1
|
Harris A, Ünal E. The transcriptional regulator Ume6 is a major driver of early gene expression during gametogenesis. Genetics 2023; 225:iyad123. [PMID: 37431893 PMCID: PMC10550318 DOI: 10.1093/genetics/iyad123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
The process of gametogenesis is orchestrated by a dynamic gene expression program, where a vital subset constitutes the early meiotic genes. In budding yeast, the transcription factor Ume6 represses early meiotic gene expression during mitotic growth. However, during the transition from mitotic to meiotic cell fate, early meiotic genes are activated in response to the transcriptional regulator Ime1 through its interaction with Ume6. While it is known that binding of Ime1 to Ume6 promotes early meiotic gene expression, the mechanism of early meiotic gene activation remains elusive. Two competing models have been proposed whereby Ime1 either forms an activator complex with Ume6 or promotes Ume6 degradation. Here, we resolve this controversy. First, we identify the set of genes that are directly regulated by Ume6, including UME6 itself. While Ume6 protein levels increase in response to Ime1, Ume6 degradation occurs much later in meiosis. Importantly, we found that depletion of Ume6 shortly before meiotic entry is detrimental to early meiotic gene activation and gamete formation, whereas tethering of Ume6 to a heterologous activation domain is sufficient to trigger early meiotic gene expression and produce viable gametes in the absence of Ime1. We conclude that Ime1 and Ume6 form an activator complex. While Ume6 is indispensable for early meiotic gene expression, Ime1 primarily serves as a transactivator for Ume6.
Collapse
Affiliation(s)
- Anthony Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Morse RH. Transcriptional repression by the histone tails in budding yeast is mediated by Rpd3, Tup1-Ssn6, and Bur6/NC2. Gene 2023:147572. [PMID: 37336275 DOI: 10.1016/j.gene.2023.147572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Chromatin-mediated transcriptional regulation is modulated by post-translational modifications of the core histones, particularly the H3 and H4 unstructured amino termini, or "tails". In budding yeast, the H3 and H4 tails can be deacetylated by Rpd3 to repress specific target genes, and hypoacetylated histones can facilitate recruitment of the Tup1-Ssn6 complex to effect gene repression. However, the extent to which these mechanisms are used to effect repression by the histone tails, and whether other factors similarly collaborate with the tails to facilitate gene repression, has not been determined. Here, a chromatin modifier compendium of 170 gene expression profiles from yeast strains mutated for chromatin-related genes was used to query the effect of the corresponding mutations on gene cohorts repressed by the histone H3 and H4 tails and/or by Rpd3. The resulting analysis reveals that repression of nearly all of the genes repressed by the histone tails requires Rpd3 and/or the Tup1-Ssn6 complex. Repression by Rpd3 occurs via the Rpd3-L complex, and TFIID-dominated genes are underrepresented among genes repressed by mutations or deletions of the H3 or H4 tails, in accord with previous work. In addition, Bur6, the yeast homolog of human NC2α, is required for repression at ∼50% of genes repressed by the H3 or H4 tail. These results illuminate genome-wide repression mechanisms utilized by the histone tails in yeast and raise new questions regarding the role of Bur6 in histone tail-mediated repression and whether parallels exist in metazoan cells.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health, Albany, NY 12208; Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY 12208.
| |
Collapse
|
3
|
Partitioned usage of chromatin remodelers by nucleosome-displacing factors. Cell Rep 2022; 40:111250. [PMID: 36001970 PMCID: PMC9422437 DOI: 10.1016/j.celrep.2022.111250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Nucleosome-displacing-factors (NDFs) in yeast, similar to pioneer factors in higher eukaryotes, can open closed chromatin and generate nucleosome-depleted regions (NDRs). NDRs in yeast are also affected by ATP-dependent chromatin remodelers (CRs). However, how NDFs and CRs coordinate in nucleosome invasion and NDR formation is still unclear. Here, we design a high-throughput method to systematically study the interplay between NDFs and CRs. By combining an integrated synthetic oligonucleotide library with DNA methyltransferase-based, single-molecule nucleosome mapping, we measure the impact of CRs on NDRs generated by individual NDFs. We find that CRs are dispensable for nucleosome invasion by NDFs, and they function downstream of NDF binding to modulate the NDR length. A few CRs show high specificity toward certain NDFs; however, in most cases, CRs are recruited in a factor-nonspecific and NDR length-dependent manner. Overall, our study provides a framework to investigate how NDFs and CRs cooperate to regulate chromatin opening. Chromatin accessibility in yeast is regulated by nucleosome-displacing-factors (NDFs) and chromatin remodelers (CRs). Chen et al. show that NDFs first invade into nucleosomes and then recruit CRs to modulate the NDR length. NDF-specific and NDR length-dependent recruitment of CRs allow partitioned usage of CRs by NDFs.
Collapse
|
4
|
UME6 Is Involved in the Suppression of Basal Transcription of ABC Transporters and Drug Resistance in the ρ+ Cells of Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10030601. [PMID: 35336175 PMCID: PMC8953597 DOI: 10.3390/microorganisms10030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
In Saccharomycescerevisiae, the Rpd3L complex contains a histone deacetylase, Rpd3, and the DNA binding proteins, Ume6 and Ash1, and acts as a transcriptional repressor or activator. We previously showed that RPD3 and UME6 are required for the activation of PDR5, which encodes a major efflux pump, and pleiotropic drug resistance (PDR) in ρ0/− cells, which lack mitochondrial DNA. However, there are inconsistent reports regarding whether RPD3 and UME6 are required for Pdr5-mediated PDR in ρ+ cells with mitochondrial DNA. Since PDR5 expression or PDR in the ρ+ cells of the rpd3Δ and ume6Δ mutants have primarily been examined using fermentable media, mixed cultures of ρ+ and ρ0/− cells could be used. Therefore, we examined whether RPD3 and UME6 are required for basal and drug-induced PDR5 transcription and PDR in ρ+ cells using fermentable and nonfermentable media. UME6 suppresses the basal transcription levels of the ABC transporters, including PDR5, and drug resistance in ρ+ cells independent of the carbon source used in the growth medium. In contrast, RPD3 is required for drug resistance but did not interfere with the basal PDR5 mRNA levels. UME6 is also required for the cycloheximide-induced transcription of PDR5 in nonfermentable media but not in fermentable media.
Collapse
|
5
|
Wiles ET, Mumford CC, McNaught KJ, Tanizawa H, Selker EU. The ACF chromatin-remodeling complex is essential for Polycomb repression. eLife 2022; 11:e77595. [PMID: 35257662 PMCID: PMC9038196 DOI: 10.7554/elife.77595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing and maintaining appropriate gene repression is critical for the health and development of multicellular organisms. Histone H3 lysine 27 (H3K27) methylation is a chromatin modification associated with repressed facultative heterochromatin, but the mechanism of this repression remains unclear. We used a forward genetic approach to identify genes involved in transcriptional silencing of H3K27-methylated chromatin in the filamentous fungus Neurospora crassa. We found that the N. crassa homologs of ISWI (NCU03875) and ACF1 (NCU00164) are required for repression of a subset of H3K27-methylated genes and that they form an ACF chromatin-remodeling complex. This ACF complex interacts with chromatin throughout the genome, yet association with facultative heterochromatin is specifically promoted by the H3K27 methyltransferase, SET-7. H3K27-methylated genes that are upregulated when iswi or acf1 are deleted show a downstream shift of the +1 nucleosome, suggesting that proper nucleosome positioning is critical for repression of facultative heterochromatin. Our findings support a direct role of the ACF complex in Polycomb repression.
