1
|
Dong A, Lu Y, Lu B. Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice. J Cancer 2016; 7:1441-51. [PMID: 27471560 PMCID: PMC4964128 DOI: 10.7150/jca.15556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinoma is the most lethal gynecological malignancy worldwide. Recent advance in genomic/epigenomic researches will impact on our prevention, detection and intervention on ovarian carcinoma. Detection of germline mutations in BRCA1/BRCA2, mismatch repair genes, and other genes in the homologous recombination/DNA repair pathway propelled the genetic surveillance of most hereditary ovarian carcinomas. Germline or somatic mutations in SMARCA4 in familial and sporadic small cell carcinoma of the ovary, hypercalcemia type, lead to our recognition on this rare aggressive tumor as a new entity of the atypical teratoma/rhaboid tumor family. Genome-wide association studies have identified many genetic variants that will contribute to the evaluation of ovarian carcinoma risk and prognostic prediction. Whole exome sequencing and whole genome sequencing discovered rare mutations in other drive mutations except p53, but demonstrated the presence of high genomic heterogeneity and adaptability in the genetic evolution of high grade ovarian serous carcinomas that occurs in cancer progression and chemotherapy. Gene mutations, copy number aberrations and DNA methylations provided promising biomarkers for the detection, diagnosis, prognosis, therapy response and targets of ovarian cancer. These findings underscore the necessity to translate these potential biomarkers into clinical practice.
Collapse
Affiliation(s)
- Anliang Dong
- 1. Women's Hospital & Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yan Lu
- 1. Women's Hospital & Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Bingjian Lu
- 2. Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
2
|
Bai H, Cao D, Yang J, Li M, Zhang Z, Shen K. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy. J Cell Mol Med 2016; 20:581-93. [PMID: 26800494 PMCID: PMC5125785 DOI: 10.1111/jcmm.12771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghui Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ganapathi MK, Jones WD, Sehouli J, Michener CM, Braicu IE, Norris EJ, Biscotti CV, Vaziri SAJ, Ganapathi RN. Expression profile of COL2A1 and the pseudogene SLC6A10P predicts tumor recurrence in high-grade serous ovarian cancer. Int J Cancer 2015; 138:679-88. [PMID: 26311224 DOI: 10.1002/ijc.29815] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/21/2015] [Accepted: 08/03/2015] [Indexed: 02/04/2023]
Abstract
Tumor recurrence, following initial response to adjuvant chemotherapy, is a major problem in women with high-grade serous ovarian cancer (HGSOC). Microarray analysis of primary tumors has identified genes that may be useful in risk stratification/overall survival, but are of limited value in predicting the >70% rate for tumor recurrence. In this study, we performed RNA-Seq analysis of primary and recurrent HGSOC to first identify unique differentially expressed genes. From this dataset, we selected 21 archetypical coding genes and one noncoding RNA, based on statistically significant differences in their expression profile between tumors, for validation by qPCR in a larger cohort of 110 ovarian tumors (71 primary and 39 recurrent) and for testing association of specific genes with time-to-recurrence (TTR). Kaplan-Meier tests revealed that high expression of collagen type II, alpha 1 (COL2A1) was associated with delayed TTR (HR = 0.47, 95% CI: 0.27-0.82, p = 0.008), whereas low expression of the pseudogene, solute carrier family 6 member 10 (SLC6A10P), was associated with longer TTR (HR = 0.53, 95% CI: 0.30-0.93, p = 0.027). Notably, TTR was significantly delayed for tumors that simultaneously highly expressed COL2A1 and lowly expressed SLC6A10P (HR = 0.21, 95% CI: 0.082-0.54, p = 0.0011), an estimated median of 95 months as compared to an estimated median of 16 months for subjects expressing other levels of COL2A1 and SLC6A10P. Thus, evaluating expression levels of COL2A1 and SLC6A10P at primary surgery could be beneficial for clinically managing recurrence of HGSOC.
