1
|
Choi SJ, Savagatrup S, Kim Y, Lang JH, Swager TM. Precision pH Sensor Based on WO 3 Nanofiber-Polymer Composites and Differential Amplification. ACS Sens 2019; 4:2593-2598. [PMID: 31573180 DOI: 10.1021/acssensors.9b01579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a new type of potentiometric pH sensor with sensitivity exceeding the theoretical Nernstian behavior (-59.1 mV/pH). For the pH-sensitive electrode, 1D tungsten oxide (WO3) nanofibers (NFs) were prepared to obtain large surface area and high porosity. These NFs were then stabilized in a reactive porous chloromethylated triptycene poly(ether sulfone) (Cl-TPES) binder, to facilitate proton diffusion into the polymer membrane. The measurements were performed with a differential amplifier using matched MOSFETs and providing a 10-fold amplified signal over a simple potentiometric determination. A high pH sensitivity of -377.5 mV/pH and a linearity of 0.9847 were achieved over the pH range of 6.90-8.94. Improved signal-to-noise ratios with large EMF signal changes of 175 mV were obtained in artificial seawater ranging pH 8.07-7.64 (ΔpH = 0.43), which demonstrates a practical application for pH monitoring in ocean environments.
Collapse
|
2
|
Moreno B, DiCorato A, Park A, Mobilia K, Knapp R, Bleher R, Wilke C, Alvares K, Joester D. Culture of and experiments with sea urchin embryo primary mesenchyme cells. Methods Cell Biol 2019; 150:293-330. [PMID: 30777181 PMCID: PMC8273911 DOI: 10.1016/bs.mcb.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletogenesis in the sea urchin embryo gives rise to a pair of intricate endoskeletal spicules. Deposition of these skeletal elements in the early larva is the outcome of a morphogenetic program that begins with maternal inputs in the early zygote and results in the specification of the large micromere-primary mesenchyme cell (PMC) lineage. PMCs are of considerable interest as a model system, not only to dissect the mechanism of specific developmental processes, but also to investigate their evolution and the unrivaled level of control over the formation of a graded, mechanically robust, yet single crystalline biomineral. The ability to study gene regulatory circuits, cellular behavior, signaling pathways, and molecular players involved in biomineralization is significantly boosted by the high level of autonomy of PMCs. In fact, in the presence of horse serum, micromeres differentiate into PMCs and produce spicules in vitro, separated from the embryonic milieu. PMC culture eliminates indirect effects that can complicate the interpretation of experiments in vivo, offers superior spatiotemporal control, enables PMC-specific readouts, and is compatible with most imaging and characterization techniques. In this chapter, we provide an updated protocol, based on the pioneering work by Okazaki and Wilt, for the isolation of micromeres and subsequent culture of PMCs, as well as protocols for fixation and staining for fluorescent microscopy, preparation of cell cultures for electron microscopy, and the isolation of RNA.
Collapse
Affiliation(s)
- Bradley Moreno
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Allessandra DiCorato
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander Park
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Kellen Mobilia
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Regina Knapp
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Reiner Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Charlene Wilke
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Keith Alvares
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
3
|
Abstract
Programs of gene transcription are controlled by cis-acting DNA elements, including enhancers, silencers, and promoters. Local accessibility of chromatin has proven to be a highly informative structural feature for identifying such regulatory elements, which tend to be relatively open due to their interactions with proteins. Recently, ATAC-seq (assay for transposase-accessible chromatin using sequencing) has emerged as one of the most powerful approaches for genome-wide chromatin accessibility profiling. This method assesses DNA accessibility using hyperactive Tn5 transposase, which simultaneously cuts DNA and inserts sequencing adaptors, preferentially in regions of open chromatin. ATAC-seq is a relatively simple procedure which can be applied to only a few thousand cells. It is well-suited to developing embryos of sea urchins and other echinoderms, which are a prominent experimental model for understanding the genomic control of animal development. In this chapter, we present a protocol for applying ATAC-seq to embryonic cells of sea urchins.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
4
|
Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev Biol 2018; 437:140-151. [PMID: 29555242 PMCID: PMC5973877 DOI: 10.1016/j.ydbio.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.
Collapse
Affiliation(s)
- Silvia P Sepúlveda-Ramírez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - Leslie Toledo-Jacobo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - John H Henson
- University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States; Department of Biology, Dickinson College, Carlisle, PA 17013, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States.
| |
Collapse
|
5
|
Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis. Exp Cell Res 2017; 359:205-214. [PMID: 28782554 DOI: 10.1016/j.yexcr.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/26/2017] [Accepted: 07/22/2017] [Indexed: 12/18/2022]
Abstract
The sea urchin larval embryo elaborates two calcitic endoskeletal elements called spicules. Spicules are synthesized by the primary mesenchyme cells (PMCs) and begin to form at early gastrula stage. It is known that the calcium comprising the spicules comes from the seawater and we wish to further consider the mode of calcium transport from the extracellular seawater to the PMCs and then onto the forming spicules. We used PMC in vitro cultures, calcein, fluorescently labeled dextran, and fluorescently labeled Wheat Germ Agglutinin (WGA) to track calcium transport from the seawater into PMCs and spicules and to determine how molecules from the surface of PMCs interact with the incoming calcium. Labeling of PMC endocytic vesicles and forming spicules by both calcein and fluorescently tagged dextran indicate that calcium is taken up from the seawater by endocytosis and directly incorporated into spicules. Calcein labeling studies also indicate that calcium from the extracellular seawater begins to be incorporated into spicules within 30min of uptake. In addition, we demonstrate that fluorescently labeled WGA and calcein are taken up by many of the same endocytic vesicles and are incorporated into growing spicules. These findings suggest that PMC specific surface molecules accompany calcium ions as they enter PMCs via endocytosis and are incorporated together in the growing spicule. Using anti-spicule matrix protein antibodies, we pinpoint a subset of spicule matrix proteins that may accompany calcium ions from the surface of the PMCs until they are incorporated into spicules. Msp130 is identified as one of these spicule matrix proteins.
Collapse
|
6
|
Sun Z, Ettensohn CA. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo. Dev Biol 2016; 421:149-160. [PMID: 27955944 DOI: 10.1016/j.ydbio.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Cell-cell signaling plays a prominent role in the formation of the embryonic skeleton of sea urchins, but the mechanisms are poorly understood. In the present study, we uncover an essential role for TGF-β sensu stricto signaling in this process. We show that TgfbrtII, a type II receptor dedicated to signaling through TGF-β sensu stricto, is expressed selectively in skeletogenic primary mesenchyme cells (PMCs) during skeleton formation. Morpholino (MO) knockdowns and studies with a specific TgfbrtII inhibitor (ITD-1) in both S. purpuratus and Lytechinus variegatus embryos show that this receptor is required for biomineral deposition. We provide pharmacological evidence that Alk4/5/7 is the cognate TGF-β type I receptor that pairs with TgfbrtII and show by inhibitor treatments of isolated micromeres cultured in vitro that both Alk4/5/7 and TgfbrtII function cell-autonomously in PMCs. Gene expression and gene knockdown studies suggest that TGF-β sensu stricto may be the ligand that interacts with TgfbrtII and support the view that this TGF-β superfamily ligand provides an essential, permissive cue for skeletogenesis, although it is unlikely to provide spatial patterning information. Taken together, our findings reveal that this model morphogenetic process involves an even more diverse suite of cell signaling pathways than previously appreciated and show that PMCs integrate a complex set of both generalized and spatially localized cues in assembling the endoskeleton.
Collapse
Affiliation(s)
- Zhongling Sun
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, United States.
| |
Collapse
|
7
|
Kanold JM, Lemloh ML, Schwendt P, Burghard Z, Baier J, Herbst F, Bill J, Marin F, Brümmer F. In vivo enrichment of magnesium ions modifies sea urchin spicule properties. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/bbn.14.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sea urchin embryos produce an endoskeleton composed of two symmetric spicules that consist of calcite, containing approximately 5% magnesium. The function of magnesium ions in mineral formation in vivo and the consequence of their incorporation into the mineral on mechanical properties are largely unknown. The authors investigated the in vivo effects of excess magnesium ion concentrations in the medium on skeletal development of Arbacia lixula. Morphological deformations of pluteus larval spicules were observed after cultivation in Mg2+-enriched sea water. Energy dispersive X-ray spectroscopy showed that magnesium ions were homogeneously distributed for complete larvae and spicule cross-sections. Magnesium ion content was quantified by inductively coupled plasma optical emission spectrometry, which revealed a considerable increased incorporation of magnesium ions into spicules of larvae from Mg2+-enriched sea water. However, no change in crystal polymorph formation was observed by X-ray diffraction. Mechanical properties of spicule cross-sections were analysed by nanoindentation and revealed significantly higher stiffness values for spicules from Mg2+-enriched sea water compared to the control, whereas no significant change in hardness values was obtained. This in vivo study shows that increased magnesium ion incorporation into sea urchin larval spicules modifies the mineral properties and supports this model to investigate the effect of minor ions on biomineralisation.
Collapse
Affiliation(s)
- Julia Maxi Kanold
- Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Marie-Louise Lemloh
- Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring, Stuttgart, Germany
- INM – Leibniz Institute for New Materials, Biomineralization Group, Campus D2 2, Saarbrücken, Germany
| | - Peggy Schwendt
- Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| | - Zaklina Burghard
- Institute for Materials Science, University of Stuttgart, Heisenbergstrasse, Stuttgart, Germany
| | - Johannes Baier
- Institute for Materials Science, University of Stuttgart, Heisenbergstrasse, Stuttgart, Germany
| | - Frédéric Herbst
- ICB, UMR 5209 – DAI, Université de Bourgogne, UFR Sciences et Techniques, Dijon, France
| | - Joachim Bill
- Professor, Institute for Materials Science, University of Stuttgart, Heisenbergstrasse, Stuttgart, Germany
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne, Dijion, France
| | - Franz Brümmer
- Professor, Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring, Stuttgart, Germany
| |
Collapse
|
8
|
Peng CJ, Wikramanayake AH. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling. PLoS One 2013; 8:e80693. [PMID: 24236196 PMCID: PMC3827468 DOI: 10.1371/journal.pone.0080693] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/08/2013] [Indexed: 12/25/2022] Open
Abstract
Pattern formation along the animal-vegetal (AV) axis in sea urchin embryos is initiated when canonical Wnt (cWnt) signaling is activated in vegetal blastomeres. The mechanisms that restrict cWnt signaling to vegetal blastomeres are not well understood, but there is increasing evidence that the egg's vegetal cortex plays a critical role in this process by mediating localized "activation" of Disheveled (Dsh). To investigate how Dsh activity is regulated along the AV axis, sea urchin-specific Dsh antibodies were used to examine expression, subcellular localization, and post-translational modification of Dsh during development. Dsh is broadly expressed during early sea urchin development, but immunolocalization studies revealed that this protein is enriched in a punctate pattern in a novel vegetal cortical domain (VCD) in the egg. Vegetal blastomeres inherit this VCD during embryogenesis, and at the 60-cell stage Dsh puncta are seen in all cells that display nuclear β-catenin. Analysis of Dsh post-translational modification using two-dimensional Western blot analysis revealed that compared to Dsh pools in the bulk cytoplasm, this protein is differentially modified in the VCD and in the 16-cell stage micromeres that partially inherit this domain. Dsh localization to the VCD is not directly affected by disruption of microfilaments and microtubules, but unexpectedly, microfilament disruption led to degradation of all the Dsh pools in unfertilized eggs over a period of incubation suggesting that microfilament integrity is required for maintaining Dsh stability. These results demonstrate that a pool of differentially modified Dsh in the VCD is selectively inherited by the vegetal blastomeres that activate cWnt signaling in early embryos, and suggests that this domain functions as a scaffold for localized Dsh activation. Localized cWnt activation regulates AV axis patterning in many metazoan embryos. Hence, it is possible that the VCD is an evolutionarily conserved cytoarchitectural domain that specifies the AV axis in metazoan ova.
Collapse
Affiliation(s)
- ChiehFu Jeff Peng
- Department of Biology, University of Miami, Coral Gables, Florida, United States of America
| | | |
Collapse
|
9
|
Lemloh ML, Burghard Z, Forien JB, Bill J, Brümmer F. Low Mg/Ca ratio alters material properties in sea urchin larvae skeleton. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.12.00016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biomineralization in organisms is strictly regulated, and therefore, chemical compositions as well as crystal structures of the minerals are species specific. During the embryonic development, sea urchin larvae produce a calcite endoskeleton (spicules) that contains about 5% of Mg. For sea urchins and other organisms, it is assumed that Mg is important for the process of biomineralization and for the mechanical properties of the resulting biomineral. To study the influence of Mg on skeletal growth and on biomineral structure and composition, sea urchin larvae spicules were chosen as an in vivo test system. For this purpose, the Mg/Ca ratio was modified in the artificial seawater medium wherein sea urchin larvae were growing. It was shown that Mg deficiency during larval development caused morphology defects of the larvae and of their calcite spicules. The Mg distribution within the larvae skeleton was analyzed and found to be homogenous. An in vivo reduction of the Mg content influenced the mechanical performance of larval spicules (Young’s modulus and hardness). The investigations of larvae exposed to reduced Mg conditions highlight the important role Mg plays for sea urchin larvae development, biomineralization process and the resulting biomineral. The sea urchin larvae are presented as an ideal model to study different effects on larval development and morphology, especially on the biomineral properties.