Collapse
Affiliation(s)
- Elizabeth T Wiles
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Colleen C Mumford
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Kevin J McNaught
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Eric U Selker
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
6
|
Yamada Y. RPD3 and UME6 are involved in the activation of PDR5 transcription and pleiotropic drug resistance in ρ 0 cells of Saccharomyces cerevisiae. BMC Microbiol 2021; 21:311. [PMID: 34753419 PMCID: PMC8576940 DOI: 10.1186/s12866-021-02373-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Saccharomyces cerevisiae, the retrograde signalling pathway is activated in ρ0/- cells, which lack mitochondrial DNA. Within this pathway, the activation of the transcription factor Pdr3 induces transcription of the ATP-binding cassette (ABC) transporter gene, PDR5, and causes pleiotropic drug resistance (PDR). Although a histone deacetylase, Rpd3, is also required for cycloheximide resistance in ρ0/- cells, it is currently unknown whether Rpd3 and its DNA binding partners, Ume6 and Ash1, are involved in the activation of PDR5 transcription and PDR in ρ0/- cells. This study investigated the roles of RPD3, UME6, and ASH1 in the activation of PDR5 transcription and PDR by retrograde signalling in ρ0 cells. RESULTS ρ0 cells in the rpd3∆ and ume6∆ strains, with the exception of the ash1∆ strain, were sensitive to fluconazole and cycloheximide. The PDR5 mRNA levels in ρ0 cells of the rpd3∆ and ume6∆ strains were significantly reduced compared to the wild-type and ash1∆ strain. Transcriptional expression of PDR5 was reduced in cycloheximide-exposed and unexposed ρ0 cells of the ume6∆ strain; the transcriptional positive response of PDR5 to cycloheximide exposure was also impaired in this strain. CONCLUSIONS RPD3 and UME6 are responsible for enhanced PDR5 mRNA levels and PDR by retrograde signalling in ρ0 cells of S. cerevisiae.
Collapse
Affiliation(s)
- Yoichi Yamada
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1164, Japan.
| |
Collapse
|
7
|
Sahu RK, Singh S, Tomar RS. The ATP-dependent SWI/SNF and RSC chromatin remodelers cooperatively induce unfolded protein response genes during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194748. [PMID: 34454103 DOI: 10.1016/j.bbagrm.2021.194748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/23/2023]
Abstract
The SWI/SNF subfamily remodelers (SWI/SNF and RSC) generally promote gene expression by displacing or evicting nucleosomes at the promoter regions. Their action creates a nucleosome-depleted region where transcription machinery accesses the DNA. Their function has been shown critical for inducing stress-responsive transcription programs. Although the role of SWI/SNF and RSC complexes in transcription regulation of heat shock responsive genes is well studied, their involvement in other pathways such as unfolded protein response (UPR) and protein quality control (PQC) is less known. This study shows that SWI/SNF occupies the promoters of UPR, HSP and PQC genes in response to unfolded protein stress, and its recruitment at UPR promoters depends on Hac1 transcription factor and other epigenetic factors like Ada2 and Ume6. Disruption of SWI/SNF's activity does not affect the remodeling of these promoters or gene expression. However, inactivation of RSC and SWI/SNF together diminishes induction of most of the UPR, HSP and PQC genes tested. Furthermore, RSC and SWI/SNF colocalize at these promoters, suggesting that these two remodelers functionally cooperate to induce stress-responsive genes under proteotoxic conditions.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Sakshi Singh
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
8
|
Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X, Zheng Q, Li KY, Snedeker J, Lavis LD, Lionnet T, Wu C. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 2021; 10:e69387. [PMID: 34313223 PMCID: PMC8352589 DOI: 10.7554/elife.69387] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Conserved ATP-dependent chromatin remodelers establish and maintain genome-wide chromatin architectures of regulatory DNA during cellular lifespan, but the temporal interactions between remodelers and chromatin targets have been obscure. We performed live-cell single-molecule tracking for RSC, SWI/SNF, CHD1, ISW1, ISW2, and INO80 remodeling complexes in budding yeast and detected hyperkinetic behaviors for chromatin-bound molecules that frequently transition to the free state for all complexes. Chromatin-bound remodelers display notably higher diffusion than nucleosomal histones, and strikingly fast dissociation kinetics with 4-7 s mean residence times. These enhanced dynamics require ATP binding or hydrolysis by the catalytic ATPase, uncovering an additional function to its established role in nucleosome remodeling. Kinetic simulations show that multiple remodelers can repeatedly occupy the same promoter region on a timescale of minutes, implicating an unending 'tug-of-war' that controls a temporally shifting window of accessibility for the transcription initiation machinery.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | | | - Vivian Jou
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Sheng Liu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiaona Tang
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Qinsi Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kai Yu Li
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jonathan Snedeker
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Timothee Lionnet
- Institute of Systems Genetics, Langone Medical Center, New York UniversityNew YorkUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
9
|
Gamarra N, Narlikar GJ. Collaboration through chromatin: motors of transcription and chromatin structure. J Mol Biol 2021; 433:166876. [PMID: 33556407 PMCID: PMC8989640 DOI: 10.1016/j.jmb.2021.166876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Packaging of the eukaryotic genome into chromatin places fundamental physical constraints on transcription. Clarifying how transcription operates within these constraints is essential to understand how eukaryotic gene expression programs are established and maintained. Here we review what is known about the mechanisms of transcription on chromatin templates. Current models indicate that transcription through chromatin is accomplished by the combination of an inherent nucleosome disrupting activity of RNA polymerase and the action of ATP-dependent chromatin remodeling motors. Collaboration between these two types of molecular motors is proposed to occur at all stages of transcription through diverse mechanisms. Further investigation of how these two motors combine their basic activities is essential to clarify the interdependent relationship between genome structure and transcription.
Collapse
Affiliation(s)
- Nathan Gamarra
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; TETRAD Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.
| |
Collapse
|
10
|
Ume6 Acts as a Stable Platform To Coordinate Repression and Activation of Early Meiosis-Specific Genes in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:e0037820. [PMID: 33941619 PMCID: PMC8224235 DOI: 10.1128/mcb.00378-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In response to nutrient starvation, the budding yeast Saccharomyces cerevisiae abandons mitotic proliferation and embarks on a differentiation process that leads through meiosis to the formation of haploid spores. This process is driven by cascading waves of meiosis-specific-gene expression. The early meiosis-specific genes are repressed during mitotic proliferation by the DNA-binding protein Ume6 in combination with repressors Rpd3 and Sin3. The expression of meiosis-specific transcription factor Ime1 leads to activation of the early meiosis-specific genes. We investigated the stability and promoter occupancy of Ume6 in sporulating cells and determined that it remains bound to early meiosis-specific gene promoters when those genes are activated. Furthermore, we find that the repressor Rpd3 remains associated with Ume6 after the transactivator Ime1 has joined the complex and that the Gcn5 and Tra1 components of the SAGA complex bind to the promoter of IME2 in an Ime1-dependent fashion to induce transcription of the early meiosis-specific genes. Our investigation supports a model whereby Ume6 provides a platform allowing recruitment of both activating and repressing factors to coordinate the expression of the early meiosis-specific genes in Saccharomyces cerevisiae.
