1
|
Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol 2021; 14:282-295. [PMID: 33184475 PMCID: PMC7658438 DOI: 10.1038/s41385-020-00356-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 02/04/2023]
Abstract
Airway macrophages (AMs) play key roles in the maintenance of lung immune tolerance. Tissue tailored, highly specialised and strategically positioned, AMs are critical sentinels of lung homoeostasis. In the last decade, there has been a revolution in our understanding of how metabolism underlies key macrophage functions. While these initial observations were made during steady state or using in vitro polarised macrophages, recent studies have indicated that during many chronic lung diseases (CLDs), AMs adapt their metabolic profile to fit their local niche. By generating reactive oxygen species (ROS) for pathogen defence, utilising aerobic glycolysis to rapidly generate cytokines, and employing mitochondrial respiration to fuel inflammatory responses, AMs utilise metabolic reprogramming for host defence, although these changes may also support chronic pathology. This review focuses on how metabolic alterations underlie AM phenotype and function during CLDs. Particular emphasis is given to how our new understanding of AM metabolic plasticity may be exploited to develop AM-focused therapies.
Collapse
|
2
|
Byrne AJ, Powell JE, O'Sullivan BJ, Ogger PP, Hoffland A, Cook J, Bonner KL, Hewitt RJ, Wolf S, Ghai P, Walker SA, Lukowski SW, Molyneaux PL, Saglani S, Chambers DC, Maher TM, Lloyd CM. Dynamics of human monocytes and airway macrophages during healthy aging and after transplant. J Exp Med 2020; 217:133575. [PMID: 31917836 PMCID: PMC7062517 DOI: 10.1084/jem.20191236] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
The ontogeny of airway macrophages (AMs) in human lung and their contribution to disease are poorly mapped out. In mice, aging is associated with an increasing proportion of peripherally, as opposed to perinatally derived AMs. We sought to understand AM ontogeny in human lung during healthy aging and after transplant. We characterized monocyte/macrophage populations from the peripheral blood and airways of healthy volunteers across infancy/childhood (2–12 yr), maturity (20–50 yr), and older adulthood (>50 yr). Single-cell RNA sequencing (scRNA-seq) was performed on airway inflammatory cells isolated from sex-mismatched lung transplant recipients. During healthy aging, the proportions of blood and bronchoalveolar lavage (BAL) classical monocytes peak in adulthood and decline in older adults. scRNA-seq of BAL cells from lung transplant recipients indicates that after transplant, the majority of AMs are recipient derived. These data show that during aging, the peripheral monocyte phenotype is consistent with that found in the airways and, furthermore, that the majority of human AMs after transplant are derived from circulating monocytes.
Collapse
Affiliation(s)
- Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia.,Cellular Genomics Futures Institute, University of New South Wales, Kensington, Sydney, Australia
| | - Brendan J O'Sullivan
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ashley Hoffland
- National Heart and Lung Institute, Imperial College London, London, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - James Cook
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Katie L Bonner
- National Heart and Lung Institute, Imperial College London, London, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Richard J Hewitt
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | | | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Philip L Molyneaux
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Daniel C Chambers
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Toby M Maher
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK
| | - Clare M Lloyd
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
3
|
Baharom F, Rankin G, Blomberg A, Smed-Sörensen A. Human Lung Mononuclear Phagocytes in Health and Disease. Front Immunol 2017; 8:499. [PMID: 28507549 PMCID: PMC5410584 DOI: 10.3389/fimmu.2017.00499] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
4
|
|
5
|
|
6
|
Monick MM, Carter AB, Hunninghake GW. Human alveolar macrophages are markedly deficient in REF-1 and AP-1 DNA binding activity. J Biol Chem 1999; 274:18075-80. [PMID: 10364260 DOI: 10.1074/jbc.274.25.18075] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many functions of human alveolar macrophages are altered compared with their precursor cell, the blood monocyte (monocyte), the reason(s) for these functional changes have not been determined. We recently reported that human alveolar macrophages do not express AP-1 DNA binding activity (Monick, M. M., Carter, A. B., Gudmundsson, G., Geist, L. J., and Hunninghake, G. W. (1998) Am. J. Physiol. 275, L389-L397). To determine why alveolar macrophages do not express AP-1 DNA binding activity, we first showed that there was not a decrease in expression of the FOS and JUN proteins that make up the AP-1 complex. There was, however, a significant difference in the amounts of the nuclear protein, REF-1 (which regulates AP-1 DNA binding by altering the redox status of FOS and JUN proteins), in alveolar macrophages compared with monocytes. In addition, in vitro differentiation of monocytes to a macrophage-like cell resulted in decreased amounts of REF-1. Finally, addition of REF-1 from activated monocytes to alveolar macrophage nuclear proteins resulted in a marked increase in AP-1 DNA binding. These studies strongly suggest that the process of differentiation of monocytes into alveolar macrophages is associated with a loss of REF-1 and AP-1 activity. This observation may explain, in part, some of the functional differences observed for alveolar macrophages compared with monocytes.