Collapse
Affiliation(s)
- Mahrukh K Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | - Wendell D Jones
- Genomics and Bioinformatics Group, Expression Analysis-Quintiles, Durham, NC
| | - Jalid Sehouli
- Department of Gynecology, Charité Medical University of Berlin, Berlin, Germany
| | - Chad M Michener
- Women's Health and Obstetrics/Gynecology Institute, Cleveland Clinic, Cleveland, OH
| | - Ioana E Braicu
- Department of Gynecology, Charité Medical University of Berlin, Berlin, Germany
| | - Eric J Norris
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| | | | | | - Ram N Ganapathi
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC
| |
Collapse
|
4
|
Chene G, Tchirkov A, Pierre-Eymard E, Dauplat J, Raoelfils I, Cayre A, Watkin E, Vago P, Penault-Llorca F. Early telomere shortening and genomic instability in tubo-ovarian preneoplastic lesions. Clin Cancer Res 2013; 19:2873-82. [PMID: 23589176 DOI: 10.1158/1078-0432.ccr-12-3947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic instability plays an important role in ovarian carcinogenesis. We investigated the level of telomere shortening and genomic instability in early and preinvasive stages of ovarian cancer, serous tubal intraepithelial carcinoma (STIC), and tubo-ovarian dysplasia (TOD). EXPERIMENTAL DESIGN Fifty-one TOD from prophylactic salpingo-oophorectomies with BRCA1 or 2 mutation, 12 STICs, 53 tubo-ovarian high-grade serous carcinoma, and 36 noncancerous controls were laser capture microdissected from formalin-fixed, paraffin-embedded sections, analyzed by comparative genomic hybridization (array CGH) and for telomere length (using quantitative real-time PCR based on the Cawthon's method). TOD and STICs were defined by morphologic scores and immunohistochemical expressions of p53, Ki67, and γH2AX. RESULTS TOD showed marked telomere shortening compared with noncancerous controls (P < 10(-7)). STICs had even shorter telomeres than TOD (P = 0.0008). Ovarian carcinoma had shorter telomeres than controls but longer than STICs and dysplasia. In TOD, telomeres were significantly shorter in those with BRCA1 mutation than in those with BRCA2 mutation (P = 0.005). In addition, γH2AX expression in TOD and STIC groups with short telomeres was significantly increased (P < 10(-7)). In dysplastic epithelium, we found subtle genomic alterations, in contrast to more important genomic imbalances in STICs. The total number of genetic alterations was the highest in ovarian cancers. CONCLUSIONS These findings suggest that genetic instability occurs in early stages of ovarian tumorigenesis. STICs and noninvasive dysplasia are likely an important step in early serous ovarian neoplasia.
Collapse
Affiliation(s)
- Gautier Chene
- Department of Histopathology, Centre Jean Perrin, ERTICA Research Team, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Molecular portraits of intratumoral heterogeneity in human ovarian cancer. Cancer Lett 2011; 307:62-71. [PMID: 21481528 DOI: 10.1016/j.canlet.2011.03.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/16/2011] [Accepted: 03/18/2011] [Indexed: 12/29/2022]
Abstract
One of the most common characteristic profiles of cancer is intratumoral heterogeneity (ITH). We aimed to clarify the molecular profiles and biological significance of ITH with relation to cancer stem cell (CSC). We analyzed five primary cultured clones generated from different spatial zones, front and rear zone, of a fresh-frozen ovarian tumor tissue, performing ATP-CRA, conventional RT-PCR, side population (SP) analysis, flow cytometry immunophenotyping, and cell proliferation assays. We also carried out array CGH and Ingenuity Pathways Analysis (IPA) between SP and non-SP (NSP) cells. Clones from tumor front zone showed phenotypically and genetically distinct subpopulations with relatively higher SP proportions, CD24(+) and CD117(+) expression, and chemotherapeutic resistance. We demonstrate that phenotype of SP cells in heterogeneous clones of human ovarian cancer was closely related to CD24(+), CD117(+), and combined CD117(+)/CD24(+) fractions. Chromosomal alterations in SP cells relative to NSP cells were closely related to the novel core networks of cancer stem cell-like cells (CSCs), such as cycle checkpoint regulation, notch, PTEN, wnt/β-catenin, PI3K/AKT, integrin, and cytokine and chemokine signaling. ITH could arise from clonal diversity closely related to CSC-like molecules, as evidenced by accumulated genetic, transcriptional and gene products alterations in SP.