Collapse
|
11
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
McKnight LE, Crandall JG, Bailey TB, Banks OGB, Orlandi KN, Truong VN, Donovan DA, Waddell GL, Wiles ET, Hansen SD, Selker EU, McKnight JN. Rapid and inexpensive preparation of genome-wide nucleosome footprints from model and non-model organisms. STAR Protoc 2021; 2:100486. [PMID: 34041500 PMCID: PMC8141940 DOI: 10.1016/j.xpro.2021.100486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MNase-seq (micrococcal nuclease sequencing) is used to map nucleosome positions in eukaryotic genomes to study the relationship between chromatin structure and DNA-dependent processes. Current protocols require at least two days to isolate nucleosome-protected DNA fragments. We have developed a streamlined protocol for S. cerevisiae and other fungi which takes only three hours. Modified protocols were developed for wild fungi and mammalian cells. This method for rapidly producing sequencing-ready nucleosome footprints from several organisms makes MNase-seq faster and easier, with less chemical waste. A fast way to prepare micrococcal nuclease nucleosome footprints for MNase-seq Eliminates use of phenol and chloroform and reduces the amount of cells required Adaptable for a variety of organisms
Collapse
Affiliation(s)
- Laura E McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Thomas B Bailey
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Orion G B Banks
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kona N Orlandi
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Vi N Truong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Drake A Donovan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Grace L Waddell
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Elizabeth T Wiles
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Scott D Hansen
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eric U Selker
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
13
|
Barve G, Manjithaya R. Cross-talk between autophagy and sporulation in Saccharomyces cerevisiae. Yeast 2021; 38:401-413. [PMID: 33608896 DOI: 10.1002/yea.3556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 11/10/2022] Open
Abstract
Unicellular organisms, like yeast, have developed mechanisms to overcome environmental stress conditions like nutrient starvation. Autophagy and sporulation are two such mechanisms employed by yeast cells. Autophagy is a well-conserved, catabolic process that degrades excess and unwanted cytoplasmic materials and provides building blocks during starvation conditions. Thus, autophagy maintains cellular homeostasis at basal conditions and acts as a survival mechanism during stress conditions. Sporulation is an essential process that, like autophagy, is triggered due to stress conditions in yeast. It involves the formation of ascospores that protect the yeast cells during extreme conditions and germinate when the conditions are favorable. Studies show that autophagy is required for the sporulation process in yeast. However, the exact mechanism of action is not clear. Furthermore, several of the core autophagy gene knockouts do not sporulate and at what stage of sporulation they are involved is not clear. Besides, many overlapping proteins function in both sporulation and autophagy and it is unclear how the pathway-specific roles of these proteins are determined. All these observations suggest that the two processes cross-talk. Individually, some key features from both the processes remain to be studied with respect to the source of membrane for autophagosomes, prospore membrane (PSM) formation, and closure of the membranes. Therefore, it becomes crucial to study the cross-talk between autophagy and sporulation. In this review, the cross-talk between the two pathways, the common protein machineries have been discussed.
Collapse
Affiliation(s)
- Gaurav Barve
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
14
|
Dual Regulatory Role of Chromatin Remodeler ISW1 in Coordinating Cellulase and Secondary Metabolite Biosynthesis in Trichoderma reesei. mBio 2021; 13:e0345621. [PMID: 35130719 PMCID: PMC8822348 DOI: 10.1128/mbio.03456-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers isolated from nature. T. reesei also produces a typical yellow pigment identified as sorbicillinoids during cultivation. Here, we identified an evolutionarily conserved histone remodeling factor, ISW1, in T. reesei that simultaneously participates in regulating cellulase and the yellow pigment biosynthesis. Trisw1 deletion almost abolished vegetable growth, asexual spore formation, and cellulase gene expression. However, its absence significantly enhanced the production of the yellow pigment. The observed dual regulatory role of TrISW1 was dependent on its ATPase activity. We demonstrated that Trisw1 disruption elevated the transcription of ypr1 coding for the transcriptional activator of sor genes encoding the polyketide synthases catalyzing the biosynthesis of sorbicillinoids but compromised that of xyr1 encoding the key transcriptional activator of cellulase genes. Discrete T. reesei homologous ISW1 accessory factors were also found to exert differential effects on the expression of these two types of genes. Further analyses showed that TrISW1 was recruited to cellulase gene promoters, and its absence interfered with loss of histone H4 at the cbh1 and eg1 promoters upon cellulose induction. To the contrary, Trisw1 deletion facilitated loss of H4 at the sor locus. These data indicate that TrISW1 represents an important chromatin remodeler with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. IMPORTANCE Microorganisms, including Trichoderma reesei, constantly face the challenge to outcompete other species to ensure efficient colonization in their natural habitat. They achieve this usually by adopting two alternative strategies by either maintaining fast growth on limited nutrient resources or producing a versatile array of secondary metabolites to fight against competitors. These two strategies, however, have to be subtly controlled to balance the assignment of and thus make the best use of cellular resources. Here, we identified a chromatin remodeling factor, TrISW1, with a dual role in coordinating the cellulolytic response and biosynthesis of the major secondary metabolite in T. reesei. The data also provide a novel insight into how T. reesei takes advantage of a chromatin remodeler to exquisitely balance two different adaptive strategies to ensure an efficient allocation of cellular resources to achieve efficient colonization in a specific environment.
Collapse
|
15
|
Donovan DA, Crandall JG, Truong VN, Vaaler AL, Bailey TB, Dinwiddie D, Banks OGB, McKnight LE, McKnight JN. Basis of specificity for a conserved and promiscuous chromatin remodeling protein. eLife 2021; 10:e64061. [PMID: 33576335 PMCID: PMC7968928 DOI: 10.7554/elife.64061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic genomes are organized dynamically through the repositioning of nucleosomes. Isw2 is an enzyme that has been previously defined as a genome-wide, nonspecific nucleosome spacing factor. Here, we show that Isw2 instead acts as an obligately targeted nucleosome remodeler in vivo through physical interactions with sequence-specific factors. We demonstrate that Isw2-recruiting factors use small and previously uncharacterized epitopes, which direct Isw2 activity through highly conserved acidic residues in the Isw2 accessory protein Itc1. This interaction orients Isw2 on target nucleosomes, allowing for precise nucleosome positioning at targeted loci. Finally, we show that these critical acidic residues have been lost in the Drosophila lineage, potentially explaining the inconsistently characterized function of Isw2-like proteins. Altogether, these data suggest an 'interacting barrier model,' where Isw2 interacts with a sequence-specific factor to accurately and reproducibly position a single, targeted nucleosome to define the precise border of phased chromatin arrays.