Collapse
Affiliation(s)
- M M Monick
- Department of Medicine, University of Iowa College of Medicine and Veterans Affairs Medical Center, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
7
|
Gradoń L, Podgórski A. Displacement of alveolar macrophages in air space of human lung. Med Biol Eng Comput 1995; 33:575-81. [PMID: 7475390 DOI: 10.1007/bf02522517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of alveolar macrophages in the process of the human lung clearance is summarised. Three patterns of alveolar macrophage (AM) displacement on the surface of alveolus are distinguished depending on the loading of the surface with insoluble deposits, i.e. directional, directional with small stochastic noise and purely random. The physical analysis is presented of chemotactic movement and hydrodynamical effects on the residence time of AMs in a geometrical model of the human alveolus. The calculation of exit times from the alveolus is also presented. Calculations show that simultaneous passive and active displacement of AMs loaded with particles reduces exit time of the macrophage by 85%, compared to the case of purely directional movement. When active transport is reduced, due to AM overloading, exit time is determined by the passive transport rate. For reduced surfactant activity, the exit time of AM from the alveolus is the function of its chemotactic activity only and is inversely proportional to AM mobility. The exit time of AMs tends towards infinity when both mechanisms of clearance decay.
Collapse
Affiliation(s)
- L Gradoń
- Department of Chemical and Process Engineering, Warsaw University of Technology, Poland
| | | |
Collapse
|
8
|
Antonelli M, Bufi M, Gasparetto A. Bronchoalveolar Lavage. UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 1991. [DOI: 10.1007/978-3-642-84209-2_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Thorén SA, Monti M, Holma B. Heat conduction microcalorimetry of overall metabolism in rabbit alveolar macrophages in monolayers and in suspensions. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1033:305-10. [PMID: 2317506 DOI: 10.1016/0304-4165(90)90138-m] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A technique has been developed for studying the overall metabolism in small numbers of cells in monolayers and in suspensions by measuring the heat exchange rate with a thermopile heat-conduction microcalorimeter. The system was tested with alveolar macrophages from rabbits, and heat flux-time curves could be monitored from numbers of cells as low as 0.05 . 10(6). The metabolic activity was found to be unchanged or to decrease very slowly over a period of 20 h. In a conventional cell medium, without the addition of serum, a mean heat flux value of 19.4 (S.D. 3.2) pW. cell-1 (37 degrees C, pH = 7.4) was obtained for alveolar macrophages in monolayers. The corresponding value for cells in the same medium, with the addition of 20% homologous rabbit serum, was 27.0 (S.D. 2.0). We suggest that this calorimetric method can be used as a short-term cytotoxic test for measuring potentially toxic agents in our environment; this test can involve alveolar macrophages of either animal or human origin. In such an assay, the cells should be used in monolayers, and suspensions should be avoided. We found that when alveolar macrophages were used in suspension, the metabolic activity, measured as heat flux, was dependent on cell concentration, even at values as low as 0.2. 10(6) cells per ml.