Collapse
|
6
|
Theurillat JP, Metzler SC, Henzi N, Djouder N, Helbling M, Zimmermann AK, Jacob F, Soltermann A, Caduff R, Heinzelmann-Schwarz V, Moch H, Krek W. URI is an oncogene amplified in ovarian cancer cells and is required for their survival. Cancer Cell 2011; 19:317-32. [PMID: 21397856 DOI: 10.1016/j.ccr.2011.01.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 11/09/2010] [Accepted: 01/07/2011] [Indexed: 11/25/2022]
Abstract
Abrogation of negative feedback control represents a fundamental requirement for aberrantly activated signaling pathways to promote malignant transformation and resistance to therapy. Here we identify URI, which encodes a mitochondrial inhibitor of PP1γ and PP1γ-mediated feedback inhibition of S6K1-BAD survival signaling, as an oncogene amplified and overexpressed in ovarian cancer cell lines and human ovarian carcinomas. URI is an "addicting" oncogene selectively required for the survival of ovarian cancer cells with increased URI copy number. By constitutively detaining PP1γ in inactive complexes, URI sustains S6K1 survival signaling under growth factor-limiting conditions and mediates resistance of cells to cisplatin. Thus, oncogenic activation of URI defines an important mechanism for activating mitochondrial S6K1-BAD signaling and promoting cell survival through disabling PP1γ-dependent negative feedback inhibition.
Collapse
|
7
|
Husseinzadeh N. Status of tumor markers in epithelial ovarian cancer has there been any progress? A review. Gynecol Oncol 2010; 120:152-7. [PMID: 20934205 DOI: 10.1016/j.ygyno.2010.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim is to present an overview of tumor markers other than CA-125 that have been proposed for use in the diagnosis of epithelial ovarian cancer and explore molecular studies which have been used to identify genomic and proteomic changes associated with this malignancy for possible future development of more sensitive tumor markers. METHODS A Medline search was conducted to review published articles from American and European studies from 1990 to 2010, related to tumor markers for ovarian cancer. Different methods such as genomic, proteomic and transcriptional profiling were used to identify new tumor markers for clinical use. RESULTS A few of the newer tumor markers alone have demonstrated equal or slightly higher sensitivity to CA-125. Improved sensitivity and specificity have been reported using these new markers combined with CA-125. CONCLUSION Addition of new tumor markers as a compliment to CA-125 were associated with higher sensitivity and detection rates than either marker alone. However, the low prevalence of ovarian cancer necessitates a higher level of sensitivity and specificity that has still not been achieved if these biomarkers are used for diagnosis and monitoring the disease progress as a result of low positive predictive value.
Collapse
Affiliation(s)
- Nader Husseinzadeh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Cincinnati, College of Medicine, Albert Sabin Way, Cincinnati, OH 45267-0526, USA.
| |
Collapse
|
8
|
Tominaga EI, Tsuda H, Arao T, Nishimura S, Takano M, Kataoka F, Nomura H, Hirasawa A, Aoki D, Nishio K. Amplification of GNAS may be an independent, qualitative, and reproducible biomarker to predict progression-free survival in epithelial ovarian cancer. Gynecol Oncol 2010; 118:160-6. [PMID: 20537689 DOI: 10.1016/j.ygyno.2010.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 01/12/2023]
Abstract
OBJECTIVES The purpose of this study was to identify genes that predict progression-free survival (PFS) in advanced epithelial ovarian cancer (aEOC) receiving standard therapy. METHODS We performed microarray analysis on laser microdissected aEOC cells. All cases received staging laparotomy and adjuvant chemotherapy (carboplatin+paclitaxel) as primary therapy. RESULTS Microarray analysis identified 50 genes differentially expressed between tumors of patients with no evidence of disease (NED) or evidence of disease (ED) (p<0.001). Six genes (13%) were located at 8q24, and 9 genes (19.6%), at 20q11-13. The ratio of selected gene set/analyzed gene set in chromosomes 8 and 20 are significantly higher than that in other chromosome regions (6/606 vs. 32/13656, p=0.01) and (12/383 vs. 32/13656, p=1.3 x 10(-)(16)). We speculate that the abnormal chromosomal distribution is due to genomic alteration and that these genes may play an important role in aEOC and choose GNAS (GNAS complex locus, NM_000516) on 20q13 based on the p value and fold change. Genomic PCR of aEOC cells also showed that amplification of GNAS was significantly correlated with unfavorable PFS (p=0.011). Real-time quantitative RT-PCR analysis of independent samples revealed that high mRNA expression levels of the GNAS genes, located at chromosome 20q13, was significantly unfavorable indicators of progression-free survival (PFS). Finally, GNAS amplification was an independent prognostic factor for PFS. CONCLUSIONS Our results suggest that GNAS gene amplification may be an independent, qualitative, and reproducible biomarker of PFS in aEOC.
Collapse
Affiliation(s)
- Ei-ichiro Tominaga
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, 35 Shinanomachi, Shinjyuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Genetic alterations detected by comparative genomic hybridization and recurrence rate in epithelial ovarian carcinoma. ACTA ACUST UNITED AC 2009; 190:66-70. [PMID: 19380021 DOI: 10.1016/j.cancergencyto.2008.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/08/2008] [Accepted: 11/14/2008] [Indexed: 12/19/2022]
Abstract
To assess the putative correlation between comparative genomic hybridization (CGH)-detectable genetic alterations in epithelial ovarian cancer and disease recurrence, conventional CGH was performed on 45 epithelial ovarian cancers: 26 tumors from sporadic, BRCA mutation noncarriers and 11 and 8 tumors from BRCA1 and BRCA2 mutation carriers, respectively. Relevant clinical data, including histology, grade, stage, size of residual tumor, recurrence, and survival, were obtained from outpatient and inpatient charts. Among the 45 cases, the most common regions involving gain of DNA copy number were 3q (n = 23; 51%), 8q (n = 21; 47%), and 1q (n = 14; 31%), and the most common regions with loss were 19 and 22 at 9 cases (20%) each, followed by 5q (n = 6; 13%). In multivariate analysis, the total number of genetic alterations was not associated with risk of recurrence, but gain in 5p was associated with a higher risk of recurrence (hazard ratio HR = 6.06, P = 0.0399), and gain in 1p as well as loss in 5q were associated with a significant decrease in recurrence (HR = 0.08, P = 0.0079, and HR = 0.10, P = 0.0143, respectively). Recurrence rate in patients with epithelial ovarian cancer is seemingly associated with specific genetic alterations detected by CGH, but the specific genes involved and the implications of these findings await further studies.
Collapse
|
10
|
Large-scale genomic analysis of ovarian carcinomas. Mol Oncol 2008; 3:157-64. [PMID: 19383377 DOI: 10.1016/j.molonc.2008.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 01/31/2023] Open
Abstract
Epithelial ovarian cancers are typified by frequent genomic aberrations that have been difficult to unravel. Recently, high-resolution array technologies have provided the first glimpse of the remarkable complexity of these aberrations with some ovarian cancers containing hundreds of copy number breakpoints, micro-deletions and amplifications. Many of these alterations contain cancer-related genes suggesting that the majority is disease-associated and not just the product of random genomic instability. Future developments such as next-generation sequencing and integrated analysis of data from multiple array platforms on large numbers of samples are poised to revolutionize our understanding of this complex disease.
Collapse
|
11
|
Preferential involvement of chromosome 11 as add(11)(p15) in ovarian cancer: is it a common cytogenetic abnormality in cancer? Cancer Lett 2007; 258:262-7. [PMID: 17945413 DOI: 10.1016/j.canlet.2007.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 09/08/2007] [Accepted: 09/11/2007] [Indexed: 12/16/2022]
Abstract
Ovarian cancer represents the leading cause of death among patients with gynecological cancer. The genetic changes underlying the development and progression of ovarian cancer are not well defined. Identification of chromosomal aberrations is a useful strategy toward understanding tumorigenesis and specific chromosomal associations. Studying 15 ovarian cancer cases by conventional cytogenetic techniques, we previously reported that 11p15 was the most consistent chromosomal breakpoint involved. The aim of the present study was to investigate the presence of structural changes of chromosome 11 in ovarian cancer. Ten cases of ovarian cancer were cytogenetically studied by direct culture of tumour cells and G-banding technique. Eight cases presented structural aberrations of chromosome 11 with 11p15 involved as add(11)(p15) in all 8 cases and 11q23 involved as add(11)(q23) in 3 cases. Findings of the present study further support the possible role of chromosomal abnormalities add(11)(p15) and add(11)(q23) in ovarian cancer. These aberrations may result either in loss of genetic material from 11p and 11q, respectively, or in specific genes alterations. It is necessary, these chromosomal regions to be further investigated at molecular and clinical level. Improving the molecular understanding of ovarian cancer development and progression could facilitate the detection of specific tumor subtypes and contribute also to novel strategies for the management of ovarian cancer patients.
Collapse
|
12
|
Gorringe KL, Jacobs S, Thompson ER, Sridhar A, Qiu W, Choong DYH, Campbell IG. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin Cancer Res 2007; 13:4731-9. [PMID: 17699850 DOI: 10.1158/1078-0432.ccr-07-0502] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic changes in sporadic ovarian cancer are relatively poorly characterized compared with other tumor types. We have evaluated the use of high-resolution whole genome arrays for the genetic profiling of epithelial ovarian cancer. EXPERIMENTAL DESIGN We have evaluated 31 primary ovarian cancers and matched normal DNA for loss of heterozygosity and copy number alterations using 500 K single nucleotide polymorphism arrays. RESULTS In addition to identifying the expected large-scale genomic copy number changes, >380 small regions of copy number gain or loss (<500 kb) were identified among the 31 tumors, including 33 regions of high-level gain (>5 copies) and 27 homozygous deletions. The existence of such a high frequency of small regions exhibiting copy number alterations had not been previously suspected because earlier genomic array platforms lacked comparable resolution. Interestingly, many of these regions harbor known cancer genes. For example, one tumor harbored a 350-kb high-level amplification centered on FGFR1 and three tumors showed regions of homozygous loss 109 to 216 kb in size involving the RB1 tumor suppressor gene only. CONCLUSIONS These data suggest that novel cancer genes may be located within the other identified small regions of copy number alteration. Analysis of the number of copy number breakpoints and the distribution of the small regions of copy number change indicate high levels of structural chromosomal genetic instability in ovarian cancer.
Collapse
Affiliation(s)
- Kylie L Gorringe
- Victorian Breast Cancer Research Consortium Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim SW, Kim JW, Kim YT, Kim JH, Kim S, Yoon BS, Nam EJ, Kim HY. Analysis of chromosomal changes in serous ovarian carcinoma using high-resolution array comparative genomic hybridization: Potential predictive markers of chemoresistant disease. Genes Chromosomes Cancer 2007; 46:1-9. [PMID: 17044060 DOI: 10.1002/gcc.20384] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mechanism of drug resistance in cancer is multifactorial, and the accumulation of multiple genetic changes may lead to drug-resistant phenotypes. This study sought to determine characteristic genetic changes in chemoresistant serous ovarian carcinomas using high-resolution array comparative genomic hybridization (aCGH), and identified genomic aberrations that could be used as predictive markers of chemoresistant disease. Seventeen primary ovarian tumors from optimally debulked stage IIIc serous ovarian carcinoma patients were analyzed using aCGH. Ten patients had chemoresistant disease (progression within 12 months of initial chemotherapy), whereas seven patients had chemosensitive disease (no recurrence for more than 36 months). Receiver operating characteristics curve analysis was used to select chromosomal aberrations that could help distinguish chemoresistant disease from chemosensitive disease. In 17 tumors, frequent increases in DNA copy number were seen on 1p36.33, 3q26.2, 8q24.3, 10q26.3, 12p11.21, 20q13.33, and 21q22.3, and frequent losses were observed on 4p12, 5q13.2, 7q11.21, 8p23.1, 14q32.33, Xq13.3, and Xq21.31. The gains on 5p15.33 and 14q11.2, and losses on 4q34.2, 4q35.2, 5q15, 8p21.1, 8p21.2, 11p15.5, 13q14.13, 13q14.2, 13q32.1, 13q34, 16q22.2, 17p11.2, 17p12, and 22q12.3 were more frequent in chemoresistant disease. The losses on 13q32.1 and 8p21.1 had the largest areas under the curve (AUC 0.90 and 0.85, respectively). The most reliable combination of chromosomal aberrations for detecting chemoresistant disease was the loss on 13q32.1 and 8p21.1 (AUC 0.950). Our findings suggest that these chromosomal aberrations are potential predictive markers of chemoresistant disease in patients with serous ovarian carcinomas.
Collapse
Affiliation(s)
- Sang Wun Kim
- Department of Obstetrics and Gynecology, Women's Cancer Clinic, Institute of Women's Life Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Panani AD, Roussos C. Non-random structural chromosomal changes in ovarian cancer: i(5p) a novel recurrent abnormality. Cancer Lett 2006; 235:130-5. [PMID: 15927360 DOI: 10.1016/j.canlet.2005.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Revised: 04/08/2005] [Accepted: 04/11/2005] [Indexed: 01/02/2023]
Abstract
Ovarian cancer represents the leading cause of death among patients with gynecological cancer. The genetic changes underlying the initiation and progression of ovarian cancer have not been well defined. However, non-random structural chromosomal changes have been identified with common chromosomal breakpoints. We have studied cytogenetically 15 cases of ovarian adenocarcinomas by a direct culture of cancer cells and a G-banding technique investigating the presence of recurrent structural aberrations with common chromosomal breakpoints. Among very complex structural rearrangements found, we could recognize recurrent structural aberrations involving according to frequency chromosomal regions 3p13-14, 11p15, 19q13, 3q21, 11q23, 11q10, 1p13, 1p36, and 17q24-25. Isochromosomes i(5p), i(17q), i(8q) and i(11q) were also observed. Isochromosome i(5p), rarely reported in ovarian cancer was found in seven cases suggesting that it may be a novel recurrent abnormality. Translocations t(1;11), t(3;19), t(3;17), t(7;11) and t(11;17) were also identified. Conventional cytogenetics continues to be valuable detecting the presence of non-random chromosomal breakpoints and facilitating the identification of genes implicated in tumorigenesis.
Collapse
Affiliation(s)
- Anna D Panani
- Critical Care Department, Research Unit, Medical School of Athens University, Evangelismos Hospital, Ipsilandou 45-47, Athens 10676, Greece.
| | | |
Collapse
|
15
|
Byrne JA, Balleine RL, Schoenberg Fejzo M, Mercieca J, Chiew YE, Livnat Y, St Heaps L, Peters GB, Byth K, Karlan BY, Slamon DJ, Harnett P, Defazio A. Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. Int J Cancer 2005; 117:1049-54. [PMID: 15986428 DOI: 10.1002/ijc.21250] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recurrent chromosome 8q gain in ovarian carcinoma is likely to reflect the existence of multiple target loci, as the separate gain of chromosome bands 8q21 and 8q24 has been reported in independent studies. Since tumor protein D52 (TPD52) has been identified as a chromosome 8q21 amplification target in breast and prostate carcinoma, we compared TPD52 expression in normal ovarian epithelium (n = 9), benign serous adenomas (n = 11), serous borderline tumors (n = 6) and invasive carcinomas of the major histologic subtypes (n = 57) using immunohistochemistry. These analyses revealed that all normal ovarian epithelium samples and benign serous tumors were predominantly TPD52-negative, whereas TPD52 was overexpressed in most (44/57; 77%) ovarian carcinomas regardless of histologic subtype. TPD52 subcellular localization was predominantly cytoplasmic, although nuclear localization was also frequently observed in mucinous and clear cell carcinomas. In an independent cohort of stage III serous carcinomas (n = 18), we also directly compared in situ TPD52 expression using immunohistochemistry and TPD52 copy number using interphase FISH analyses. This revealed that TPD52 dosage and TPD52 expression were significantly positively correlated. TPD52 therefore represents a novel molecular marker in ovarian cancer, which is broadly expressed across the different histologic subtypes and whose upregulation frequently reflects increased TPD52 copy number.
Collapse
Affiliation(s)
- Jennifer A Byrne
- Molecular Oncology Laboratory, Oncology Research Unit, The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chariyalertsak S, Khuhaprema T, Bhudisawasdi V, Sripa B, Wongkham S, Petmitr S. Novel DNA amplification on chromosomes 2p25.3 and 7q11.23 in cholangiocarcinoma identified by arbitrarily primed polymerase chain reaction. J Cancer Res Clin Oncol 2005; 131:821-8. [PMID: 16180024 DOI: 10.1007/s00432-005-0031-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/22/2005] [Indexed: 12/26/2022]
Abstract
PURPOSE To detect and characterize amplified DNA sequences in cholangiocarcinoma (CCA). PATIENTS AND METHODS We extracted DNA from tumor and corresponding normal tissues of 30 patients with CCA and amplified with 30 random ten-mer arbitrary primers by the arbitrarily primed polymerase chain reaction (AP-PCR) technique. RESULTS Our results showed gains of genomic sequences at high frequency. Using the AX-11 arbitrary primer, we determined an amplified DNA fragment occurred frequently in the tumors analyzed. The DNA fragment was isolated and identified as two sequences mapped to chromosomes 2p25.3 and 7q11.23. Specific primers were designed employing these sequences and used for detecting amplification by real-time quantitative PCR. The amplification of the DNA sequences on chromosomes 2p25.3 and 7q11.23 was detected in 10 (33%) and 6 (20%) cases, respectively. Thirteen (43%) cases showed amplification on both or one of the chromosomes. In addition, amplification of the DNA on chromosome 2p25.3 was predominantly observed in poorly differentiated tumors. CONCLUSIONS Our findings suggest that the novel amplified DNA on chromosomal regions at 2p25.3 and 7q11.23 might be involved in the development and progression of CCA.
Collapse
Affiliation(s)
- S Chariyalertsak
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Rajvithi Road, Bangkok, 10400, Thailand
| | | | | | | | | | | |
Collapse
|
17
|
Lapierre JM, Tachdjian G. Detection of chromosomal abnormalities by comparative genomic hybridization. Curr Opin Obstet Gynecol 2005; 17:171-7. [PMID: 15758611 DOI: 10.1097/01.gco.0000162188.99219.04] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Comparative genomic hybridization (CGH) is a modified in-situ hybridization technique. In this type of analysis, two differentially labeled genomic DNAs (study and reference) are cohybridized to normal metaphase spreads or to microarray. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Thus, CGH allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. RECENT FINDINGS Since its development, comparative genomic hybridization has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. It is also a powerful tool for detection and identification of unbalanced chromosomal abnormalities in prenatal, postnatal and preimplantation diagnostics. SUMMARY The development of comparative genomic hybridization and increase in resolution analysis by using the microarray-based technique offer new information on chromosomal pathologies and thus better management of patients.