Collapse
Affiliation(s)
- Drake A Donovan
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Vi N Truong
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Abigail L Vaaler
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Thomas B Bailey
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Devin Dinwiddie
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Orion GB Banks
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Laura E McKnight
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of OregonEugeneUnited States
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of OregonEugeneUnited States
| |
Collapse
|
16
|
Cheng Y, Zhu H, Du Z, Guo X, Zhou C, Wang Z, He X. Eukaryotic translation factor eIF5A contributes to acetic acid tolerance in Saccharomyces cerevisiae via transcriptional factor Ume6p. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:38. [PMID: 33557922 PMCID: PMC7869214 DOI: 10.1186/s13068-021-01885-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae is well-known as an ideal model system for basic research and important industrial microorganism for biotechnological applications. Acetic acid is an important growth inhibitor that has deleterious effects on both the growth and fermentation performance of yeast cells. Comprehensive understanding of the mechanisms underlying S. cerevisiae adaptive response to acetic acid is always a focus and indispensable for development of robust industrial strains. eIF5A is a specific translation factor that is especially required for the formation of peptide bond between certain residues including proline regarded as poor substrates for slow peptide bond formation. Decrease of eIF5A activity resulted in temperature-sensitive phenotype of yeast, while up-regulation of eIF5A protected transgenic Arabidopsis against high temperature, oxidative or osmotic stress. However, the exact roles and functional mechanisms of eIF5A in stress response are as yet largely unknown. RESULTS In this research, we compared cell growth between the eIF5A overexpressing and the control S. cerevisiae strains under various stressed conditions. Improvement of acetic acid tolerance by enhanced eIF5A activity was observed all in spot assay, growth profiles and survival assay. eIF5A prompts the synthesis of Ume6p, a pleiotropic transcriptional factor containing polyproline motifs, mainly in a translational related way. As a consequence, BEM4, BUD21 and IME4, the direct targets of Ume6p, were up-regulated in eIF5A overexpressing strain, especially under acetic acid stress. Overexpression of UME6 results in similar profiles of cell growth and target genes transcription to eIF5A overexpression, confirming the role of Ume6p and its association between eIF5A and acetic acid tolerance. CONCLUSION Translation factor eIF5A protects yeast cells against acetic acid challenge by the eIF5A-Ume6p-Bud21p/Ime4p/Bem4p axles, which provides new insights into the molecular mechanisms underlying the adaptive response and tolerance to acetic acid in S. cerevisiae and novel targets for construction of robust industrial strains.
Collapse
Affiliation(s)
- Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Ash1 and Tup1 dependent repression of the Saccharomyces cerevisiae HO promoter requires activator-dependent nucleosome eviction. PLoS Genet 2020; 16:e1009133. [PMID: 33382702 PMCID: PMC7806131 DOI: 10.1371/journal.pgen.1009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 11/25/2020] [Indexed: 11/30/2022] Open
Abstract
Transcriptional regulation of the Saccharomyces cerevisiae HO gene is highly complex, requiring a balance of multiple activating and repressing factors to ensure that only a few transcripts are produced in mother cells within a narrow window of the cell cycle. Here, we show that the Ash1 repressor associates with two DNA sequences that are usually concealed within nucleosomes in the HO promoter and recruits the Tup1 corepressor and the Rpd3 histone deacetylase, both of which are required for full repression in daughters. Genome-wide ChIP identified greater than 200 additional sites of co-localization of these factors, primarily within large, intergenic regions from which they could regulate adjacent genes. Most Ash1 binding sites are in nucleosome depleted regions (NDRs), while a small number overlap nucleosomes, similar to HO. We demonstrate that Ash1 binding to the HO promoter does not occur in the absence of the Swi5 transcription factor, which recruits coactivators that evict nucleosomes, including the nucleosomes obscuring the Ash1 binding sites. In the absence of Swi5, artificial nucleosome depletion allowed Ash1 to bind, demonstrating that nucleosomes are inhibitory to Ash1 binding. The location of binding sites within nucleosomes may therefore be a mechanism for limiting repressive activity to periods of nucleosome eviction that are otherwise associated with activation of the promoter. Our results illustrate that activation and repression can be intricately connected, and events set in motion by an activator may also ensure the appropriate level of repression and reset the promoter for the next activation cycle. Nucleosomes inhibit both gene expression and DNA-binding by regulatory factors. Here we examine the role of nucleosomes in regulating the binding of repressive transcription factors to the complex promoter for the yeast HO gene. Ash1 is a sequence-specific DNA-binding protein, and we show that it recruits the Tup1 global repressive factor to the HO promoter. Using a method to determine where Ash1 and Tup1 are bound to DNA throughout the genome, we discovered that Tup1 is also present at most places where Ash1 binds. The majority of these sites are in “Nucleosome Depleted Regions,” or NDRs, where the absence of chromatin makes factor binding easier. We discovered that the HO promoter is an exception, in that the two places where Ash1 binds overlap nucleosomes. Activation of the HO promoter is a complex, multi-step process, and we demonstrated that chromatin factors transiently evict these nucleosomes from the HO promoter during the cell cycle, allowing Ash1 to bind and recruit Tup1. Thus, activators must evict nucleosomes from the promoter to allow the repressive machinery to bind.
Collapse
|
18
|
Serrano-Quílez J, Roig-Soucase S, Rodríguez-Navarro S. Sharing Marks: H3K4 Methylation and H2B Ubiquitination as Features of Meiotic Recombination and Transcription. Int J Mol Sci 2020; 21:ijms21124510. [PMID: 32630409 PMCID: PMC7350030 DOI: 10.3390/ijms21124510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Meiosis is a specialized cell division that gives raise to four haploid gametes from a single diploid cell. During meiosis, homologous recombination is crucial to ensure genetic diversity and guarantee accurate chromosome segregation. Both the formation of programmed meiotic DNA double-strand breaks (DSBs) and their repair using homologous chromosomes are essential and highly regulated pathways. Similar to other processes that take place in the context of chromatin, histone posttranslational modifications (PTMs) constitute one of the major mechanisms to regulate meiotic recombination. In this review, we focus on specific PTMs occurring in histone tails as driving forces of different molecular events, including meiotic recombination and transcription. In particular, we concentrate on the influence of H3K4me3, H2BK123ub, and their corresponding molecular machineries that write, read, and erase these histone marks. The Spp1 subunit within the Complex of Proteins Associated with Set1 (COMPASS) is a critical regulator of H3K4me3-dependent meiotic DSB formation. On the other hand, the PAF1c (RNA polymerase II associated factor 1 complex) drives the ubiquitination of H2BK123 by Rad6-Bre1. We also discuss emerging evidence obtained by cryo-electron microscopy (EM) structure determination that has provided new insights into how the "cross-talk" between these two marks is accomplished.
Collapse
|
19
|
Lin A, Du Y, Xiao W. Yeast chromatin remodeling complexes and their roles in transcription. Curr Genet 2020; 66:657-670. [PMID: 32239283 DOI: 10.1007/s00294-020-01072-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
The nucleosome is a small unit of chromatin, which is dynamic in eukaryotes. Chromatin conformation and post-translational modifications affect nucleosome dynamics under certain conditions, playing an important role in the epigenetic regulation of transcription, replication and reprogramming. The Snf2 remodeling family is one of the crucial remodeling complexes that tightly regulate chromatin structure and affect nucleosome dynamics. This family alters nucleosome positioning, exchanges histone variants, and assembles and disassembles nucleosomes at certain locations. Moreover, the Snf2 family, in conjunction with other co-factors, regulates gene expression in Saccharomyces cerevisiae. Here we first review recent findings on the Snf2 family remodeling complexes and then use some examples to illustrate the cooperation between different members of Snf2 family, and the cooperation between Snf2 family and other co-factors in gene regulation especially during transcription initiation.
