1
|
Deutsch SI, Burket JA. From Mouse to Man: N-Methyl-d-Aspartic Acid Receptor Activation as a Promising Pharmacotherapeutic Strategy for Autism Spectrum Disorders. Med Clin North Am 2023; 107:101-117. [PMID: 36402493 DOI: 10.1016/j.mcna.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The BALB/c mouse displays hypersensitivity to behavioral effects of MK-801 (dizocilpine), a noncompetitive N-methyl-d-aspartic acid (NMDA) receptor "open-channel" blocker, and shows both no preference for an enclosed stimulus mouse over an inanimate object and reduced social interaction with a freely behaving stimulus mouse. NMDA receptor agonist interventions improved measures of social preference and social interaction of the BALB/c mouse model of autism spectrum disorder (ASD). A "proof of principle/proof of concept" translational 10-week clinical trial with 8-week of active medication administration was conducted comparing 20 DSM-IV-TR-diagnosed older adolescent/young adult patients with ASD randomized to once-weekly pulsed administration (50 mg/d) versus daily administration of d-cycloserine (50 mg/d). The results showed that d-cycloserine, a partial glycine agonist, was well tolerated, the 2 dosing strategies did not differ, and improvement was noted on the "lethargy/social withdrawal" and "stereotypic behavior" subscales of the Aberrant Behavior Checklist. NMDA receptor activation contributes to the regulation of mTOR signaling, a pathologic point of convergence in several monogenic syndromic forms of ASD. Furthermore, both NMDA receptor hypofunction and imbalance between NMDA receptor activation mediated by GluN2B and GluN2A-containing NMDA receptors occur as "downstream" consequences of several genetically unrelated abnormalities associated with ASD. NMDA receptor-subtype selective "positive allosteric modulators (PAMs)" are particularly appealing medication candidates for future translational trials.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA
| | - Jessica A Burket
- Department of Molecular Biology & Chemistry, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, USA.
| |
Collapse
|
2
|
Deutsch SI, Luyo ZNM, Burket JA. Targeted NMDA Receptor Interventions for Autism: Developmentally Determined Expression of GluN2B and GluN2A-Containing Receptors and Balanced Allosteric Modulatory Approaches. Biomolecules 2022; 12:biom12020181. [PMID: 35204682 PMCID: PMC8961601 DOI: 10.3390/biom12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
Various ASD risk alleles have been associated with impairment of NMDA receptor activation (i.e., NMDA Receptor Hypofunction) and/or disturbance of the careful balance between activation mediated by GluN2B-subtype and GluN2A-subtype-containing NMDA receptors. Importantly, although these various risk alleles affect NMDA receptor activation through different mechanisms, they share the pathogenic consequences of causing disturbance of highly regulated NMDA receptor activation. Disturbances of NMDA receptor activation due to sequence variants, protein termination variants and copy number variants are often cell-specific and regionally selective. Thus, translational therapeutic NMDA receptor agonist interventions, which may require chronic administration, must have specificity, selectivity and facilitate NMDA receptor activation in a manner that is physiologic (i.e., mimicking that of endogenously released glutamate and glycine/D-serine released in response to salient and relevant socio-cognitive provocations within discrete neural circuits). Importantly, knockout mice with absent expression and mice with haploinsufficient expression of the deleterious genes often serve as good models to test the potential efficacy of promising pharmacotherapeutic strategies. The Review considers diverse examples of “illness” genes, their pathogenic effects on NMDA receptor activation and, when available, results of studies of impaired sociability in mouse models, including “proof of principle/proof of concept” experiments exploring NMDA receptor agonist interventions and the development of promising positive allosteric modulators (PAMs), which serve as support and models for developing an inventory of PAMs and negative allosteric modulators (NAMs) for translational therapeutic intervention. Conceivably, selective PAMs and NAMs either alone or in combination will be administered to patients guided by their genotype in order to potentiate and/or restore disrupted balance between activation mediated by GluN2B-subtype and GluN2A-subtype containing NMDA receptors.
