cardio-thoracic surgery. METHODS Porcine and bovine pericardium were decellularised using scCO2. Mechanical properties such as tensile strength, elastic modulus, fracture toughness and suture retention strength were determined. Ultrastructure was visualised using Scanning Electron Microscopy. Water uptake and swelling was experimentally determined. Commercially available glutaraldehyde treated bovine pericardium was used as gold standard for comparison. RESULTS scCO2 decellularised porcine (and bovine pericardium) maintained their tensile strength compared to untreated native pericardium (13.3 ± 2.4MPa vs 14.0 ± 4.1MPa, p = 0.73). Tensile strength of glutaraldehyde treated pericardium was significantly higher compared to untreated pericardium (19.4 ± 7.3MPa vs 10.2 ± 2.2MPa, p = 0.02). Suture retention strength of scCO2 treated pericardium was significantly higher than glutaraldehyde treated pericardium (p = 0.01). We found no anisotropy of scCO2 or glutaraldehyde treated pericardium based on a trouser tear test. Ultrastructure was uncompromised in scCO2 treated pericardium, while glutaraldehyde treated pericardium showed deterioration of extracellular matrix. CONCLUSION scCO2 processing preserves initial mechanical and structural properties of porcine and bovine pericardium, while glutaraldehyde processing damages the extracellular matrix of bovine pericardium. Decellularisation of tissue using scCO2 might give long-term solutions for cardio-thoracic surgery without compromising initial good mechanical properties.
Collapse
Affiliation(s)
- Frank R Halfwerk
- Department of Cardio-Thoracic Surgery, Thoraxcentrum Twente, Medisch Spectrum Twente Hospital, PO Box 50000, 7500 KA Enschede, The Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Jan A Gossen
- European Medical Contract Manufacturing, 6545 CH Nijmegen, The Netherlands
| | - Jan G Grandjean
- Department of Cardio-Thoracic Surgery, Thoraxcentrum Twente, Medisch Spectrum Twente Hospital, PO Box 50000, 7500 KA Enschede, The Netherlands; Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
5
|
Gigliobianco G, Roman Regueros S, Osman NI, Bissoli J, Bullock AJ, Chapple CR, MacNeil S. Biomaterials for pelvic floor reconstructive surgery: how can we do better? BIOMED RESEARCH INTERNATIONAL 2015; 2015:968087. [PMID: 25977927 PMCID: PMC4419215 DOI: 10.1155/2015/968087] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/19/2014] [Indexed: 12/21/2022]
Abstract
Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are major health issues that detrimentally impact the quality of life of millions of women worldwide. Surgical repair is an effective and durable treatment for both conditions. Over the past two decades there has been a trend to enforce or reinforce repairs with synthetic and biological materials. The determinants of surgical outcome are many, encompassing the physical and mechanical properties of the material used, and individual immune responses, as well surgical and constitutional factors. Of the current biomaterials in use none represents an ideal. Biomaterials that induce limited inflammatory response followed by constructive remodelling appear to have more long term success than biomaterials that induce chronic inflammation, fibrosis and encapsulation. In this review we draw upon published animal and human studies to characterize the changes biomaterials undergo after implantation and the typical host responses, placing these in the context of clinical outcomes.
Collapse
Affiliation(s)
| | | | - Nadir I. Osman
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
- Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | - Julio Bissoli
- Hospital das Clínicas da Faculdade de Medicina, Universidade de Sao Paulo, 05410-020 São Paulo, Brazil
| | - Anthony J. Bullock
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Sheila MacNeil
- Material Science Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
6
|
Morley R, Nethercliffe J. Minimally invasive surgical techniques for stress incontinence surgery. Best Pract Res Clin Obstet Gynaecol 2005; 19:925-40. [PMID: 16275092 DOI: 10.1016/j.bpobgyn.2005.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Minimally invasive techniques for surgical correction of stress incontinence date back to the late 1950s. Since that time there have been many developments to attempt to emulate the good results achieved by open surgery with less surgical morbidity. Needle suspensions have attempted to reposition the bladder neck in the same way as a colposuspension. However, although numerous variations have been described, they do not have the long-term outcomes of colposuspension. These variations, their complications and long-term outcome are discussed. Sling surgery, especially the tension-free vaginal tape (TVT), has probably had the largest impact on incontinence surgery in recent years, offering a procedure with low morbidity and, thus far in the medium term, outcomes comparable with those of more invasive procedures. This has led the TVT procedure to become the most common procedure performed worldwide for stress incontinence. With the benefit of lessons learnt from the use of synthetic material in the genitourinary tract, some worries remain with regard to the long-term complications of TVT. Other non-synthetic material should not be forgotten, and the advantages and disadvantages of various sling materials are compared. Injectables have an established place in the treatment of sphincter deficiency, though long-term results are poor compared to those of other procedures. Various materials used and the technique for their injection are discussed.
Collapse
Affiliation(s)
- Roland Morley
- Kingston University Hospital, Galsworthy Road, Surrey KTZ 7CB, UK.
| | | |
Collapse
|
7
|
Adeeb SM, Zec ML, Thornton GM, Frank CB, Shrive NG. A Novel Application of the Principles of Linear Elastic Fracture Mechanics (LEFM) to the Fatigue Behavior of Tendon Tissue. J Biomech Eng 2004; 126:641-50. [PMID: 15648817 DOI: 10.1115/1.1800556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background: Experiments on the fatigue of tendons have shown that cyclic loading induces failure at stresses lower than the ultimate tensile strength (UTS) of the tendons. The number of cycles to failure Nf has been shown to be dependent upon the magnitude of the applied cyclic stress. Method of approach: Utilizing data collected by Schechtman (1995), we demonstrate that the principles of Linear Elastic Fracture Mechanics (LEFM) can be used to predict the fatigue behavior of tendons under cyclic loading for maximum stress levels that are higher than 10% of the ultimate tensile strength (UTS) of the tendon (the experimental results at 10% UTS did not fit with our equations). Conclusions: LEFM and other FM approaches may prove to be very valuable in advancing our understanding of damage accumulation in soft connective tissues.
Collapse
Affiliation(s)
- Samer M Adeeb
- McCaig Center for Joint Injury and Arthritis Research, University of Calgary, Calgary, Canada
| | | | | | | | | |
Collapse
|
8
|
Dora CD, Dimarco DS, Zobitz ME, Elliott DS. Time Dependent Variations in Biomechanical Properties of Cadaveric Fascia, Porcine Dermis, Porcine Small Intestine Submucosa, Polypropylene Mesh and Autologous Fascia in the Rabbit Model: Implications for Sling Surgery. J Urol 2004; 171:1970-3. [PMID: 15076323 DOI: 10.1097/01.ju.0000121377.61788.ad] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We investigated time dependent variations in tensile strength, stiffness, shrinkage and distortion in 6 materials commonly used for transvaginal anti-incontinence surgery. MATERIALS AND METHODS A total of 15 rabbits were randomized into 3 survival groups (2, 6 and 12 weeks, respectively). Each rabbit had human cadaveric fascia, porcine dermis, porcine small intestine submucosa, polypropylene mesh and autologous fascia implanted on the anterior rectus fascia. At harvest tensiometry and image analysis were performed on each sling. Results were compared to baseline for each sling type and the percent decrease from baseline was compared among sling types. RESULTS Each type of human cadaveric fascia and porcine allografts showed a marked decrease (60% to 89%) in tensile strength and stiffness from baseline. Polypropylene mesh and autologous fascia did not differ in tensile strength from baseline. Polypropylene mesh increased in stiffness from baseline. Autologous fascia and small intestinal submucosa demonstrated a 41% and 50% decrease in surface area, respectively, at 12 weeks. CONCLUSIONS To our knowledge the relative contribution of biomechanical properties of sling material to the success of anti-incontinence surgery is unknown. However, rapid loss of tensile strength and stiffness in porcine and cadaveric materials may contribute to the early re-emergence of symptoms following successful sling surgery. The results of this study add scientific validity to the increasing use of synthetics in anti-incontinence surgery. Urologists selecting a sling material should be aware of its time dependent biomechanical fate relative to other sling materials.
Collapse
Affiliation(s)
- Chandler D Dora
- Department of Urology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|