Collapse
Affiliation(s)
- Aiyang Lin
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Ying Du
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada. .,College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
20
|
Ji SX, Wang XD, Shen XN, Liang L, Liu WX, Wan FH, Lü ZC. Using RNA Interference to Reveal the Function of Chromatin Remodeling Factor ISWI in Temperature Tolerance in Bemisia tabaci Middle East-Asia Minor 1 Cryptic Species. INSECTS 2020; 11:insects11020113. [PMID: 32050711 PMCID: PMC7074109 DOI: 10.3390/insects11020113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Invasive species often encounter rapid environmental changes during invasions and only the individuals that successfully overcome environmental stresses can colonize and spread. Chromatin remodeling may be essential in environmental adaptation. To assess the functions of imitation switch (ISWI) in invasive Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) cryptic species, we cloned and characterized the MEAM1 BtISWI gene and determined its functions in response to thermal stress. The full-length cDNA of BtISWI was 3712 bp, with a 3068 bp open reading frame (ORF) encoding a 118.86 kDa protein. BtISWI mRNA expression was significantly up-regulated after exposure to heat shock or cold shock conditions, indicating that BtISWI expression can be induced by thermal stress. After feeding double-stranded RNA (dsRNA), specifically for BtISWI, resistance to both heat and cold decreased significantly, suggesting that BtISWI may function directly in the thermal tolerance of MEAM1. Moreover, the preferred temperature of MEAM1 adults fed dsRNA was 1.9-3.5 °C higher than the control groups. Taken together, our findings highlight the importance of epigenetic gene regulation in the thermal response or thermal adaptation of invasive Bemisia tabaci (B. tabaci), and provide a new potential target for establishing sustainable control strategies for B. tabaci.
Collapse
Affiliation(s)
- Shun-Xia Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Xiao-Di Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Xiao-Na Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Lin Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
| | - Fang-Hao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhi-Chuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.-X.J.); (X.-D.W.); (X.-N.S.); (L.L.); (W.-X.L.); (F.-H.W.)
- Correspondence: ; Tel.: +86-10-8210-9572
| |
Collapse
|
21
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
22
|
Donovan DA, Crandall JG, Banks OGB, Jensvold ZD, Truong V, Dinwiddie D, McKnight LE, McKnight JN. Engineered Chromatin Remodeling Proteins for Precise Nucleosome Positioning. Cell Rep 2019; 29:2520-2535.e4. [PMID: 31747617 PMCID: PMC6884087 DOI: 10.1016/j.celrep.2019.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Regulation of chromatin structure is essential for controlling access of DNA to factors that require association with specific DNA sequences. Here we describe the development and validation of engineered chromatin remodeling proteins (E-ChRPs) for inducing programmable changes in nucleosome positioning by design. We demonstrate that E-ChRPs function both in vitro and in vivo to specifically reposition target nucleosomes and entire nucleosomal arrays. We show that induced, systematic positioning of nucleosomes over yeast Ume6 binding sites leads to Ume6 exclusion, hyperacetylation, and transcriptional induction at target genes. We also show that programmed global loss of nucleosome-free regions at Reb1 targets is generally inhibitory with mildly repressive transcriptional effects. E-ChRPs are compatible with multiple targeting modalities, including the SpyCatcher and dCas9 moieties, resulting in high versatility and enabling diverse future applications. Thus, engineered chromatin remodeling proteins represent a simple and robust means to probe and disrupt DNA-dependent processes in different chromatin contexts.
Collapse
Affiliation(s)
- Drake A Donovan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Orion G B Banks
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Zena D Jensvold
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Vi Truong
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Devin Dinwiddie
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Laura E McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jeffrey N McKnight
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA; Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
23
|
Kubik S, Bruzzone MJ, Challal D, Dreos R, Mattarocci S, Bucher P, Libri D, Shore D. Opposing chromatin remodelers control transcription initiation frequency and start site selection. Nat Struct Mol Biol 2019; 26:744-754. [PMID: 31384063 DOI: 10.1038/s41594-019-0273-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Precise nucleosome organization at eukaryotic promoters is thought to be generated by multiple chromatin remodeler (CR) enzymes and to affect transcription initiation. Using an integrated analysis of chromatin remodeler binding and nucleosome occupancy following rapid remodeler depletion, we investigated the interplay between these enzymes and their impact on transcription in yeast. We show that many promoters are affected by multiple CRs that operate in concert or in opposition to position the key transcription start site (TSS)-associated +1 nucleosome. We also show that nucleosome movement after CR inactivation usually results from the activity of another CR and that in the absence of any remodeling activity, +1 nucleosomes largely maintain their positions. Finally, we present functional assays suggesting that +1 nucleosome positioning often reflects a trade-off between maximizing RNA polymerase recruitment and minimizing transcription initiation at incorrect sites. Our results provide a detailed picture of fundamental mechanisms linking promoter nucleosome architecture to transcription initiation.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Drice Challal
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - René Dreos
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Philipp Bucher
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Domenico Libri
- Institut Jacques Monod, CNRS-Université Paris Diderot, Paris, France
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland.
| |
Collapse
|
24
|
Parnell EJ, Stillman DJ. Multiple Negative Regulators Restrict Recruitment of the SWI/SNF Chromatin Remodeler to the HO Promoter in Saccharomyces cerevisiae. Genetics 2019; 212:1181-1204. [PMID: 31167839 PMCID: PMC6707452 DOI: 10.1534/genetics.119.302359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
Activation of the Saccharomyces cerevisiae HO promoter is highly regulated, requiring the ordered recruitment of activators and coactivators and allowing production of only a few transcripts in mother cells within a short cell cycle window. We conducted genetic screens to identify the negative regulators of HO expression necessary to limit HO transcription. Known repressors of HO (Ash1 and Rpd3) were identified, as well as several additional chromatin-associated factors including the Hda1 histone deacetylase, the Isw2 chromatin remodeler, and the corepressor Tup1 We also identified clusters of HO promoter mutations that suggested roles for the Dot6/Tod6 (PAC site) and Ume6 repression pathways. We used ChIP assays with synchronized cells to validate the involvement of these factors and map the association of Ash1, Dot6, and Ume6 with the HO promoter to a brief window in the cell cycle between binding of the initial activating transcription factor and initiation of transcription. We found that Ash1 and Ume6 each recruit the Rpd3 histone deacetylase to HO, and their effects are additive. In contrast, Rpd3 was not recruited significantly to the PAC site, suggesting this site has a distinct mechanism for repression. Increases in HO expression and SWI/SNF recruitment were all additive upon loss of Ash1, Ume6, and PAC site factors, indicating the convergence of independent pathways for repression. Our results demonstrate that multiple protein complexes are important for limiting the spread of SWI/SNF-mediated nucleosome eviction across the HO promoter, suggesting that regulation requires a delicate balance of activities that promote and repress transcription.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| |
Collapse
|
25
|
Lukito Y, Chujo T, Hale TK, Mace W, Johnson LJ, Scott B. Regulation of subtelomeric fungal secondary metabolite genes by H3K4me3 regulators CclA and KdmB. Mol Microbiol 2019; 112:837-853. [DOI: 10.1111/mmi.14320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Yonathan Lukito
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Tetsuya Chujo
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Tracy K. Hale
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Wade Mace
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Linda J. Johnson
- Grasslands Research Centre AgResearch Limited Palmerston North New Zealand
| | - Barry Scott
- Institute of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
26
|
Contrasting roles of the RSC and ISW1/CHD1 chromatin remodelers in RNA polymerase II elongation and termination. Genome Res 2019; 29:407-417. [PMID: 30683752 PMCID: PMC6396426 DOI: 10.1101/gr.242032.118] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1, and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. The contributions of these remodelers to chromatin organization are largely combinatorial, distinct, and nonredundant, supporting a model in which the +1 nucleosome is positioned by RSC and then used as a reference nucleosome by the spacing enzymes. Defective chromatin organization correlates with altered RNA polymerase II (Pol II) distribution. RSC-depleted cells exhibit low levels of elongating Pol II and high levels of terminating Pol II, consistent with defects in both termination and initiation, suggesting that RSC facilitates both. Cells lacking both ISW1 and CHD1 show the opposite Pol II distribution, suggesting elongation and termination defects. These cells have extremely disrupted chromatin, with high levels of closely packed dinucleosomes involving the second (+2) nucleosome. We propose that ISW1 and CHD1 facilitate Pol II elongation by separating closely packed nucleosomes.