Collapse
Affiliation(s)
- Stephen I. Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA;
| | - Zachary N. M. Luyo
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
| | - Jessica A. Burket
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23606, USA
- Correspondence: ; Tel.: +1-757-594-8743
| |
Collapse
|
3
|
Spampanato J, Bealer SL, Smolik M, Dudek FE. Delayed Adjunctive Treatment of Organophosphate-Induced Status Epilepticus in Rats with Phenobarbital, Memantine, or Dexmedetomidine. J Pharmacol Exp Ther 2020; 375:59-68. [PMID: 32873622 DOI: 10.1124/jpet.120.000175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Organophosphate (OP) exposure induces status epilepticus (SE), a medical emergency with high morbidity and mortality. Current standard medical countermeasures lose efficacy with time so that treatment delays, in the range of tens of minutes, result in increasingly poor outcomes. As part of the Countermeasures Against Chemical Threats Neurotherapeutics Screening Program, we previously developed a realistic model of delayed treatment of OP-induced SE using the OP diisopropyl fluorophosphate (DFP) to screen compounds for efficacy in the termination of SE and elimination of neuronal death. Male rats were implanted for electroencephalogram (EEG) recordings 7 days prior to experimentation. Rats were then exposed to DFP, and SE was induced for 60 minutes and then treated with midazolam (MDZ) plus one of three antiseizure drugs (ASDs)-phenobarbital (PHB), memantine (MEM), or dexmedetomidine (DMT)-in conjunction with antidotes. EEG was recorded for 24 hours, and brains were stained with Fluoro-Jade B for quantification of degenerating neurons. We found that PHB + MDZ induced a prolonged suppression of SE and reduced neuronal death. MEM + MDZ treatment exacerbated SE and increased mortality; however, surviving rats had fewer degenerating neurons. DMT + MDZ significantly suppressed SE with only a minimal reduction in neuronal death. These data demonstrate that delayed treatment of OP-induced SE with other ASDs, when added to MDZ, can achieve greater seizure suppression with additional reduction in degenerating neurons throughout the brain compared with MDZ alone. The effect of a drug on the severity of seizure activity did not necessarily determine the drug's effect on neuronal death under these conditions. SIGNIFICANCE STATEMENT: This study assesses the relative effectiveness of three different delayed-treatment regimens for the control of organophosphate-induced status epilepticus and reduction of subsequent neuronal death. The data demonstrate the potential for highly effective therapies despite significant treatment delay and a potential disconnect between seizure severity and neuronal death.
Collapse
Affiliation(s)
- Jay Spampanato
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Steven L Bealer
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Melissa Smolik
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
4
|
Jackson C, Ardinger C, Winter KM, McDonough JH, McCarren HS. Validating a model of benzodiazepine refractory nerve agent-induced status epilepticus by evaluating the anticonvulsant and neuroprotective effects of scopolamine, memantine, and phenobarbital. J Pharmacol Toxicol Methods 2019; 97:1-12. [PMID: 30790623 PMCID: PMC6529248 DOI: 10.1016/j.vascn.2019.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Organophosphorus nerve agents (OPNAs) irreversibly block acetylcholinesterase activity, resulting in accumulation of excess acetylcholine at neural synapses, which can lead to a state of prolonged seizures known as status epilepticus (SE). Benzodiazepines, the current standard of care for SE, become less effective as latency to treatment increases. In a mass civilian OPNA exposure, concurrent trauma and limited resources would likely cause a delay in first response time. To address this issue, we have developed a rat model to test novel anticonvulsant/ neuroprotectant adjuncts at delayed time points. METHODS For model development, adult male rats with cortical electroencephalographic (EEG) electrodes were exposed to soman and administered saline along with atropine, 2-PAM, and midazolam 5, 20, or 40 min after SE onset. We validated our model using three drugs: scopolamine, memantine, and phenobarbital. Using the same procedure outlined above, rats were given atropine, 2-PAM, midazolam and test treatment 20 min after SE onset. RESULTS Using gamma power, delta power, and spike rate to quantify EEG activity, we found that scopolamine was effective, memantine was minimally effective, and phenobarbital had a delayed effect on terminating SE. Fluoro-Jade B staining was used to assess neuroprotection in five brain regions. Each treatment provided significant protection compared to saline + midazolam in at least two brain regions. DISCUSSION Because our data agree with previously published studies on the efficacy of these compounds, we conclude that this model is a valid way to test novel anticonvulsants/ neuroprotectants for controlling benzodiazepine-resistant OPNA-induced SE and subsequent neuropathology.
Collapse
Affiliation(s)
| | | | | | | | - Hilary S. McCarren
- Corresponding author at: U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
5
|
Bahremand T, Payandemehr P, Riazi K, Noorian AR, Payandemehr B, Sharifzadeh M, Dehpour AR. Modulation of the anticonvulsant effect of swim stress by agmatine. Epilepsy Behav 2018; 78:142-148. [PMID: 29195160 DOI: 10.1016/j.yebeh.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/29/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023]
Abstract
Agmatine is an endogenous l-arginine metabolite with neuroprotective effects in the stress-response system. It exerts anticonvulsant effects against several seizure paradigms. Swim stress induces an anticonvulsant effect by activation of endogenous antiseizure mechanisms. In this study, we investigated the interaction of agmatine with the anticonvulsant effect of swim stress in mice on pentylenetetrazole (PTZ)-induced seizure threshold. Then we studied the involvement of nitric oxide (NO) pathway and endogenous opioid system in that interaction. Swim stress induced an anticonvulsant effect on PTZ seizures which was opioid-independent in shorter than 1-min swim durations and opioid-dependent with longer swims, as it was completely reversed by pretreatment with naltrexone (NTX) (10mg/kg), an opioid receptor antagonist. Agmatine significantly enhanced the anticonvulsant effect of opioid-independent shorter swim stress, in which a combination of subthreshold swim stress duration (45s) and subeffective dose of agmatine (1mg/kg) revealed a significantly higher seizure threshold compared with either one. This effect was significantly reversed by NO synthase inhibitor NG-nitro-l-arginine (L-NAME (Nω-Nitro-L-arginine methyl ester), 5mg/kg), suggesting an NO-dependent mechanism, and was unaffected by NTX (10mg/kg), proving little role for endogenous opioids in the interaction. Our data suggest that pretreatment of animals with agmatine acts additively with short swim stress to exert anticonvulsant responses, possibly by mediating NO pathway.
Collapse
Affiliation(s)
- Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooya Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Riazi
- Hotchkiss Brain Institute, Department of Physiology & Pharmacology, University of Calgary, Canada
| | - Ali Reza Noorian
- Stroke Program, Kaiser Permanente Orange County, Irvine, CA, United States
| | - Borna Payandemehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
The Search for New Screening Models of Pharmacoresistant Epilepsy: Is Induction of Acute Seizures in Epileptic Rodents a Suitable Approach? Neurochem Res 2016; 42:1926-1938. [DOI: 10.1007/s11064-016-2025-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/22/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
|
7
|
Leclercq K, Kaminski RM. Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 2015; 49:55-60. [PMID: 26123104 DOI: 10.1016/j.yebeh.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023]
Abstract
Several factors may influence the efficacy of antiepileptic drugs (AEDs) in patients with epilepsy, and treatment resistance could be related to genetics, neuronal network alterations, and modification of drug transporters or targets. Consequently, preclinical models used for the identification of potential new, more efficacious AEDs should reflect at least a few of these factors. Previous studies indicate that induction of status epilepticus (SE) may alter drug efficacy and that this effect could be long-lasting. In this context, we wanted to assess the protective effects of mechanistically diverse AEDs in mice subjected to pilocarpine-induced SE in another seizure model. We first determined seizure thresholds in mice subjected to pilocarpine-induced SE in the 6-Hz model, 2 weeks and 8 weeks following SE. We then evaluated the protective effects of mechanistically diverse AEDs in post-SE and control animals. No major differences in 6-Hz seizure susceptibility were observed between control groups, while the seizure threshold of pilocarpine mice at 8 weeks after SE was higher than at 2 weeks and higher than in control groups. Treatment with AEDs revealed major differences in drug response depending on their mechanism of action. Diazepam produced a dose-dependent protection against 6-Hz seizures in control and pilocarpine mice, both at 2 weeks and 8 weeks after SE, but with a more pronounced increase in potency in post-SE animals at 2 weeks. Levetiracetam induced a potent and dose-dependent protection in pilocarpine mice, 2 weeks after SE, while its protective effects were observed only at much higher doses in control mice. Its potency decreased in post-SE mice at 8 weeks and was very limited (30% protection at the highest tested dose) in the control group. Carbamazepine induced a dose-dependent protection at 2 weeks in control mice but only limited effect (50% at the highest tested dose) in pilocarpine mice. Its efficacy deeply decreased in post-SE mice at 8 weeks after SE. Perampanel and phenytoin showed almost comparable protective effects in all groups of mice. These experiments confirm that prior SE may have an impact on both potency and efficacy of AEDs and indicate that this effect may be dependent on the underlying epileptogenic processes. This article is part of a Special Issue entitled "Status Epilepticus".
Collapse
|
8
|
Balb/c mice treated with D-cycloserine arouse increased social interest in conspecifics. Brain Res Bull 2013; 99:95-9. [PMID: 24157954 DOI: 10.1016/j.brainresbull.2013.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 11/22/2022]
Abstract
The genetically inbred Balb/cJ (Balb/c) mouse with functional alteration of its endogenous tone of NMDA receptor-mediated neurotransmission displays impaired sociability in a standard paradigm; this mouse strain has been proposed as a model of autism spectrum disorders (ASDs). Prior work showed that treatment of the Balb/c mouse with a centrally effective dose of D-cycloserine, a partial glycineB NMDA receptor agonist, improved several measures of its sociability. Additionally, D-cycloserine-treated Balb/c mice show greater preference for a social stimulus mouse than an inanimate object. We wondered if treatment with D-cycloserine also improved the social salience of the Balb/c mouse for "normally" sociable comparator strains. The current experiments explored whether C57Bl/6J (B6) and ICR mouse strains prefer D-cycloserine-treated to vehicle-treated Balb/c stimulus mice in a paradigm that evaluated social preference. The results showed that B6 mice prefer D-cycloserine-treated Balb/c mice to vehicle-treated Balb/c mice, suggesting that treatment could have resulted in normalization of "emitted" social cues.
Collapse
|
9
|
Proteomic analysis of adrenocorticotropic hormone treatment of an infantile spasm model induced by N-methyl-D-aspartic acid and prenatal stress. PLoS One 2012; 7:e45347. [PMID: 23028951 PMCID: PMC3445469 DOI: 10.1371/journal.pone.0045347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 08/21/2012] [Indexed: 11/19/2022] Open
Abstract
Infantile spasms is an age-specific epileptic syndrome associated with poor developmental outcomes and poor response to nearly all traditional antiepileptic drugs except adrenocorticotropic hormone (ACTH). We investigated the protective mechanism of ACTH against brain damage. An infantile spasm rat model induced by N-methyl-d-aspartate (NMDA) in neonate rats was used. Pregnant rats were randomly divided into the stress-exposed and the non-stress exposed groups, and their offspring were randomly divided into ACTH-treated spasm model, untreated spasm model, and control groups. A proteomics-based approach was used to detect the proteome differences between ACTH-treated and untreated groups. Gel image analysis was followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric protein identification and bioinformatics analysis. Prenatal stress exposure resulted in more severe seizures, and ACTH treatment reduced and delayed the onset of seizures. The most significantly up-regulated proteins included isoform 1 of tubulin β-5 chain, cofilin-1 (CFL1), synaptosomal-associated protein 25, malate dehydrogenase, N(G),N(G)-dimethylarginine dimethylaminohydrolase 1, annexin A3 (ANXA3), and rho GDP-dissociation inhibitor 1 (ARHGDIA). In contrast, tubulin α-1A chain was down-regulated. Three of the identified proteins, ARHGDIA, ANXA3, and CFL1, were validated using western blot analysis. ARHGDIA expression was assayed in the brain samples of five infantile spasm patients. These proteins are involved in the cytoskeleton, synapses, energy metabolism, vascular regulation, signal transduction, and acetylation. The mechanism underlying the effects of ACTH involves the molecular events affected by these proteins, and protein acetylation is the mechanism of action of the drug treatment.
Collapse
|
10
|
Deutsch SI, Pepe GJ, Burket JA, Winebarger EE, Herndon AL, Benson AD. D-cycloserine improves sociability and spontaneous stereotypic behaviors in 4-week old mice. Brain Res 2011; 1439:96-107. [PMID: 22261249 DOI: 10.1016/j.brainres.2011.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 01/06/2023]
Abstract
Balb/c mice are a model of impaired sociability and social motivation relevant to autism spectrum disorders (ASDs). Impaired sociability of 8-week old Balb/c mice is attenuated by agonists of the glycine(B) site on the NMDA receptor, such as d-cycloserine. Although ASDs are often recognized in toddlerhood, there is interest in earlier identification (e.g., before 6 months) and disease-modifying interventions to improve functional outcomes. Thus, we wondered if d-cycloserine could improve sociability in 4-week old Balb/c mice, similar to its effects in 8-week old mice. d-Cycloserine improved measures of impaired sociability in 4-week old (i.e., one-week post-weanling) Balb/c mice. Moreover, because stereotypies can compete with the salience of social stimuli, we compared Balb/c and Swiss Webster mice on several spontaneous stereotypic behaviors emerging during social interaction with a social stimulus mouse. Interestingly, similar to 8-week old mice, spontaneous stereotypic behaviors during social interaction were more intense in the 4-week old Swiss Webster mice; furthermore, d-cycloserine reduced their intensity. Thus, d-cycloserine improves both sociability and stereotypic behaviors, but these effects may lack strain-selectivity. A prosocial effect of d-cycloserine was observed at a dose as low as 32.0mg/kg in Balb/c mice. d-cycloserine has the therapeutic properties of a desired medication for ASDs; specifically, a medication should not improve stereotypic behaviors at the expense of worsening sociability and vice versa. The data suggest that targeting the NMDA receptor can have promising therapeutic effects on two prominent domains of psychopathology in ASDs: impaired sociability and spontaneous stereotypic behaviors.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk Virginia, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav 2011; 22:617-40. [PMID: 22056342 DOI: 10.1016/j.yebeh.2011.07.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/01/2011] [Accepted: 07/18/2011] [Indexed: 01/02/2023]
Abstract
A substantial amount of research has shown that N-methyl-D-aspartate receptors (NMDARs) may play a key role in the pathophysiology of several neurological diseases, including epilepsy. Animal models of epilepsy and clinical studies demonstrate that NMDAR activity and expression can be altered in association with epilepsy and particularly in some specific seizure types. NMDAR antagonists have been shown to have antiepileptic effects in both clinical and preclinical studies. There is some evidence that conventional antiepileptic drugs may also affect NMDAR function. In this review, we describe the evidence for the involvement of NMDARs in the pathophysiology of epilepsy and provide an overview of NMDAR antagonists that have been investigated in clinical trials and animal models of epilepsy.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
12
|
Deutsch SI, Burket JA, Cannon WR, Jacome LF. Selective mGluR5 antagonism attenuates the stress-induced reduction of MK-801's antiseizure potency in the genetically inbred Balb/c mouse. Epilepsy Behav 2011; 21:352-5. [PMID: 21683659 DOI: 10.1016/j.yebeh.2011.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/15/2011] [Accepted: 03/19/2011] [Indexed: 11/27/2022]
Abstract
The ability of MK-801 (dizocilpine), a noncompetitive N-methyl D-aspartate (NMDA) antagonist, to antagonize electrical seizures is reduced in stressed mice. Stress-associated alterations in seizure susceptibility and diminished efficacy of antiseizure medications in humans have been reported [Joëls, 2009; Haut et al., 2007; Moshe et al., 2008]; thus, these experimental observations implicate altered endogenous tone of NMDA receptor-mediated neurotransmission in clinically adverse effects of stress on seizure proneness and treatment. The current exploratory experiment examined the effect of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), an antagonist of mGluR5, administered prior to stress on the stress-induced reduction of MK-801's antiseizure effect in Swiss-Webster and Balb/c mice; the Balb/c mouse is behaviorally hypersensitive to MK-801. Interestingly, the data suggest that MPEP can attenuate the severity of the stress-induced reduction of MK-801's antiseizure effect in the Balb/c strain. Thus, mGluR5 could serve as a target for strategies for adjuvant treatment of seizures exacerbated by stress.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA 23507–1912, USA.
| | | | | | | |
Collapse
|
13
|
Burket JA, Mastropaolo J, Rosse RB, Katz EU, Deutsch SI. NMDA NR2B subtype-selective receptor antagonists fail to antagonize electrically-precipitated seizures and elicit popping in mice. Eur Neuropsychopharmacol 2010; 20:207-10. [PMID: 20022475 DOI: 10.1016/j.euroneuro.2009.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/08/2009] [Accepted: 11/21/2009] [Indexed: 12/01/2022]
Abstract
NR2B-subtype-selective antagonists differ from MK-801, a nonselective NMDA receptor antagonist. MK-801 antagonizes electrical seizures at doses as low as 0.1 to 0.18mg/kg and elicits popping at doses as low as 0.5mg/kg, whereas ifenprodil and Ro 8-4304 were unable to do so at the doses tested. Ro 25-6981, however, was able to antagonize electrically-precipitated tonic hindlimb extension at 100mg/kg, but was not able to elicit popping behavior at this dose.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, Virginia 23507-1912, United States
| | | | | | | | | |
Collapse
|
14
|
Schneider BM, Dodman NH, Faissler D, Ogata N. Clinical use of an herbal-derived compound (Huperzine A) to treat putative complex partial seizures in a dog. Epilepsy Behav 2009; 15:529-34. [PMID: 19616481 DOI: 10.1016/j.yebeh.2009.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/03/2009] [Accepted: 06/07/2009] [Indexed: 10/20/2022]
Abstract
A Bernese mountain dog was diagnosed with complex partial seizures that were supported by electroencephalographic findings. Clinical signs of the problem included "star gazing," fly snapping, licking, vacuous chewing, and ongoing anxiety. Treatment with Huperzine A, a compound isolated from Chinese club moss with NMDA receptor blocking activity, anticholinesterase activity, and anticonvulsant properties, produced useful suppression of the abnormal behavior for more than months. A relapse occurred when the dog was treated with tramadol for joint pain and the improvement that had been made was not recaptured with Huperzine A. At this stage, phenobarbital therapy was instituted and the dog improved greatly. The role of Huperzine A in controlling seizures is discussed.
Collapse
Affiliation(s)
- Barbara M Schneider
- Clinical Sciences Department, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Perera PY, Lichy JH, Mastropaolo J, Rosse RB, Deutsch SI. Expression of NR1, NR2A and NR2B NMDA receptor subunits is not altered in the genetically-inbred Balb/c mouse strain with heightened behavioral sensitivity to MK-801, a noncompetitive NMDA receptor antagonist. Eur Neuropsychopharmacol 2008; 18:814-9. [PMID: 18674888 DOI: 10.1016/j.euroneuro.2008.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/28/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
Abstract
The genetically-inbred Balb/c mouse strain shows heightened sensitivity to the ability of MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, to raise the threshold voltage necessary to precipitate tonic hindlimb extension and elicit irregular episodes of intense jumping behavior (referred to as "popping"), relative to other inbred mouse strains and the outbred NIH Swiss mouse. Moreover, an allosteric modulatory effect of sarcosine, a glycine reuptake inhibitor, on MK-801's antagonism of electrically precipitated seizures was detected 24 h after Balb/c mice were forced to swim in cold water for up to 10 min; this was not observed in unstressed Balb/c mice or stressed or unstressed NIH Swiss mice. Phencyclidine (PCP), a noncompetitive NMDA receptor antagonist that binds to the same hydrophobic channel domain as MK-801, precipitates a schizophreniform psychosis in susceptible individuals that shares descriptive similarities with schizophrenia. This observation has led to the hypothesis that NMDA receptor hypofunction (NRH) is involved in the pathophysiology of schizophrenia and the testing of pharmacotherapeutic strategies to facilitate NMDA receptor-mediated neurotransmission in patients with this disorder (e.g., glycine reuptake inhibitors). The heightened behavioral sensitivity of the Balb/c mouse to MK-801 suggests that this mouse strain may be a useful model to study "psychosis-proneness" and screen for positive allosteric modulators of NMDA receptor-mediated neurotransmission. Conceivably, strain differences in the pharmacology of the NMDA receptor are due to differences in the relative expression of individual NMDA receptor subunits to each other (i.e., combinatorial regulation). The current study compared the normal protein expression patterns of six of the eight identified splice variant isoforms of the NR1 NMDA receptor subunit, and NR2A and NR2B subunits in the hippocampus and cerebral cortex of Balb/c and NIH Swiss mice. The heightened behavioral sensitivity of the Balb/c genetically-inbred mouse strain to MK-801, compared to the outbred NIH Swiss mouse strain, does not appear to result from relative alterations of expression of these NMDA receptor protein subunits that were examined.
Collapse
Affiliation(s)
- Pin-Yu Perera
- Pathology and Laboratory Service, Department of Veterans Affairs Medical Center, 50 Irving Street NW, Washington, DC 20422, USA
| | | | | | | | | |
Collapse
|
17
|
Deutsch SI, Rosse RB, Long KD, Gaskins BL, Burket JA, Mastropaolo J. Sodium butyrate, an epigenetic interventional strategy, attenuates a stress-induced alteration of MK-801's pharmacologic action. Eur Neuropsychopharmacol 2008; 18:565-8. [PMID: 18164185 DOI: 10.1016/j.euroneuro.2007.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/07/2007] [Accepted: 11/21/2007] [Indexed: 12/17/2022]
Abstract
Twenty-four hours after mice are exposed to a single session of forced swimming in cold water, the ability of MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, to antagonize electrically precipitated seizures is reduced. Conceivably, this reduction in MK-801's antiseizure efficacy reflects a stress-induced alteration in NMDA receptor-mediated neurotransmission due to changes in gene expression 24 h after a single stress. Recently, epigenetic interventional strategies impacting expression of genes whose regulation is controlled by the acetylation status of histone proteins in the nucleosome, an octomeric complex of histone proteins and promoter regions of double-stranded DNA, have been tested in preclinical models of various neuropsychiatric disorders, including Huntington disease and major depression. These strategies have been studied extensively in cancer biology. In the current investigation, the severity of the stress-induced reduction of MK-801's ability to raise the threshold voltage for the elicitation of tonic hindlimb extension was reduced when sodium butyrate (1.5 g/kg, ip) was administered around the time of stress. Prior research showed that this dose of sodium butyrate reliably increased the acetylation status of H3 and H4 histone proteins in the hippocampus and cerebral cortex of mice. Thus, the attenuation of the stress-induced reduction of MK-801's antiseizure efficacy may be due to the increased acetylation of histone proteins in the nucleosomal core and promotion of gene expression. These data encourage development of epigenetic strategies to prevent some of the deleterious consequences of stress.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Mental Health Service Line, Department of Veterans Affairs Medical Center, NW, Washington, DC 20422, United States.
| | | | | | | | | | | |
Collapse
|
18
|
Inan SY, Aksu F. Influence of sex on the interaction between dizocilpine (MK-801) pretreatment and acute cold-restraint stress in epilepsy susceptibility in an animal study. ACTA ACUST UNITED AC 2008; 5:136-46. [DOI: 10.1016/j.genm.2008.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2007] [Indexed: 10/21/2022]
|
19
|
|
20
|
Billingslea EN, Mastropaolo J, Rosse RB, Bellack AS, Deutsch SI. Interaction of stress and strain on glutamatergic neurotransmission: relevance to schizophrenia. Pharmacol Biochem Behav 2003; 74:351-6. [PMID: 12479954 DOI: 10.1016/s0091-3057(02)01012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Psychosis caused by phencyclidine (PCP) stimulated interest in characterizing rodent behaviors elicited by PCP and its analogues. We have shown that MK-801 antagonizes electrically precipitated seizures (defined as tonic hindlimb extension) and elicits episodes of intense jumping behavior, referred to as "popping," in mice. Moreover, 24 h after stress, MK-801's ability to antagonize electrically precipitated seizures is reduced in outbred NIH Swiss mice. Inbred BALBc mice are more resistant to electrically precipitated seizures than the NIH Swiss strain, and are more sensitive to both MK-801's anticonvulsant effect and ability to elicit popping. In the current experiments, we examined the influence of stress and genetic mouse strain on both MK-801's ability to antagonize electrically precipitated seizures and elicit popping. Stress significantly reduced the threshold voltage for precipitation of seizures in BALBc mice and the anticonvulsant properties of MK-801 in both strains. These data show that factors relevant to schizophrenia and its exacerbation (i.e., acute stress and genetics) influence N-methyl-D-aspartic acid (NMDA) receptor-mediated neurotransmission in intact mice. The BALBc inbred strain of mouse may possess advantages in preclinical screening paradigms designed to assess NMDA receptor agonist interventions for disorders such as schizophrenia. Specifically, stressed BALBc mice showed the greatest behavioral sensitivity to MK-801 with regard to electrically precipitated seizures in the incremental electroconvulsive shock (IECS) paradigm, whereas unstressed BALBc showed the greatest behavioral sensitivity to MK-801 in the "popping" paradigm, relative to BALBc and NIH Swiss mice in the appropriate comparison conditions.
Collapse
Affiliation(s)
- Eddie N Billingslea
- Mental Health Service Line, Veterans Integrated Service Network (VISN) 5, Department of Veterans Affairs, 849 International Drive, Suite 275, Linthicum, MD 21090, USA
| | | | | | | | | |
Collapse
|
21
|
Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist--a review of preclinical data. Neuropharmacology 1999; 38:735-67. [PMID: 10465680 DOI: 10.1016/s0028-3908(99)00019-2] [Citation(s) in RCA: 614] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in numerous CNS disorders ranging from acute neurodegeneration (e.g. stroke and trauma), chronic neurodegeneration (e.g. Parkinson's disease, Alzheimer's disease, Huntington's disease, ALS) to symptomatic treatment (e.g. epilepsy, Parkinson's disease, drug dependence, depression, anxiety and chronic pain). However, many NMDA receptor antagonists also produce highly undesirable side effects at doses within their putative therapeutic range. This has unfortunately led to the conclusion that NMDA receptor antagonism is not a valid therapeutic approach. However, memantine is clearly an uncompetitive NMDA receptor antagonist at therapeutic concentrations achieved in the treatment of dementia and is essentially devoid of such side effects at doses within the therapeutic range. This has been attributed to memantine's moderate potency and associated rapid, strongly voltage-dependent blocking kinetics. The aim of this review is to summarise preclinical data on memantine supporting its mechanism of action and promising profile in animal models of chronic neurodegenerative diseases. The ultimate purpose is to provide evidence that it is indeed possible to develop clinically well tolerated NMDA receptor antagonists, a fact reflected in the recent interest of several pharmaceutical companies in developing compounds with similar properties to memantine.
Collapse
Affiliation(s)
- C G Parsons
- Department of Pharmacological Research, Merz and Co., Frankfurt am Main, Germany.
| | | | | |
Collapse
|