1
|
Antunes DF, Stettler PR, Taborsky B. The role of serotonin in modulating social competence in a cooperatively breeding fish. Behav Brain Res 2024; 461:114819. [PMID: 38141783 DOI: 10.1016/j.bbr.2023.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Behavioural interactions between conspecifics rely on the appreciation of social cues, which is achieved through biochemical switching of pre-existing neurophysiological pathways. Serotonin is one of the major neurotransmitters in the central nervous system responsible for the modulation of physiological and behavioural traits, in particular social behaviour. The relative importance of serotonin in modulating optimal social responses to the available social information (i.e., social competence) is yet unknown. Here we investigate how serotonin and the serotonin 1 A receptor (5-HT1A) modulate social competence in a competitive context. In the cooperatively breeding cichlid Neolamprologus pulcher, we pharmacologically manipulated the serotonin availability and 5-HT1A activity to test their effects on social behaviours during an asymmetric contest between the owner of a defended territory containing a shelter and an intruder devoid of a territory. In this contest, the adequate response by the intruders, the focal individuals in our study, is to show submissive behaviour in order to avoid eviction from the vicinity of the shelter. While the serotonin enhancer Fluoxetine did not affect the frequency of submission towards territory owners, reducing serotonin by a low dosage of 4-Chloro-DL-phenylalanine (PCPA) increased submissive behaviour. Furthermore, threat displays towards territory owners were reduced at high dosages of Fluoxetine and also at the lowest dosage of PCPA. 5-HT1A activation increased threat displays by intruders, indicating that this receptor may not be involved in regulating social competence. We conclude that serotonin, but not its receptor 5-HT1A plays an important role in the regulation of social competence.
Collapse
Affiliation(s)
- Diogo F Antunes
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland; Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse III, CNRS, IRD, UPS, 118 route de Narbonne, F-31062 Toulouse, France.
| | - Pia R Stettler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland
| |
Collapse
|
2
|
Saldanha BC, Silva PA, Maximino C, Cardoso GC, Trigo S, Soares MC. The role of serotonin in modulating common waxbill behaviour. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is a monoaminergic neurotransmitter that is known to influence behaviour in various animal species. Its actions, however, are complex and not well-understood yet. Here, we tested whether and how two 5-HT receptor agonists and a 5-HT receptor antagonist influence behaviour in common waxbills (Estrilda astrild), focusing on aggression, movement and feeding. We applied acute administration of either 8-OH-DPAT (a 5-HT1A receptor agonist), fluoxetine (a selective serotonin reuptake inhibitor; SSRI) or WAY 100,635 (a 5-HT1A receptor antagonist), and then quantified behaviour in the context of competition for food. Waxbills treated with the SSRI fluoxetine showed an overall decrease of aggressive behaviour, activity and feeding, while we found no significant effects of treatment with the other serotonergic enhancer (8-OH-DPAT) or with the antagonist WAY 100,635. Since both 8-OH-DPAT and WAY 100,635 act mainly on 5-HT1A receptor pathways, while fluoxetine more generally affects 5-HT pathways, our results suggest that receptors other than 5-HT1A are important for serotonergic modulation of waxbill behaviour.
Significance statement
The serotonergic system is of interest for current behavioural research due to its influence on a range of behaviours, including aggression, affiliative behaviour, feeding and locomotion in various species. There are, however, numerous discrepancies regarding the behavioural effects of serotonin across studies. We used acute pharmacological manipulations of the serotonergic system in common waxbills, using two serotonin enhancers (8-OH-DPAT and fluoxetine) and a serotonin blocker (WAY 100,635). Behavioural effects of these pharmacological manipulations on aggressiveness, movement and feeding, during tests of competition over food, indicated an anxiogenic-like effect of fluoxetine, but not of 8-OH-DPAT and WAY 100,635. This suggests a distinct role for different serotonergic pathways on waxbill behaviour.
Collapse
|
3
|
Serotonin 5-HT 1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology (Berl) 2022; 239:3875-3892. [PMID: 36282287 DOI: 10.1007/s00213-022-06259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
Collapse
|
4
|
Stettler PR, F Antunes D, Taborsky B. The serotonin 1A receptor modulates the social behaviour within groups of a cooperatively-breeding cichlid. Horm Behav 2021; 129:104918. [PMID: 33428923 DOI: 10.1016/j.yhbeh.2020.104918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022]
Abstract
The neurotransmitter serotonin (5-HT) reduces aggressive behaviour in a number of vertebrates, and the 5-HT1A receptor is known to be involved in this regulation. However, the role of this receptor in the modulation of sociopositive behaviour remains largely unknown. Here we investigated the role of the 5-HT1A receptor in the regulation of aggressive, submissive and affiliative behaviour in the cooperatively-breeding cichlid Neolamprologus pulcher. In two experiments, we performed intramuscular injections of a 5-HT1A agonist (8-OH-DPAT) and antagonist (Way-100635) followed by recordings of social behaviour of injected fish within their social groups. We determined the concentrations and post-injection times when the drugs had the greatest effect on social behaviour. We recorded spontaneous social behaviour in both experiments. In the second experiment we also recorded behaviour after social groups received a territorial challenge by live presentations of either conspecifics or egg predators. The 5-HT1A agonist caused an increase in aggression and a decrease in submission and affiliation, whereas the antagonist had the opposite effects. Thus, the 5-HT1A receptor plays an important regulatory role not only for aggressive but also sociopositive behaviour.
Collapse
Affiliation(s)
- Pia R Stettler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland.
| | - Diogo F Antunes
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland.
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, 3032 Hinterkappelen, Switzerland.
| |
Collapse
|
5
|
Pierre C, Pradère N, Froc C, Ornelas-García P, Callebert J, Rétaux S. A mutation in monoamine oxidase (MAO) affects the evolution of stress behavior in the blind cavefish Astyanax mexicanus. J Exp Biol 2020; 223:jeb226092. [PMID: 32737213 DOI: 10.1242/jeb.226092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/24/2020] [Indexed: 08/26/2023]
Abstract
The neurotransmitter serotonin controls a variety of physiological and behavioral processes. In humans, mutations affecting monoamine oxidase (MAO), the serotonin-degrading enzyme, are highly deleterious. Yet, blind cavefish of the species Astyanax mexicanus carry a partial loss-of-function mutation in MAO (P106L) and thrive in their subterranean environment. Here, we established four fish lines, corresponding to the blind cave-dwelling and the sighted river-dwelling morphs of this species, with or without the mutation, in order to decipher the exact contribution of mao P106L in the evolution of cavefish neurobehavioral traits. Unexpectedly, although mao P106L appeared to be an excellent candidate for the genetic determinism of the loss of aggressive and schooling behaviors in cavefish, we demonstrated that it was not the case. Similarly, the anatomical variations in monoaminergic systems observed between cavefish and surface fish brains were independent from mao P106L, and rather due to other, morph-dependent developmental processes. However, we found that mao P106L strongly affected anxiety-like behaviors. Cortisol measurements showed lower basal levels and an increased amplitude of stress response after a change of environment in fish carrying the mutation. Finally, we studied the distribution of the P106L mao allele in wild populations of cave and river A. mexicanus, and discovered that the mutant allele was present - and sometimes fixed - in all populations inhabiting caves of the Sierra de El Abra. The possibility that this partial loss-of-function mao allele evolves under a selective or a neutral regime in the particular cave environment is discussed.
Collapse
Affiliation(s)
- Constance Pierre
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Naomie Pradère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Cynthia Froc
- Amatrace platform, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Patricia Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Autónoma de México, CP 04510, Mexico City, Mexico
| | - Jacques Callebert
- Service Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75475 Paris, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Paula JR, Messias JP, Grutter AS, Bshary R, Soares MC. The role of serotonin in the modulation of cooperative behavior. Behav Ecol 2015. [DOI: 10.1093/beheco/arv039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
The role of the serotonergic system at the interface of aggression and suicide. Neuroscience 2013; 236:160-85. [PMID: 23333677 DOI: 10.1016/j.neuroscience.2013.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/01/2013] [Accepted: 01/05/2013] [Indexed: 02/07/2023]
Abstract
Alterations in serotonin (5-HT) neurochemistry have been implicated in the aetiology of all major neuropsychiatric disorders, ranging from schizophrenia to mood and anxiety-spectrum disorders. This review will focus on the multifaceted implications of 5-HT-ergic dysfunctions in the pathophysiology of aggressive and suicidal behaviours. After a brief overview of the anatomical distribution of the 5-HT-ergic system in the key brain areas that govern aggression and suicidal behaviours, the implication of 5-HT markers (5-HT receptors, transporter as well as synthetic and metabolic enzymes) in these conditions is discussed. In this regard, particular emphasis is placed on the integration of pharmacological and genetic evidence from animal studies with the findings of human experimental and genetic association studies. Traditional views postulated an inverse relationship between 5-HT and aggression and suicidal behaviours; however, ample evidence has shown that this perspective may be overly simplistic, and that such pathological manifestations may reflect alterations in 5-HT homoeostasis due to the interaction of genetic, environmental and gender-related factors, particularly during early critical developmental stages. The development of animal models that may capture the complexity of such interactions promises to afford a powerful tool to elucidate the pathophysiology of impulsive aggression and suicidability, and identify new effective therapies for these conditions.
Collapse
|
8
|
da Veiga CP, Miczek KA, Lucion AB, de Almeida RMM. Social instigation and aggression in postpartum female rats: role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphé nucleus and prefrontal cortex. Psychopharmacology (Berl) 2011; 213:475-87. [PMID: 21107539 PMCID: PMC3747518 DOI: 10.1007/s00213-010-2083-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 10/30/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE 5-HT(1A) and 5-HT(1B) receptor agonists effectively reduce aggressive behavior in males that has been escalated by social instigation. Important sites of action for these drugs are the receptors in dorsal raphé nuclei (DRN) and the ventral-orbital prefrontal cortex (VO PFC). DRN and VO PFC areas are particularly relevant in the inhibitory control of escalated aggressive and impulsive behavior. OBJECTIVES The objectives of this study are to assess the anti-aggressive effects of 5-HT(1A) (8-OH-DPAT) and 5-HT(1B) (CP-93,129) receptor agonists microinjected into DRN and VO PFC, respectively, and to study the aggressive behavior in postpartum female Wistar rats using the social instigation protocol to increase aggression. METHODS AND RESULTS 8-OH-DPAT (0.56 μg) in the DRN increased aggressive behavior in postpartum female rats. By contrast, CP-93,129 (1.0 μg) microinjected into VO PFC decreased the number of attack bites and lateral threats. 5-HT(1A) and 5-HT(1B) receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming and the latter increasing these acts. When 8-OH-DPAT was microinjected into DRN and CP-93,129 was microinjected into VO PFC in female rats at the same time, maternal aggression decreased. Specific participation of 5-HT(1B) receptors was verified by reversal of the anti-aggressive effects using the selective antagonist SB-224,289 (1.0 μg). CONCLUSIONS The decrease in maternal aggressive behavior after microinjections of 5-HT(1B) receptor agonists into the VO PFC and DRN of female postpartum rats that were instigated socially supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner, due to activation of 5-HT(1B) receptors at the soma and terminals.
Collapse
Affiliation(s)
- Caroline Perinazzo da Veiga
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Medford and Boston, MA, USA,Department of Pharmacology, Tufts University, Medford and Boston, MA, USA,Department of Neuroscience, Tufts University, Medford and Boston, MA, USA,Department of Psychiatry, Tufts University, Medford and Boston, MA, USA
| | - Aldo Bolten Lucion
- Departamento de Fisiologia, Programa de Pós-Graduação em, Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rosa Maria Martins de Almeida
- Instituto de Psicologia do Desenvolvimento e da Personalidade da, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil,Laboratório de Psicologia Experimental, Neurociências e Comportamento, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Hishimura Y, Itoh K. [Effect of social interaction on skin temperature in mice]. SHINRIGAKU KENKYU : THE JAPANESE JOURNAL OF PSYCHOLOGY 2009; 80:152-158. [PMID: 19637832 DOI: 10.4992/jjpsy.80.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated physiological and behavioral characteristics of socially stressed animals in a resident-intruder paradigm. ICR male mice (resident, n = 14) were exposed individually to a novel male conspecific (intruder, n = 14) in their homecage for 30 min. Along with behavioral analyses, the skin temperatures of both the resident and the intruder were measured simultaneously using a multipoint radiation thermometer. There were no significant differences between the resident and intruder in the amount of locomotion, flight and aggressive behaviors. The mean skin temperature of the residents during the interaction was higher than before the interaction. In addition, the skin temperatures of the intruders were consistently higher than the residents. The results suggest that social stress causes elevation in skin temperature as well as stress-induced hyperthermia in core temperature. Moreover, infrared radiation thermometers may provide an alternative means of measuring physiological parameters of two (or more) subjects simultaneously in the study of animal social behavior.
Collapse
Affiliation(s)
- Yutaka Hishimura
- Department of Clinical Psychology, Faculty of Psychological Science, Hiroshima International University, Kurose-Gakuendai, Higashi-Hiroshima 739-2695, Japan.
| | | |
Collapse
|
10
|
Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology (Berl) 2008; 201:237-48. [PMID: 18688602 PMCID: PMC4371733 DOI: 10.1007/s00213-008-1269-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/18/2008] [Indexed: 12/23/2022]
Abstract
RATIONALE Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. OBJECTIVES The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. RESULTS 8-OH-DPAT (0.56 and 1.0 microg) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 microg) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 microg) and SB-224,289 (1.0 microg). CONCLUSIONS The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner.
Collapse
|
11
|
Clotfelter ED, O'Hare EP, McNitt MM, Carpenter RE, Summers CH. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 2007; 87:222-31. [PMID: 17553555 DOI: 10.1016/j.pbb.2007.04.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/18/2007] [Accepted: 04/26/2007] [Indexed: 11/29/2022]
Abstract
The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Ethan D Clotfelter
- Department of Biology, Amherst College, Amherst, MA 01002, United States.
| | | | | | | | | |
Collapse
|
12
|
de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 2005; 526:125-39. [PMID: 16310183 DOI: 10.1016/j.ejphar.2005.09.065] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/01/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the predisposition for and execution of aggressive behavior. The dogmatic view that 5-HT inhibits aggression has dominated both pharmacological research strategies to develop specific and effective novel drug treatments that reduce aggressive behavior and the pharmacological mechanistic interpretation of putative serenic drug effects. Our studies on brain serotonin and aggression in feral wild-type rats using the resident-intruder paradigm have challenged this so-called serotonin deficiency hypothesis of aggressive behavior. The well-known fact that certain 5-HT(1A/1B) receptor agonists potently and specifically reduce aggressive behavior without motor slowing and sedative effects is only consistent with this hypothesis under the assumption that the agonist mainly acts on the postsynaptic 5-HT(1A/1B) receptor sites. However, systemic injections of anti-aggressive doses of 5-HT(1A) and (1B) agonists robustly decrease brain 5-HT release due to their inhibitory actions at somatodendritic and terminal autoreceptors, respectively. The availability of the novel benzodioxopiperazine compound S-15535, which acts in vivo as a preferential agonist of the somatodendritic 5-HT(1A) auto-receptor and as an antagonist (weak partial agonist) at postsynaptic 5-HT(1A) receptors, allows for a pharmacological analysis of the exact site of action of this anti-aggressive effect. It was found that, similar to other prototypical full and partial 5-HT(1A) and/or 5-HT(1B) receptor agonists like repinotan, 8-OHDPAT, ipsapirone, buspirone, alnespirone, eltoprazine, CGS-12066B and CP-93129, also S-15535 very effectively reduced offensive aggressive behavior. Unlike the other ligands, however, a remarkable degree of behavioral specificity was observed after treatment with S-15535, in that the anti-aggressive effects were not accompanied by inhibiting (like other 5-HT(1A) receptor agonist with moderate to high efficacy at postsynaptic 5-HT(1A) receptors) or enhancing (like agonists with activity at 5-HT(1B) receptors and alnespirone) non-aggressive motor behaviors (e.g., social exploration, ambulation, rearing, and grooming) beyond the range of undrugged animals with corresponding levels of aggression. The involvement of 5-HT(1A) and/or 5-HT(1B) receptors in the anti-aggressive actions of these drugs was convincingly confirmed by showing that the selective 5-HT(1A) receptor antagonist WAY-100635 and/or the 5-HT(1B) receptor antagonist GR-127935, while inactive when given alone, effectively attenuated/prevented these actions. Furthermore, combined administration of S-15535 with either alnespirone or CGS-42066B elicited a clear additive effect, indicated by a left-ward shift in their dose-effect curves, providing further support for presynaptic sites of action (i.e., inhibitory somatodendritic 5-HT(1A) and terminal 5-HT(1B) autoreceptors). These findings strongly suggest that the specific anti-aggressive effects of 5-HT(1A) and 5-HT(1B) receptor agonists are predominantly based on reduction rather than enhancement of 5-HT neurotransmission during the combative social interaction. Apparently, normal display of offensive aggressive behavior is positively related to brief spikes in serotonergic activity, whereas an inverse relationship probably exists between tonic 5-HT activity and abnormal forms of aggression only.
Collapse
Affiliation(s)
- Sietse F de Boer
- Department of Behavioral Physiology, Biological Center, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
13
|
Abstract
The tail suspension test (TST), an antidepressant screening paradigm, uses the uncontrollable, inescapable stressor of tail suspension to elicit immobility. As hyperthermia occurs following numerous stressors, hyperthermia might exist following the TST. We tested whether tail suspension induced hyperthermia (TSIH) was a distinct variable for TST. Hyperthermia was measured by two methods: a rectal probe and a subcutaneously implanted microchip (ELAMS()). In outbred ICR male mice, TSIH was robustly demonstrated compared to control (No-TST) mice. TSIH peaked after TST and remained elevated at 120 min. Among five (129/SvEvTac, A/J, C57BL/6J, NMRI and ICR) strains examined for TSIH, significant strain variations were detected. NMRI showed the highest temperature rise (2.3 degrees C) and A/J mice showed the lowest (0.6 degrees C). Sex differences were found for the C57BL/6J and NMRI strains on TSIH. TSIH and duration of immobility were not significantly correlated (r=0.22, P=0.17) in outbred mice. Both duration of TST immobility and TSIH were measured when ICR male mice were administered diazepam, imipramine (a TCA antidepressant), venlafaxine (a SNRI antidepressant), sertraline and paroxetine (SSRI antidepressants), propranolol and nadolol (beta-adrenergic receptor blockers), CP-154,526 (a CRF(1) receptor antagonist), and indomethacin (a cyclo-oxygenase inhibitor). Diazepam dose-dependently increased immobility and decreased TSIH. Propranolol blocked TSIH, but nadolol had no effect. Antidepressants showed more complex patterns of effects with venlafaxine, sertraline, and paroxetine inhibiting TSIH. TSIH demonstrated inter-strain variability, sex differences and a distinct pharmacology, suggesting that TSIH provides an independent, robust physiologic parameter to supplement the TST paradigm. This TSIH method may prove useful for pharmacologic, transgenic, and mechanistic studies.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070, USA
| | | | | |
Collapse
|
14
|
Nomura M, Durbak L, Chan J, Smithies O, Gustafsson JA, Korach KS, Pfaff DW, Ogawa S. Genotype/age interactions on aggressive behavior in gonadally intact estrogen receptor beta knockout (betaERKO) male mice. Horm Behav 2002; 41:288-96. [PMID: 11971662 DOI: 10.1006/hbeh.2002.1773] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen, as an aromatized metabolite of testosterone, has a facilitatory effect on male aggressive behavior in mice. Two subtypes of estrogen receptors, alpha (ER-alpha) and beta (ER-beta), in the brain are known to bind estrogen. Previous studies revealed that the lack of ER-alpha gene severely reduced the induction of male aggressive behavior. In contrast, mice that lacked the ER-beta gene tended to be more aggressive than wild type (WT) control mice, although the behavioral effects of ER-beta gene disruption were dependent on their social experience. These findings lead us to hypothesize that estrogen may facilitate aggression via ER-alpha whereas it may inhibit aggression via ER-beta. In the present study, we further investigated the role of ER-beta in the regulation of aggressive behavior by examining developmental changes starting at the time of first onset, around the age of puberty. Aggressive behaviors of ER-beta gene knockout (betaERKO) mice were examined in three different age groups, puberty, young-adult, and adult. Each mouse was tested every other day for three times in a resident-intruder paradigm against olfactory bulbectomized intruder mice and their trunk blood was collected for measurements of serum testosterone after the completion of the study. Overall, betaERKO mice were significantly more aggressive than WT. These genotype differences were more pronounced in puberty and young adult age groups, but not apparent in the adult age group, in which betaERKO mice were less aggressive than those in two younger age groups. Serum testosterone levels of betaERKO mice were significantly higher than those of WT mice only in the pubertal age group, but not in young adult (when betaERKO mice were still significantly more aggressive than WT mice) and adult (when no genotype differences in aggression were found) age groups. These results suggest that ER-beta mediated actions of gonadal steroids may more profoundly be involved in the inhibitory regulation of aggressive behavior in pubertal and young adult mice.
Collapse
Affiliation(s)
- Masayoshi Nomura
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lishko PV, Maximyuk OP, Chatterjee SS, Nöldner M, Krishtal OA. The putative cognitive enhancer KA-672.HCl is an uncompetitive voltage-dependent NMDA receptor antagonist. Neuroreport 1998; 9:4193-7. [PMID: 9926872 DOI: 10.1097/00001756-199812210-00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
KA-672.HCl (KA-672) is a new substance demonstrating anti-dementia properties. It shows modulatory effects on several neurotransmitter systems known to be affected in patients with Alzheimer's disease. In this study the action of KA-672 on the NMDA receptors was examined by applying patch clamp techniques to acutely isolated hippocampal neurons. KA-672 antagonizes NMDA responses in a voltage-dependent manner. At a holding potential of -90 mV the IC50 value for the blocking action of KA-672 was 20+/-7 microM. This action of KA-672 is independent on the concentration either of agonist or coagonist of NMDA receptor. Ketamine, which interacts with the PCP center, does not occlude the action of KA-672. Evidently, KA-672.HCl is a weak NMDA receptor-operated channel blocker. This property may account for its pharmacological profile.
Collapse
Affiliation(s)
- P V Lishko
- Department of Cellular Membranology, A. A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv
| | | | | | | | | |
Collapse
|