Collapse
|
27
|
Hollingsworth NM, Gaglione R. The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair. Curr Genet 2019; 65:631-641. [PMID: 30671596 DOI: 10.1007/s00294-019-00937-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Recombination, along with sister chromatid cohesion, is used during meiosis to physically connect homologous chromosomes so that they can be segregated properly at the first meiotic division. Recombination is initiated by the introduction of programmed double strand breaks (DSBs) into the genome, a subset of which is processed into crossovers. In budding yeast, the regulation of meiotic DSB repair is controlled by a meiosis-specific kinase called Mek1. Mek1 kinase activity promotes recombination between homologs, rather than sister chromatids, as well as the processing of recombination intermediates along a pathway that results in synapsis of homologous chromosomes and the distribution of crossovers throughout the genome. In addition, Mek1 kinase activity provides a readout for the number of DSBs in the cell as part of the meiotic recombination checkpoint. This checkpoint delays entry into the first meiotic division until DSBs have been repaired by inhibiting the activity of the meiosis-specific transcription factor Ndt80, a site-specific DNA binding protein that activates transcription of over 300 target genes. Recent work has shown that Mek1 binds to Ndt80 and phosphorylates it on multiple sites, including the DNA binding domain, thereby preventing Ndt80 from activating transcription. As DSBs are repaired, Mek1 is removed from chromosomes and its activity decreases. Loss of the inhibitory Mek1 phosphates and phosphorylation of Ndt80 by the meiosis-specific kinase, Ime2, promote Ndt80 activity such that Ndt80 transcribes its own gene in a positive feedback loop, as well as genes required for the completion of recombination and entry into the meiotic divisions. Mek1 is therefore the key regulator of meiotic recombination in yeast.
Collapse
Affiliation(s)
- Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Robert Gaglione
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
28
|
Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the Saccharomyces cerevisiae Ribosomal DNA Locus. Genetics 2018; 210:1543-1556. [PMID: 30355728 DOI: 10.1534/genetics.118.301579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, ribosomal RNA genes are encoded in a highly repetitive tandem array referred to as the ribosomal DNA (rDNA) locus. The yeast rDNA is the site of a diverse set of DNA-dependent processes, including transcription of ribosomal RNAs by RNA polymerases I and III, transcription of noncoding RNAs by RNA polymerase II, DNA replication initiation, replication fork blocking, and recombination-mediated regulation of rDNA repeat copy number. All of this takes place in the context of chromatin, but little is known about the roles played by ATP-dependent chromatin remodeling factors at the yeast rDNA. In this work, we report that the Isw2 and Ino80 chromatin remodeling factors are targeted to this highly repetitive locus. We characterize for the first time their function in modifying local chromatin structure, finding that loss of these factors decreases the fraction of actively transcribed 35S ribosomal RNA genes and the positioning of nucleosomes flanking the ribosomal origin of replication. In addition, we report that Isw2 and Ino80 promote efficient firing of the ribosomal origin of replication and facilitate the regulated increase of rDNA repeat copy number. This work significantly expands our understanding of the importance of ATP-dependent chromatin remodeling for rDNA biology.
Collapse
|
29
|
Systematic Study of Nucleosome-Displacing Factors in Budding Yeast. Mol Cell 2018; 71:294-305.e4. [PMID: 30017582 DOI: 10.1016/j.molcel.2018.06.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
Abstract
Nucleosomes present a barrier for the binding of most transcription factors (TFs). However, special TFs known as nucleosome-displacing factors (NDFs) can access embedded sites and cause the depletion of the local nucleosomes as well as repositioning of the neighboring nucleosomes. Here, we developed a novel high-throughput method in yeast to identify NDFs among 104 TFs and systematically characterized the impact of orientation, affinity, location, and copy number of their binding motifs on the nucleosome occupancy. Using this assay, we identified 29 NDF motifs and divided the nuclear TFs into three groups with strong, weak, and no nucleosome-displacing activities. Further studies revealed that tight DNA binding is the key property that underlies NDF activity, and the NDFs may partially rely on the DNA replication to compete with nucleosome. Overall, our study presents a framework to functionally characterize NDFs and elucidate the mechanism of nucleosome invasion.
Collapse
|
30
|
The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae. Genetics 2018; 208:963-976. [PMID: 29305386 PMCID: PMC5844344 DOI: 10.1534/genetics.117.300529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022] Open
Abstract
CAG/CTG trinucleotide repeat expansions cause several degenerative neurological and muscular diseases. Koch et al. show that the chromatin remodeling... CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair.
Collapse
|
31
|
Ranwez V, Serra A, Pot D, Chantret N. Domestication reduces alternative splicing expression variations in sorghum. PLoS One 2017; 12:e0183454. [PMID: 28886042 PMCID: PMC5590825 DOI: 10.1371/journal.pone.0183454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/06/2017] [Indexed: 01/09/2023] Open
Abstract
Domestication is known to strongly reduce genomic diversity through population bottlenecks. The resulting loss of polymorphism has been thoroughly documented in numerous cultivated species. Here we investigate the impact of domestication on the diversity of alternative transcript expressions using RNAseq data obtained on cultivated and wild sorghum accessions (ten accessions for each pool). In that aim, we focus on genes expressing two isoforms in sorghum and estimate the ratio between expression levels of those isoforms in each accession. Noticeably, for a given gene, one isoform can either be overexpressed or underexpressed in some wild accessions, whereas in the cultivated accessions, the balance between the two isoforms of the same gene appears to be much more homogenous. Indeed, we observe in sorghum significantly more variation in isoform expression balance among wild accessions than among domesticated accessions. The possibility exists that the loss of nucleotide diversity due to domestication could affect regulatory elements, controlling transcription or degradation of these isoforms. Impact on the isoform expression balance is discussed. As far as we know, this is the first time that the impact of domestication on transcript isoform balance has been studied at the genomic scale. This could pave the way towards the identification of key domestication genes with finely tuned isoform expressions in domesticated accessions while being highly variable in their wild relatives.
Collapse
Affiliation(s)
| | - Audrey Serra
- Montpellier SupAgro, UMR AGAP, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
| | | |
Collapse
|
32
|
Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 2017; 18:548-562. [PMID: 28537572 DOI: 10.1038/nrm.2017.47] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in genomics technology have provided the means to probe myriad chromatin interactions at unprecedented spatial and temporal resolution. This has led to a profound understanding of nucleosome organization within the genome, revealing that nucleosomes are highly dynamic. Nucleosome dynamics are governed by a complex interplay of histone composition, histone post-translational modifications, nucleosome occupancy and positioning within chromatin, which are influenced by numerous regulatory factors, including general regulatory factors, chromatin remodellers, chaperones and polymerases. It is now known that these dynamics regulate diverse cellular processes ranging from gene transcription to DNA replication and repair.
Collapse
|
33
|
GSK-3β Homolog Rim11 and the Histone Deacetylase Complex Ume6-Sin3-Rpd3 Are Involved in Replication Stress Response Caused by Defects in Dna2. Genetics 2017; 206:829-842. [PMID: 28468907 DOI: 10.1534/genetics.116.198671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023] Open
Abstract
Lagging strand synthesis is mechanistically far more complicated than leading strand synthesis because it involves multistep processes and requires considerably more enzymes and protein factors. Due to this complexity, multiple fail-safe factors are required to ensure successful replication of the lagging strand DNA. We attempted to identify novel factors that are required in the absence of the helicase activity of Dna2, an essential enzyme in Okazaki-fragment maturation. In this article, we identified Rim11, a GSK-3β-kinase homolog, as a multicopy suppressor of dna2 helicase-dead mutant (dna2-K1080E). Subsequent epistasis analysis revealed that Ume6 (a DNA binding protein, a downstream substrate of Rim11) also acted as a multicopy suppressor of the dna2 allele. We found that the interaction of Ume6 with the conserved histone deacetylase complex Sin3-Rpd3 and the catalytic activity of Rpd3 were indispensable for the observed suppression of the dna2 mutant. Moreover, multicopy suppression by Rim11/Ume6 requires the presence of sister-chromatid recombination mediated by Rad52/Rad59 proteins, but not vice versa. Interestingly, the overexpression of Rim11 or Ume6 also suppressed the MMS sensitivity of rad59Δ. We also showed that the lethality of dna2 helicase-dead mutant was attributed to checkpoint activation and that decreased levels of deoxynucleotide triphosphates (dNTPs) by overexpressing Sml1 (an inhibitor of ribonucleotide reductase) rescued the dna2 mutant. We also present evidence that indicates Rim11/Ume6 works independently but in parallel with that of checkpoint inhibition, dNTP regulation, and sister-chromatid recombination. In conclusion, our results establish Rim11, Ume6, the histone deacetylase complex Sin3-Rpd3 and Sml1 as new factors important in the events of faulty lagging strand synthesis.
Collapse
|
34
|
Bowman GD, McKnight JN. Sequence-specific targeting of chromatin remodelers organizes precisely positioned nucleosomes throughout the genome. Bioessays 2016; 39:1-8. [PMID: 27862071 DOI: 10.1002/bies.201600183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Eukaryotic genomes are functionally organized into chromatin, a compact packaging of nucleoproteins with the basic repeating unit known as the nucleosome. A major focus for the chromatin field has been understanding what rules govern nucleosome positioning throughout the genome, and here we review recent findings using a novel, sequence-targeted remodeling enzyme. Nucleosomes are often packed into evenly spaced arrays that are reproducibly positioned, but how such organization is established and maintained through dramatic events such as DNA replication is poorly understood. We hypothesize that a major fraction of positioned nucleosomes arises from sequence-specific targeting of chromatin remodelers to generate "founding" nucleosomes, providing reproducible, predictable, and condition-specific nucleation sites against which neighboring nucleosomes are packed into evenly spaced arrays.
Collapse
Affiliation(s)
- Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
35
|
Böttcher B, Pöllath C, Staib P, Hube B, Brunke S. Candida species Rewired Hyphae Developmental Programs for Chlamydospore Formation. Front Microbiol 2016; 7:1697. [PMID: 27833594 PMCID: PMC5081361 DOI: 10.3389/fmicb.2016.01697] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydospore formation is a characteristic of many fungal species, among them the closely related human-pathogenic dimorphic yeasts Candida albicans and C. dubliniensis. Whereas function and regulation of filamentation are well-studied in these species, the basis of chlamydospore formation is mostly unknown. Here, we investigate the contribution of environmental and genetic factors and identified central proteins involved in species-specific regulation of chlamydosporulation. We show that specific nutrient levels strongly impact chlamydospore initiation, with starvation favoring sporulation and elevated levels of saccharides or peptone inhibiting it. Thresholds for these nutritional effects differ between C. albicans and C. dubliniensis, which explain species-specific chlamydospore formation on certain diagnostic media. A C. albicans nrg1Δ mutant phenocopied C. dubliniensis, putting Nrg1 regulation at the basis of species-specific chlamydospore formation under various conditions. By screening a series of potential chlamydospore regulators, we identified the TOR and cAMP pathways as crucial for sporulation. As rapamycin treatment blocked chlamydosporulation, a low basal Tor1 activity seems to be essential. In addition, TOR effector pathways play an important role, and loss of the NCR (nitrogen catabolite repression) gene regulators Gat1 and Gln3 reduced chlamydospore formation. A severe reduction was seen for a C. albicans gcn4Δ deletion strain, implicating a link between regulation of amino acid biosynthesis and chlamydospore development. On the other hand, deletion of the GTPase gene RAS1 and the adenylyl cyclase gene CYR1 caused a defect in chlamydospore formation that was mostly rescued by cAMP supplementation. Thus, cAMP-signaling is a second major pathway to control chlamydospore production. Finally, we confirmed light exposure to have a repressive effect on chlamydosporulation. However, permanent illumination only reduced, but not abolished chlamydospore production of C. albicans whereas C. dubliniensis sporulation was unaffected. In summary, we describe novel environmental factors which determine chlamydosporulation and propose a first model for the regulatory network of chlamydospore formation by different Candida species.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute Jena, Germany
| | - Christine Pöllath
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-InstituteJena, Germany; Institute for Medical Microbiology, Jena University HospitalJena, Germany; Center for Sepsis Control and Care, Jena University HospitalJena, Germany
| | - Peter Staib
- Department of Research and Development, Kneipp GmbH Würzburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-InstituteJena, Germany; Center for Sepsis Control and Care, Jena University HospitalJena, Germany; Friedrich Schiller University JenaJena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute Jena, Germany
| |
Collapse
|
36
|
Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. J Mol Biol 2016; 429:1946-1957. [PMID: 27769718 DOI: 10.1016/j.jmb.2016.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022]
Abstract
When yeast cells are challenged by a fluctuating environment, signaling networks activate differentiation programs that promote their individual or collective survival. These programs include the initiation of meiotic sporulation, the formation of filamentous growth structures, and the activation of programmed cell death pathways. The establishment and maintenance of these distinct cell fates are driven by massive gene expression programs that promote the necessary changes in morphology and physiology. While these genomic reprogramming events depend on a specialized network of transcription factors, a diverse set of chromatin regulators, including histone-modifying enzymes, chromatin remodelers, and histone variants, also play essential roles. Here, we review the broad functions of histone modifications in initiating cell fate transitions, with particular focus on their contribution to the control of expression of key genes required for the differentiation programs and chromatin reorganization that accompanies these cell fates.
Collapse
|
37
|
Navarathna DHMLP, Pathirana RU, Lionakis MS, Nickerson KW, Roberts DD. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS One 2016; 11:e0164449. [PMID: 27727302 PMCID: PMC5058487 DOI: 10.1371/journal.pone.0164449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023] Open
Abstract
Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruvini U. Pathirana
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
38
|
Swinstead EE, Paakinaho V, Presman DM, Hager GL. Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays 2016; 38:1150-1157. [PMID: 27633730 DOI: 10.1002/bies.201600137] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor (TF) signaling regulates gene transcription and requires a complex network of proteins. This network includes co-activators, co-repressors, multiple TFs, histone-modifying complexes, and the basal transcription machinery. It has been widely appreciated that pioneer factors, such as FoxA1 and GATA1, play an important role in opening closed chromatin regions, thereby allowing binding of a secondary factor. In this review we will focus on a newly proposed model wherein multiple TFs, such as steroid receptors (SRs), can function in a pioneering role. This model, termed dynamic assisted loading, integrates data from widely divergent methodologies, including genome wide ChIP-Seq, digital genomic footprinting, DHS-Seq, live cell protein dynamics, and biochemical studies of ATP-dependent remodeling complexes, to present a real time view of TF chromatin interactions. Under this view, many TFs can act as initiating factors for chromatin landscape programming. Furthermore, enhancer and promoter states are more accurately described as energy-dependent, non-equilibrium steady states.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
39
|
Abstract
Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition.
Collapse
Affiliation(s)
- Monica Tyagi
- a Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas , New Delhi , India
| | | | | | | |
Collapse
|
40
|
McKnight JN, Tsukiyama T, Bowman GD. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome Res 2016; 26:693-704. [PMID: 26993344 PMCID: PMC4864466 DOI: 10.1101/gr.199919.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023]
Abstract
ATP-dependent chromatin remodelers regulate chromatin dynamics by modifying nucleosome positions and occupancy. DNA-dependent processes such as replication and transcription rely on chromatin to faithfully regulate DNA accessibility, yet how chromatin remodelers achieve well-defined nucleosome positioning in vivo is poorly understood. Here, we report a simple method for site-specifically altering nucleosome positions in live cells. By fusing the Chd1 remodeler to the DNA binding domain of the Saccharomyces cerevisiae Ume6 repressor, we have engineered a fusion remodeler that selectively positions nucleosomes on top of adjacent Ume6 binding motifs in a highly predictable and reproducible manner. Positioning of nucleosomes by the fusion remodeler recapitulates closed chromatin structure at Ume6-sensitive genes analogous to the endogenous Isw2 remodeler. Strikingly, highly precise positioning of single founder nucleosomes by either chimeric Chd1-Ume6 or endogenous Isw2 shifts phased chromatin arrays in cooperation with endogenous chromatin remodelers. Our results demonstrate feasibility of engineering precise nucleosome rearrangements through sequence-targeted chromatin remodeling and provide insight into targeted action and cooperation of endogenous chromatin remodelers in vivo.
Collapse
Affiliation(s)
- Jeffrey N McKnight
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Gregory D Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
41
|
Gupta R, Sadhale PP, Vijayraghavan U. SUB1 Plays a Negative Role during Starvation Induced Sporulation Program in Saccharomyces cerevisiae. PLoS One 2015; 10:e0132350. [PMID: 26147804 PMCID: PMC4492983 DOI: 10.1371/journal.pone.0132350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/14/2015] [Indexed: 01/29/2023] Open
Abstract
Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1Δ cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1Δ sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Parag P. Sadhale
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
- * E-mail:
| |
Collapse
|
42
|
Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification. Mol Genet Genomics 2015; 290:2031-46. [PMID: 25957495 DOI: 10.1007/s00438-015-1051-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes.
Collapse
|
43
|
Leveraging DNA damage response signaling to identify yeast genes controlling genome stability. G3-GENES GENOMES GENETICS 2015; 5:997-1006. [PMID: 25721128 PMCID: PMC4426383 DOI: 10.1534/g3.115.016576] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oncogenesis frequently is accompanied by rampant genome instability, which fuels genetic heterogeneity and resistance to targeted cancer therapy. We have developed an approach that allows precise, quantitative measurement of genome instability in high-throughput format in the Saccharomyces cerevisiae model system. Our approach takes advantage of the strongly DNA damage-inducible gene RNR3, in conjunction with the reporter synthetic genetic array methodology, to infer mutants exhibiting genome instability by assaying for increased Rnr3 abundance. We screen for genome instability across a set of ~1000 essential and ~4200 nonessential mutant yeast alleles in untreated conditions and in the presence of the DNA-damaging agent methylmethane sulfonate. Our results provide broad insights into the cellular processes and pathways required for genome maintenance. Through comparison with existing genome instability screens, we isolated 130 genes that had not previously been linked to genome maintenance, 51% of which have human homologs. Several of these homologs are associated with a genome instability phenotype in human cells or are causally mutated in cancer. A comprehensive understanding of the processes required to prevent genome instability will facilitate a better understanding of its sources in oncogenesis.
Collapse
|
44
|
Chromatin remodeling factors Isw2 and Ino80 regulate checkpoint activity and chromatin structure in S phase. Genetics 2015; 199:1077-91. [PMID: 25701287 DOI: 10.1534/genetics.115.174730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 12/19/2022] Open
Abstract
When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism.
Collapse
|
45
|
Becker E, Liu Y, Lardenois A, Walther T, Horecka J, Stuparevic I, Law MJ, Lavigne R, Evrard B, Demougin P, Riffle M, Strich R, Davis RW, Pineau C, Primig M. Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development. J Proteomics 2015; 119:30-44. [PMID: 25662576 DOI: 10.1016/j.jprot.2015.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 12/29/2022]
Abstract
UNLABELLED Diploid budding yeast undergoes rapid mitosis when it ferments glucose, and in the presence of a non-fermentable carbon source and the absence of a nitrogen source it triggers sporulation. Rich medium with acetate is a commonly used pre-sporulation medium, but our understanding of the molecular events underlying the acetate-driven transition from mitosis to meiosis is still incomplete. We identified 263 proteins for which mRNA and protein synthesis are linked or uncoupled in fermenting and respiring cells. Using motif predictions, interaction data and RNA profiling we find among them 28 likely targets for Ume6, a subunit of the conserved Rpd3/Sin3 histone deacetylase-complex regulating genes involved in metabolism, stress response and meiosis. Finally, we identify 14 genes for which both RNA and proteins are detected exclusively in respiring cells but not in fermenting cells in our sample set, including CSM4, SPR1, SPS4 and RIM4, which were thought to be meiosis-specific. Our work reveals intertwined transcriptional and post-transcriptional control mechanisms acting when a MATa/α strain responds to nutritional signals, and provides molecular clues how the carbon source primes yeast cells for entering meiosis. BIOLOGICAL SIGNIFICANCE Our integrated genomics study provides insight into the interplay between the transcriptome and the proteome in diploid yeast cells undergoing vegetative growth in the presence of glucose (fermentation) or acetate (respiration). Furthermore, it reveals novel target genes involved in these processes for Ume6, the DNA binding subunit of the conserved histone deacetylase Rpd3 and the co-repressor Sin3. We have combined data from an RNA profiling experiment using tiling arrays that cover the entire yeast genome, and a large-scale protein detection analysis based on mass spectrometry in diploid MATa/α cells. This distinguishes our study from most others in the field-which investigate haploid yeast strains-because only diploid cells can undergo meiotic development in the simultaneous absence of a non-fermentable carbon source and nitrogen. Indeed, we report molecular clues how respiration of acetate might prime diploid cells for efficient spore formation, a phenomenon that is well known but poorly understood.
Collapse
Affiliation(s)
| | - Yuchen Liu
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Thomas Walther
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Joe Horecka
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA
| | - Igor Stuparevic
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | - Michael J Law
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Régis Lavigne
- Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Bertrand Evrard
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France
| | | | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Randy Strich
- Rowan University, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ronald W Davis
- Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Charles Pineau
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France; Inserm U1085 IRSET, Proteomics Core Facility Biogenouest, Université de Rennes 1, 35042 Rennes, France
| | - Michael Primig
- Inserm U1085 IRSET, Université de Rennes 1, 35042 Rennes, France.
| |
Collapse
|
46
|
胡 焕. The Impact of Gene Function on Nucleosome Positioning in the Absence of ISW2. Biophysics (Nagoya-shi) 2015. [DOI: 10.12677/biphy.2015.34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
47
|
Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 2015; 27:10-19. [DOI: 10.1016/j.ymben.2014.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/06/2014] [Accepted: 10/14/2014] [Indexed: 01/09/2023]
|
48
|
Wannige CT, Kulasiri D, Samarasinghe S. The meiotic-mitotic initiation switch in budding yeast maintains its function robustly against sensitive parameter perturbations. