1
|
Downs AM, Kmiec G, McElligott ZA. Oral fentanyl consumption and withdrawal impairs fear extinction learning and enhances basolateral amygdala principal neuron excitatory-inhibitory balance in male and female mice. ADDICTION NEUROSCIENCE 2024; 13:100182. [PMID: 39742087 PMCID: PMC11687336 DOI: 10.1016/j.addicn.2024.100182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks. Fentanyl consumption peaked in both female and male mice at the 30 μg/mL dose, with female mice consuming significantly more fentanyl than male mice. Mice consumed sufficient fentanyl such that withdrawal was precipitated with naloxone, with males having increased withdrawal symptoms as compared to females, despite lower pharmacological exposure. We also performed behavioral assays to measure avoidance behavior and reward-seeking during fentanyl abstinence. Female mice displayed reduced avoidance behaviors in the open field assay, whereas male mice showed increased avoidance in the light/dark box assay. Female mice also exhibited increased reward-seeking in the sucrose preference test. Fentanyl-consuming mice of both sexes showed impaired cued fear extinction learning following fear conditioning and increased excitatory synaptic drive and increased excitability of BLA principal neurons. Our experiments demonstrate that long-term oral fentanyl consumption results in wide-ranging physiological and behavioral disruptions. This model could be useful to further study fentanyl withdrawal syndrome and behaviors and neuroplasticity associated with protracted fentanyl withdrawal.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Downs AM, Kmiec G, McElligott ZA. Oral Fentanyl Consumption and Withdrawal Impairs Fear Extinction Learning and Enhances Basolateral Amygdala Principal Neuron Excitatory-Inhibitory Balance in Male and Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569085. [PMID: 38076868 PMCID: PMC10705490 DOI: 10.1101/2023.11.28.569085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks. Fentanyl consumption peaked in both female and male mice at the 30 µg/mL dose, with female mice consuming significantly more fentanyl than male mice. Mice consumed sufficient fentanyl such that withdrawal was precipitated with naloxone, with males having more withdrawal symptoms, despite lower pharmacological exposure. We also performed behavioral assays to measure avoidance behavior and reward-seeking during fentanyl abstinence. Female mice displayed reduced avoidance behaviors in the open field assay, whereas male mice showed increased avoidance in the light/dark box assay. Female mice also exhibited increased reward-seeking in the sucrose preference test. Fentanyl-consuming mice of both sexes showed impaired cued fear extinction learning following fear conditioning and increased excitatory synaptic drive and increased excitability of BLA principal neurons. Our experiments demonstrate that long-term oral fentanyl consumption results in wide-ranging physiological and behavioral disruptions. This model could be useful to further study fentanyl withdrawal syndrome and behaviors and neuroplasticity associated with protracted fentanyl withdrawal.
Collapse
|
3
|
Crawford CA, Taylor JA, Park GI, Rios JW, Bunch J, Greenwood CJ, Lopez Sanchez DY, Gonzales DJ. Effects of neonatal fentanyl on late adolescent opioid-mediated behavior. Front Neurosci 2023; 17:1094241. [PMID: 36866335 PMCID: PMC9971583 DOI: 10.3389/fnins.2023.1094241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Because of the steady increase in the use of synthetic opioids in women of childbearing age, a large number of children are at risk of exposure to these drugs prenatally or postnatally through breast milk. While there is older literature looking at the effects of morphine and heroin, there are relatively few studies looking at the long-term effects of high-potency synthetic opioid compounds like fentanyl. Thus, in the present study, we assessed whether brief exposure to fentanyl in male and female rat pups during a period roughly equivalent to the third trimester of CNS development altered adolescent oral fentanyl self-administration and opioid-mediated thermal antinociception. Methods We treated the rats with fentanyl (0, 10, or 100 μg/kg sc) from postnatal day (PD) 4 to PD 9. The fentanyl was administered daily in two injections given 6 h apart. After the last injection on PD 9, the rat pups were left alone until either PD 40 where they began fentanyl self-administration training or PD 60 where they were tested for morphine- (0, 1.25, 2.5, 5, or 10 mg/kg) or U50,488- (0, 2.5, 5, 10, or 20 mg/kg) induced thermal antinociception. Results In the self-administration study, we found that female rats had more active nose pokes than male rats when receiving a fentanyl reward but not sucrose alone solution. Early neonatal fentanyl exposure did not significantly alter fentanyl intake or nose-poke response. In contrast, early fentanyl exposure did alter thermal antinociception in both male and female rats. Specifically, fentanyl (10 μg/kg) pre-treatment increased baseline paw-lick latencies, and the higher dose of fentanyl (100 μg/kg) reduced morphine-induced paw-lick latencies. Fentanyl pre-treatment did not alter U50,488-mediated thermal antinociception. Conclusions Although our exposure model is not reflective of typical human fentanyl use during pregnancy, our study does illustrate that even brief exposure to fentanyl during early development can have long-lasting effects on mu-opioid-mediated behavior. Moreover, our data suggest that females may be more susceptible to fentanyl abuse than males.
Collapse
Affiliation(s)
| | - Jordan A. Taylor
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Ginny I. Park
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Jasmine W. Rios
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Joseph Bunch
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Constance J. Greenwood
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - David Y. Lopez Sanchez
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Diego J. Gonzales
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, United States
| |
Collapse
|
4
|
Monroe SC, Radke AK. Aversion-resistant fentanyl self-administration in mice. Psychopharmacology (Berl) 2021; 238:699-710. [PMID: 33226446 PMCID: PMC7914171 DOI: 10.1007/s00213-020-05722-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
RATIONALE Animal models of compulsive drug use that continues despite negative consequences can be used to investigate the neural mechanisms of addiction. However, models of punished or aversion-resistant opioid self-administration are notably lacking. OBJECTIVES We sought to develop an aversion-resistant, oral fentanyl self-administration paradigm. METHODS In Experiment 1, C57BL/6J male and female, adult mice consumed fentanyl (10 μg/mL) in a two-bottle drinking in the dark task and escalating concentrations of quinine were added to the bottles. In Experiment 2, mice were trained to administer oral fentanyl (10 μg/mL) in an operant response task. Quinine was next added to the fentanyl solution in escalating concentrations. In Experiment 3, mice were trained to respond for oral fentanyl or fentanyl adulterated with 500 μM quinine on every session. In Experiment 4, mice were trained to respond for a 1% sucrose solution before introduction of quinine. RESULTS Quinine reduced two-bottle choice consumption in males but not in females. Both sexes demonstrated the ability to detect the selected concentrations of quinine in fentanyl. In the operant chamber, mice responded robustly for oral fentanyl but introduction of quinine at any stage of training was insufficient to reduce responding. In contrast, quinine reduced responding for sucrose at concentrations above 250 μM. CONCLUSIONS Mice will respond for and consume oral fentanyl in both a two-bottle choice and an operant response task. Quinine is detectable in fentanyl but mice will continue to respond for and consume fentanyl with quinine in both paradigms. These data support the use of these models in behavioral studies of compulsive-like opioid use.
Collapse
Affiliation(s)
| | - Anna K. Radke
- Correspondence to: Anna K. Radke, PhD, 90 N Patterson Ave, Oxford, OH, USA 45056,
| |
Collapse
|
5
|
Morphine treatment in early life alters glutamate uptake in the spinal synaptosomes of adult rats. Neurosci Lett 2012; 529:51-4. [DOI: 10.1016/j.neulet.2012.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/22/2012] [Accepted: 09/07/2012] [Indexed: 01/28/2023]
|
6
|
Morphine exposure in early life increases nociceptive behavior in a rat formalin tonic pain model in adult life. Brain Res 2010; 1367:122-9. [PMID: 20977897 DOI: 10.1016/j.brainres.2010.10.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/11/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
Abstract
Considering the importance of a deeper understanding of the effect throughout life of opioid analgesia at birth, our objective was to determine whether morphine administration in early life, once a day for 7 days in 8-day-old rats, alters the nociceptive response over the short (P16), medium (P30), and long term (P60) and to evaluate which system is involved in the altered nociceptive response. The nociceptive responses were assessed by the formalin test, and the behavior analyzed was the total time spent in biting and flicking of the formalin-injected hindpaw, recorded during the first 5 min (phase I) and from 15-30 min (phase II). The morphine group showed no change in nociceptive response at P16, but at P30 and P60, the nociceptive response was increased in phase I, and in both phases, respectively. At P30 and P60, the animals received a non-steroidal anti-inflammatory drug (indomethacin) or NMDA receptor antagonist (ketamine) 30 min before the formalin test. The increase in the nociceptive response was completely reversed by ketamine, and partially by indomethacin. These results indicate that early morphine exposure causes an increase in the nociceptive response in adult life. It is possible that this lower nociception threshold is due to neuroadaptations in nociceptive circuits, such as the glutamatergic system. Thus, this work demonstrates the importance of evaluating clinical consequences related to early opioid administration and suggests a need for a novel design of agents that may counteract opiate-induced neuroplastic changes.
Collapse
|
7
|
Zissen MH, Zhang G, McKelvy A, Propst JT, Kendig JJ, Sweitzer SM. Tolerance, opioid-induced allodynia and withdrawal associated allodynia in infant and young rats. Neuroscience 2006; 144:247-62. [PMID: 17055659 PMCID: PMC1858640 DOI: 10.1016/j.neuroscience.2006.08.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 08/23/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Our laboratory has previously characterized age-dependent changes in nociception upon acute morphine withdrawal. This study characterizes changes in mechanical and thermal nociception following acute, intermittent, or continuous morphine administration in infant (postnatal days 5-8) and young (postnatal days 19-21) rats. Morphine was given as a single acute administration (AM), intermittently twice a day for 3 days (IM), or continuously for 72 h via pump (CM). AM did not produce long-term changes in mechanical or thermal nociception in either infant or young rats. CM produced changes in mechanical nociception that included the development of tolerance, opioid-induced mechanical allodynia and withdrawal-associated mechanical allodynia in young rats, but only tolerance and a prolonged withdrawal-associated mechanical allodynia in infant rats. IM produced withdrawal-associated mechanical allodynia in both infant and young rats. Measuring paw withdrawal responses to thermal stimuli, infant and young rats showed tolerance without opioid-induced thermal hyperalgesia or withdrawal-associated thermal hyperalgesia following CM. In contrast to CM, withdrawal-associated thermal hyperalgesia was seen in both ages following IM. In conclusion, CM versus IM differentially modified mechanical and thermal nociception, suggesting that opioid-dependent thermal hyperalgesia and mechanical allodynia can be dissociated from each other in infant and young rats. Furthermore, tolerance, opioid-induced hypersensitivity, and withdrawal-associated hypersensitivity are age-specific and may be mediated by distinct mechanisms.
Collapse
Affiliation(s)
- Maurice H. Zissen
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305
| | - Guohua Zhang
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - Alvin McKelvy
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - John T. Propst
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| | - Joan J. Kendig
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305
| | - Sarah M. Sweitzer
- Department of Pharmacology, Physiology, Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29229
| |
Collapse
|
8
|
Simons SHP, Anand KJS. Pain control: opioid dosing, population kinetics and side-effects. Semin Fetal Neonatal Med 2006; 11:260-7. [PMID: 16621750 DOI: 10.1016/j.siny.2006.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neonates undergoing invasive procedures, postoperative pain or ventilatory support commonly receive opioids for treating pain and stress. Randomized clinical trials have examined the benefits and adverse effects of morphine or fentanyl for ventilated neonates and other indications. This paper summarizes the current evidence for opioid dosing in newborns, reviews their side-effects and explains the use of population kinetics and non-linear mixed-effects modeling to analyze the data from clinical trials. Opioid use should be reserved for severe pain postoperatively or during intensive care in neonates, using continuous infusions rather than intermittent boluses. The safety and efficacy data from prolonged opioid use, particularly on the long-term outcomes of neonates, is still lacking. The pharmacodynamics and pharmacogenetics of opioid use in infancy needs further investigation, using non-linear mixed-effects models to drive individualized therapy. The current interest in opioid research will reap rich dividends in providing pain relief for neonates and avoiding dangerous side effects.
Collapse
Affiliation(s)
- Sinno H P Simons
- Department of Pediatric Surgery, Erasmus-MC/Sophia Children's Hospital, Rotterdam, The Netherlands.
| | | |
Collapse
|
9
|
Zissen MH, Zhang G, Kendig JJ, Sweitzer SM. Acute and chronic morphine alters formalin pain in neonatal rats. Neurosci Lett 2006; 400:154-7. [PMID: 16517072 DOI: 10.1016/j.neulet.2006.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/14/2006] [Accepted: 02/14/2006] [Indexed: 11/30/2022]
Abstract
The present study tested the hypothesis that morphine exposure during the human developmental equivalent of the third trimester would alter inflammatory pain. This study examined whether acute or continuous opioid exposure in the neonatal rat alters formalin-induced nociception after 4 days of abstinence. Rats were exposed to a single acute administration of morphine on postnatal day 7 or 72 h of opioid infusion from postnatal days 5-7 via osmotic pump. When challenged with intraplantar formalin on postnatal day 11, rats exposed to acute or chronic morphine had increased phase II pain-associated behaviors. These findings suggest that neonatal morphine exposure may have unintended consequences on inflammatory pain.