Collapse
Affiliation(s)
| | - Zaklina Burghard
- Institute for Materials Science, University of Stuttgart, Stuttgart, Germany
| | | | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Stuttgart, Germany
| | - Franz Brümmer
- Biological Institute, Zoology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Knapp RT, Wu CH, Mobilia KC, Joester D. Recombinant sea urchin vascular endothelial growth factor directs single-crystal growth and branching in vitro. J Am Chem Soc 2012; 134:17908-11. [PMID: 23066927 DOI: 10.1021/ja309024b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomineralization in sea urchin embryos is a crystal growth process that results in oriented single-crystalline spicules with a complex branching shape and smoothly curving surfaces. Uniquely, the primary mesenchyme cells (PMCs) that construct the endoskeleton can be cultured in vitro. However, in the absence of morphogenetic cues secreted by other cells in the embryo, spicules deposited in PMC culture lack the complex branching behavior observed in the embryo. Herein we demonstrate that recombinant sea urchin vascular endothelial growth factor (rVEGF), a signaling molecule that interacts with a cell-surface receptor, induces spiculogenesis and controls the spicule shape in PMC culture. Depending on the rVEGF concentration, PMCs deposit linear, "h"- and "H"-shaped, or triradiate spicules. Remarkably, the change from linear to triradiate occurs with a switch from bidirectional crystal growth parallel to the calcite c axis to growth along the three a axes. This finding has implications for our understanding of how cells integrate morphogenesis on the multi-micrometer scale with control over lattice orientation on the atomic scale. The PMC model system is uniquely suited to investigate this mechanism and develop biotechnological approaches to single-crystal growth.
Collapse
Affiliation(s)
- Regina T Knapp
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
11
|
Killian CE, Croker L, Wilt FH. SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus. Gene Expr Patterns 2010; 10:135-9. [DOI: 10.1016/j.gep.2010.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/12/2010] [Accepted: 01/16/2010] [Indexed: 11/17/2022]
|
12
|
Stamateris RE, Rafiq K, Ettensohn CA. The expression and distribution of Wnt and Wnt receptor mRNAs during early sea urchin development. Gene Expr Patterns 2009; 10:60-4. [PMID: 19853669 DOI: 10.1016/j.gep.2009.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/09/2009] [Accepted: 10/16/2009] [Indexed: 11/17/2022]
Abstract
The protein beta-catenin plays a critically important role in establishing axial polarity during early animal development. In many organisms, beta-catenin is degraded preferentially on one side of the cleavage stage embryo. On the opposite side of the embryo, beta-catenin is stabilized and accumulates in the nucleus, where it functions in concert with members of the LEF/TCF family to activate the transcription of diverse target genes. Genes that are activated by beta-catenin play an essential role in the specification of endomesoderm and in the establishment of key signaling centers in the early embryo. In several organisms, the asymmetric distribution of maternal components of the canonical Wnt pathway has been shown to be responsible for the polarized stabilization of beta-catenin. In this study, we identified all Wnt and Wnt receptor mRNAs that are present in unfertilized sea urchin eggs and early embryos and analyzed their distributions along the primary (AV) axis. Our findings indicate that the asymmetric distribution of a maternal Wnt or Wnt receptor mRNA is unlikely to be a primary determinant of the polarized stabilization of beta-catenin along the AV axis. This contrasts sharply with findings in other organisms and points to remarkable evolutionary flexibility in the molecular mechanisms that underlie this otherwise very highly conserved patterning process.
Collapse
Affiliation(s)
- Rachel E Stamateris
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
13
|
The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 2008; 314:1744-52. [PMID: 18355808 DOI: 10.1016/j.yexcr.2008.01.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/04/2008] [Accepted: 01/31/2008] [Indexed: 11/18/2022]
Abstract
Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.
Collapse
|