Collapse
Affiliation(s)
- S A Thorén
- Institute of Hygiene and The Budde Laboratory, University of Copenhagen, Denmark
| | | | | |
Collapse
|
10
|
De Flora S, Ramel C. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Classification and overview. Mutat Res 1988; 202:285-306. [PMID: 3057362 DOI: 10.1016/0027-5107(88)90193-5] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanisms of action of inhibitors of mutagenesis and carcinogenesis are reviewed in the light of our present knowledge. The identified mechanisms are classified into several categories and sub-categories, depending on the stage of intervention in the mutagenesis and carcinogenesis processes, and on the patterns of modulation of the host defense devices. Although a number of the known mechanisms fit into the proposed scheme, the available information on these problems is still fragmentary, and often inhibitors act through multiple mechanisms or can interact with other inhibitors. Moreover, due to the double-edged nature of many protective factors of the organism, and to the wide array of biological properties displayed by several inhibitors, the beneficial effects are in many instances counter-balanced by adverse reactions. Nevertheless, the present data-base on mechanisms of inhibitors, which is expected to grow rapidly in the near future, provides an extremely useful scientific premise for the primary prevention of mutation-related diseases. In this prospect, the elucidation of the underlying mechanisms complements the results emerging from the monitoring of protective end-points in mutagenicity and carcinogenicity test systems.
Collapse
Affiliation(s)
- S De Flora
- Institute of Hygiene and Preventive Medicine, University of Genoa, Italy
| | | |
Collapse
|
11
|
Penney DP. The ultrastructure of epithelial cells of the distal lung. INTERNATIONAL REVIEW OF CYTOLOGY 1988; 111:231-69. [PMID: 3074961 DOI: 10.1016/s0074-7696(08)61736-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review has focused on the structural and functional characteristics of those epithelial cells that line the walls of the lower respiratory bronchioles, alveolar ducts, and alveoli. In all, five cells types were considered: Clara cells, types I, II, and III pneumocytes, and alveolar macrophages. In addition, a very brief mention of the structure and influence of the basement membrane in alveolar development and repair was included, as well as a brief review of the role of epithelial cells in response to selected deleterious influences. No attempt was made to extend this review to cover the structure and functions of the epithelial lining of the conducting portions of the respiratory system, or the exciting and expanding complexities and interrelationships of the septal stroma. Since the volume of literature encircling this subject has virtually exploded during the last 15 years, it becomes almost impossible to review all reports. However, attempts were made to be selective in citations. Insofar as future developments are concerned, much remains to be understood concerning (1) the responses of all cell types to cytotoxic influences, including their respective abilities to repair induced damage, (2) cell-cell and cell-extracellular matrix relationships in response to injury, (3) the uniqueness of the basement membrane in the lung in controlling permeability and gaseous exchange, (4) the role(s) of alveolar macrophages in response to injury and their relationships to the septal macrophage population, (5) the aberrations in the respective cell types that can give rise to neoplastic growth, and (6) the role of the immune system in responding to the general defense of the lung. Indeed much has been learned in the past 2 decades, and it is expected that a review of this sort 1 or 2 decades hence will elucidate many of the functions and structural modifications of the lung.
Collapse
Affiliation(s)
- D P Penney
- Department of Pathology, University of Rochester School of Medicine and Dentistry, New York 14642
| |
Collapse
|
12
|
Adams JS, Gacad MA, Singer FR, Sharma OP. Production of 1,25-dihydroxyvitamin D3 by pulmonary alveolar macrophages from patients with sarcoidosis. Ann N Y Acad Sci 1986; 465:587-94. [PMID: 3460396 DOI: 10.1111/j.1749-6632.1986.tb18535.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Petrilli FL, Rossi GA, Camoirano A, Romano M, Serra D, Bennicelli C, De Flora A, De Flora S. Metabolic reduction of chromium by alveolar macrophages and its relationships to cigarette smoke. J Clin Invest 1986; 77:1917-24. [PMID: 2423559 PMCID: PMC370552 DOI: 10.1172/jci112520] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary alveolar macrophages (PAM), obtained by bronchoalveolar lavage from 47 individuals, reduced hexavalent chromium [Cr(VI)] and decreased its mutagenicity. Their specific activity--mostly mediated by cytosolic, enzyme-catalyzed mechanisms--was significantly higher than in corresponding preparations of mixed-cell populations from human peripheral lung parenchyma or bronchial tree, or from rat lung or liver. At equivalent number of PAM, Cr(VI) reduction, total protein, and some oxidoreductase activities were significantly increased in smokers. No appreciable variation could be detected between lung cancer and noncancer patients. In rats, the Cr(VI)-reducing activity of PAM preparations was induced by Aroclor 1254. Thus, alveolar macrophages provide crucial defense mechanisms not only by phagocytizing metals, but also by metabolically reducing Cr(VI). The epithelial-lining fluid (ELF) also displayed some Cr(VI) reduction. Together with already investigated metabolic processes occurring inside lung cells, these mechanisms are expected to determine thresholds in the pulmonary carcinogenicity of chromium.
Collapse
|
14
|
Schneider DR, Taylor CR, Parker JW, Cramer AC, Meyer PR, Lukes RJ. Immunoblastic sarcoma of T- and B-cell types: morphologic description and comparison. Hum Pathol 1985; 16:885-900. [PMID: 3875545 DOI: 10.1016/s0046-8177(85)80128-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Immunoblastic sarcoma (IBS) is a large cell lymphoma conceptually related to transformed T and B lymphocytes of the extrafollicular compartment of the immune system (immunoblasts). This light microscopic study of a series of 47 immunologically defined cases of IBS was undertaken in an attempt to define more precisely the morphologic features of the T- and B-cell subtypes. A remarkable morphologic spectrum characterized T-IBS (31 cases), which could be divided into two main groups: 1) tumors composed of varying mixtures of small, medium-sized, and large transformed cells; and 2) tumors with more homogeneous populations of medium-sized or large transformed cells. These cells, in all sizes, generally had abundant pale-staining cytoplasm, delicate nuclear membranes, finely dispersed chromatin, and one to several, small or medium-sized, prominent nucleoli. A distinctive background of small, irregular lymphocytes was frequently present. Plasmacytoid differentiation, seen most consistently as amphophilic staining of the cytoplasm, generally characterized B-IBS (16 cases). B-IBS similarly showed a morphologic spectrum that occurred in two main forms: 1) tumors consisting of a spectrum of transformed cells, with the smaller cells often showing the most striking plasmacytoid differentiation; and 2) tumors consisting predominantly of medium-sized to large transformed cells with varying degrees of plasmacytoid differentiation. With this constellation of features, all but two cases of T-IBS and one case of B-IBS were morphologically distinguishable.
Collapse
|
15
|
Adams JS, Gacad MA. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J Exp Med 1985; 161:755-65. [PMID: 3838552 PMCID: PMC2189055 DOI: 10.1084/jem.161.4.755] [Citation(s) in RCA: 199] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We investigated the 1 alpha-hydroxylation of vitamin D3 sterols by cultured pulmonary alveolar macrophages (PAM) from patients with sarcoidosis with or without clinically abnormal calcium homeostasis. Like the naturally occurring renal 1 alpha-hydroxylase, the PAM 1 alpha-hydroxylation reaction exhibited a high affinity for 25-hydroxyvitamin D3 (25-OH-D3) and a preference for substrates containing a 25-hydroxyl group in the side chain of the sterol. Unlike the renal enzyme, the PAM 1 alpha-hydroxylating mechanism was not accompanied by 24-hydroxylating activity, even after preincubation with 75 nM 1,25-dihydroxyvitamin D3 [1,25-(OH)2-D3] or exposure to high concentrations of substrate (500 nM 25-OH-D3). The PAM 25-OH-D3-1 alpha-hydroxylation reaction was stimulated by gamma interferon and inhibited by exposure to the glucocorticoid dexamethasone. The characteristics of the PAM hydroxylation process in vitro appear to reflect the efficiency of the extrarenal production of 1,25-(OH)2-D3 and the therapeutic efficacy of glucocorticoids in patients with sarcoidosis and disordered calcium metabolism.