Collapse
Affiliation(s)
- Maurice H Zissen
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
10
|
Gaitán G, Ahuir FJ, Herrero JF. Enhancement of fentanyl antinociception by subeffective doses of nitroparacetamol (NCX-701) in acute nociception and in carrageenan-induced monoarthritis. Life Sci 2005; 77:85-95. [PMID: 15848221 DOI: 10.1016/j.lfs.2004.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
We have reported that subanalgesic doses of new generation non-steroidal anti-inflammatory drugs (NSAIDs) enhance the antinociceptive activity of the mu-opiate fentanyl, and the duration of its effect, in acute nociception. Since this therapy is intended for situations of hyperalgesia, we have compared the antinociceptive activity of fentanyl in the absence and in the presence of subeffective doses of NCX-701 (nitroparacetamol) in normal animals and in animals with carrageenan-induced monoarthritis. Subanalgesic dose of NCX-701 did not modify any of the nociceptive responses on its own but reduced the ID50 of fentanyl more than two-fold in both the normal and sensitized states. When administered alone, full recovery from fentanyl was always observed within 15 to 20 minutes, however, full recovery was not observed in the presence of NCX-701. Naloxone was unable to reverse the effect, suggesting a possible reduction of other opiate-mediated secondary effects. We therefore studied the possibility that combining administration of fentanyl and nitroparacetamol (NCX-701) would reduce the development of acute tolerance to fentanyl in behavioral experiments. Acute tolerance to fentanyl in behavioral nociceptive reflexes was developed within 72 h after the constant infusion of the drug, whereas in animals treated with small doses of NCX-701 tolerance was not observed. In summary, our results, both in normal animals and in animals with hyperalgesia, show that fentanyl antinociception can be strongly potentiated with subanalgesic doses of the NSAID NCX-701 and that the development of acute tolerance to fentanyl in normal animals is prevented by this combination of drugs.
Collapse
Affiliation(s)
- Gema Gaitán
- Departamento de Fisiología, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | | | | |
Collapse
|
11
|
Greenwald MK, Roehrs TA. Mu-opioid self-administration vs passive administration in heroin abusers produces differential EEG activation. Neuropsychopharmacology 2005; 30:212-21. [PMID: 15508021 DOI: 10.1038/sj.npp.1300596] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Psychoactive drug self-administration (SA) produces different neurobiological effects than passive administration (PA) in non-human animals; however, such consequences have never been examined in human drug abusers. The present study compared electroencephalographic (EEG) activation produced by intravenous PA and SA of the mu-opioid fentanyl in eight heroin-dependent, methadone-stabilized male participants. In phase 1, participants received cumulative PA of fentanyl (up to 1.5 mg/70 kg; session 1), then bolus PA of placebo and fentanyl 1.5 mg/70 kg (session 2). High-dose fentanyl significantly increased the amplitude of slow-frequency (delta- and theta-band) EEG activity. In phase 2, bolus fentanyl 1.5 mg/70 kg was available for SA, requiring the participant to complete 1500 responses, in each of two sessions after saline or naloxone pretreatment. Delta EEG peak amplitude increases were greater following fentanyl SA than fentanyl PA, primarily over the central midline region, and were attenuated by naloxone pretreatment. The EEG increase and its attenuation by naloxone agree with preclinical evidence and suggest that SA-related EEG responses were mediated by opioid receptors.
Collapse
Affiliation(s)
- Mark K Greenwald
- Substance Abuse Research Division, Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48207, USA.
| | | |
Collapse
|
12
|
Abstract
This paper is the twenty-third installment of the annual review of research concerning the opiate system. It summarizes papers published during 2000 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; learning, memory, and reward; eating and drinking; alcohol and other drugs of abuse; sexual activity, pregnancy, and development; mental illness and mood; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; gastrointestinal, renal, and hepatic function; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, New Orleans, LA 70148, USA.
| | | |
Collapse
|