Collapse
Affiliation(s)
- Jean-Michel Lapierre
- Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker-Enfants Malades, Paris bService de Biologie du Développement et de la Reproduction-Cytogénétique, Hôpital Antoine Béclère, Clamart, France.
| | | |
Collapse
|
18
|
Dorritie K, Montagna C, Difilippantonio MJ, Ried T. Advanced molecular cytogenetics in human and mouse. Expert Rev Mol Diagn 2004; 4:663-76. [PMID: 15347260 PMCID: PMC4729310 DOI: 10.1586/14737159.4.5.663] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorescence in situ hybridization, spectral karyotyping, multiplex fluorescence in situ hybridization, comparative genomic hybridization, and more recently array comparative genomic hybridization, represent advancements in the field of molecular cytogenetics. The application of these techniques for the analysis of specimens from humans, or mouse models of human diseases, enables one to reliably identify and characterize complex chromosomal rearrangements resulting in alterations of the genome. As each of these techniques has advantages and limitations, a comprehensive analysis of cytogenetic aberrations can be accomplished through the utilization of a combination approach. As such, analyses of specific tumor types have proven invaluable in the identification of new tumor-specific chromosomal aberrations and imbalances (aneuploidy), as well as regions containing tumor-specific gene targets. Application of these techniques has already improved the classification of tumors into distinct categories, with the hope that this will lead to more tailored treatment strategies. These techniques, in particular the application of tumor-specific fluorescence in situ hybridization probes to interphase nuclei, are also powerful tools for the early identification of premalignant lesions.
Collapse
Affiliation(s)
| | - Cristina Montagna
- Genetics Branch, Center for CancerResearch, NCI/NIH, Bldg. 50, Rm. 1408, 50 South Drive, Bethesda, MD 20892–0913, USA, Tel: +1 301 435 3986, Fax: +1 301 402 1204
| | - Michael J. Difilippantonio
- Genetics Branch, Center for CancerResearch, NCI/NIH, Bldg. 50, Rm. 1408, 50 South Drive, Bethesda, MD 20892–8010, USA
| | - Thomas Ried
- Author for correspondence, Genetics Branch, Center for Cancer Research, NCI/NIH, Bldg. 50, Rm. 1408, 50 South Drive, Bethesda, MD, 20892–8010, USA, Tel.: +1 301 594 3118, Fax: +1 301 435 4428,
| |
Collapse
|
19
|
van Eijk R, Oosting J, Sieben N, van Wezel T, Cleton-Jansen AM. Visualization of regional gene expression biases by microarray data sorting. Biotechniques 2004; 36:592-4, 596. [PMID: 15088376 DOI: 10.2144/04364bm05] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, Barrett JC, Birrer MJ. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene 2004; 23:8065-77. [PMID: 15361855 DOI: 10.1038/sj.onc.1207959] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ovarian cancer is the most lethal type of gynecologic cancer in the Western world. The high case fatality rate is due in part because most ovarian cancer patients present with advanced stage disease which is essentially incurable. In order to obtain a whole genome assessment of aberrant gene expression in advanced ovarian cancer, we used oligonucleotide microarrays comprising over 40,000 features to profile 37 advanced stage papillary serous primary carcinomas. We identified 1191 genes that were significantly (P < 0.001) differentially regulated between the ovarian cancer specimens and normal ovarian surface epithelium. The microarray data were validated using real time RT-PCR on 14 randomly selected differentially regulated genes. The list of differentially expressed genes includes ones that are involved in cell growth, differentiation, adhesion, apoptosis and migration. In addition, numerous genes whose function remains to be elucidated were also identified. The microarray data were imported into PathwayAssist software to identify signaling pathways involved in ovarian cancer tumorigenesis. Based on our expression results, a signaling pathway associated with tumor cell migration, spread and invasion was identified as being activated in advanced ovarian cancer. The data generated in this study represent a comprehensive list of genes aberrantly expressed in serous papillary ovarian adenocarcinoma and may be useful for the identification of potentially new and novel markers and therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Howard Donninger
- Department of Cell and Cancer Biology, National Cancer Institute, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|