Collapse
|
16
|
Bitterman PB, Saltzman LE, Adelberg S, Ferrans VJ, Crystal RG. Alveolar macrophage replication. One mechanism for the expansion of the mononuclear phagocyte population in the chronically inflamed lung. J Clin Invest 1984; 74:460-9. [PMID: 6746904 PMCID: PMC370498 DOI: 10.1172/jci111443] [Citation(s) in RCA: 156] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Within any chronically inflamed tissue, there is an increased number of macrophages, pluripotential phagocytic cells that, while critical to host defenses, are also able to profoundly damage parenchymal structure and function. Because of their central role in the inflammatory response, considerable attention has been focused on the mechanisms resulting in an expansion of the macrophage population within an inflamed tissue. Although recruitment of precursor monocytes from the circulation into inflamed tissues clearly plays an important role in macrophage accumulation, it is also possible that replication of tissue macrophages contributes to the expansion of macrophage numbers in inflammation. Because of the accessibility of tissue macrophages with the technique of bronchoalveolar lavage, the lung provides an ideal opportunity to test this hypothesis in humans. To accomplish this, bronchoalveolar lavage was performed to obtain alveolar macrophages from normals (n = 5) and individuals with chronic lung inflammation (normal smokers [n = 5], idiopathic pulmonary fibrosis [n = 13], sarcoidosis [n = 18], and other chronic interstitial lung disorders [n = 11]). Alveolar macrophage replication was quantified by three independent methods: (a) DNA synthesis, assessed by autoradiographic analysis of macrophages cultured for 16 h in the presence of [3H]thymidine; (b) DNA content, assessed by flow cytometric analysis of macrophages fixed immediately after recovery from the lower respiratory tract; and (c) cell division, assessed by cluster formation in semisolid medium. While the proportion of replicating macrophages in normals was very low, there was a 2- to 15-fold increase in this proportion in patients with chronic lung inflammation. In addition, morphologic evaluation demonstrated that individuals with chronic lung inflammation had alveolar macrophages undergoing mitosis. These results suggest that local tissue macrophage replication may play a role in the expansion of the macrophage population in chronic inflammation.
Collapse
|
17
|
Abstract
Human pulmonary macrophages (PM) obtained from surgically removed human lung tissue released a factor after exposure to activated zymosan that caused cultured human airways to release increased amounts of radiolabeled mucous glycoproteins. The factor was released maximally after 4-8 h of zymosan exposure and caused a dose-related increase in glycoprotein release; it was termed macrophage-derived mucus secretagogue (MMS). MMS release was produced in a dose-dependent fashion by activated but not by nonactivated zymosan. The activation of zymosan was C3 dependent, and C3b-coated Sepharose was also an effective stimulant. The data suggested that cell surface activation of the PM was a sufficient stimulus to cause MMS release and that both C3-dependent activation as well as Fc receptor activation were effective. The synthesis of MMS was sensitive to cycloheximide, and no active MMS was detectable intracellularly. To determine if MMS might be one of the oxidative derivatives of arachidonic acid, PM were incubated with cyclooxygenase and lipoxygenase inhibitors before activation. These maneuvers did not influence MMS generation. MMS-rich supernatants were then extracted into organic solvents or exposed to lipophilic resin; in both cases, MMS remained in the aqueous phase. Thus, MMS is not a derivative of arachidonic acid. Sequential fractionation of MMS on ultramembrane and gel filtration followed by isoelectric focusing and gel filtration indicated that MMS is a small (approximately 2000 daltons), acidic (pI, 5.15) molecule. Therefore, surface activation of human PM results in the synthesis and release of a small acidic molecule that causes airway mucous glands to secrete increased quantities of mucous glycoproteins.
Collapse
|
18
|
Crystal RG, Bitterman PB, Rennard SI, Hance AJ, Keogh BA. Interstitial lung diseases of unknown cause. Disorders characterized by chronic inflammation of the lower respiratory tract (first of two parts). N Engl J Med 1984; 310:154-66. [PMID: 6361560 DOI: 10.1056/nejm198401193100304] [Citation(s) in RCA: 492] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Adams JS, Sharma OP, Gacad MA, Singer FR. Metabolism of 25-hydroxyvitamin D3 by cultured pulmonary alveolar macrophages in sarcoidosis. J Clin Invest 1983; 72:1856-60. [PMID: 6688814 PMCID: PMC370476 DOI: 10.1172/jci111147] [Citation(s) in RCA: 323] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Metabolism of [3H]25-hydroxyvitamin D3(25-OH-D3) was studied in primary cultures of pulmonary alveolar macrophages (PAM) from seven patients with sarcoidosis and two patients with idiopathic pulmonary fibrosis. Production of a [3H]1,25-dihydroxyvitamin D3 (1,25-[OH]2-D3)-like metabolite of [3H]25-OH-D3 was detected in lipid extracts of cells from five patients with sarcoidosis. Synthesis of this compound in vitro was limited to viable PAM and was greatest in cells derived from a patient with hypercalcemia and an elevated serum concentration of 1,25-dihydroxyvitamin D. The tritiated PAM metabolite coeluted with authentic 1,25-(OH)2-D3 in three different solvent systems on straight-phase high performance liquid chromatography (HPLC) and demonstrated binding to extracted receptor for 1,25-(OH)2-D3, which was identical to that of commercially available [3H]1,25-(OH)2-D3 of comparable specific activity. Incubation of PAM with high concentrations of 25-OH-D3 resulted in production of an unlabeled metabolite that co-chromatographed with the 3H-PAM metabolite on HPLC and that was bound with high affinity by both the specific receptor for 1,25-(OH)2-D3 and antiserum to 1,25-(OH)2-D3.
Collapse
|
20
|
Yeager H, Sweeney JA, Herscowitz HB, Barsoum IS, Kagan E. Modulation of mitogen-induced proliferation of autologous peripheral blood lymphocytes by human alveolar macrophages. Infect Immun 1982; 38:260-6. [PMID: 6982862 PMCID: PMC347727 DOI: 10.1128/iai.38.1.260-266.1982] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Experiments were carried out to determine the effect of cocultivation of T-cell-enriched human peripheral blood lymphocytes with autologous alveolar macrophages on mitogen-induced proliferation as determined by [(3)H]thymidine uptake. Cells obtained by fiberoptic bronchoscopy and saline bronchial lavage from 14 normal volunteers were enriched for macrophages by adherence in plastic dishes for 1 h in RPMI 1640 medium supplemented with 10% fetal calf serum. Nonadherent mononuclear cells were prepared from heparinized venous blood after Ficoll-Hypaque sedimentation by passage over nylon wool columns. T-cell-enriched populations were incubated with and without alveolar macrophages, either in the presence or absence of phytohemagglutinin. In these experiments, the number of lymphocytes was held constant (10(5) per well), while the number of alveolar macrophages was varied (0.1 x 10(5) to 4.0 x 10(5) per well). Alveolar macrophages generally tended to stimulate phytohemagglutinin-induced lymphoproliferation at lymphocyte/macrophage ratios of 10:1 but consistently and significantly suppressed proliferation at ratios which approach those usually observed in recovered human bronchial lavage fluid, namely, 1:4. The suppressive effect of alveolar macrophages was observed as early as 48 h after culture initiation, while the magnitude of suppression increased with time. Suppression did not appear to be due to alteration in lymphocyte viability, nor was it sensitive to indomethacin. These results indicate that human alveolar macrophages can modulate the in vitro proliferative response of autologous peripheral blood lymphocytes. This observation may have relevance to interactions between alveolar macrophages and bronchial lymphocytes in the human lung in vivo.
Collapse
|
21
|
Robinson AV. Effect of in vitro exposure to hydrogen sulfide on rabbit alveolar macrophages cultured on gas-permeable membranes. ENVIRONMENTAL RESEARCH 1982; 27:491-500. [PMID: 7084172 DOI: 10.1016/0013-9351(82)90104-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
22
|
Semenzato G, Pezzutto A, Chilosi M, Pizzolo G. Redistribution of T lymphocytes in the lymph nodes of patients with sarcoidosis. N Engl J Med 1982; 306:48-9. [PMID: 6975891 DOI: 10.1056/nejm198201073060114] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
|
24
|
BITTERMAN PETERB, RENNARD STEPHENI, CRYSTAL RONALDG. ENVIRONMENTAL LUNG DISEASE AND THE INTERSTITIUM. Clin Chest Med 1981. [DOI: 10.1016/s0272-5231(21)00134-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|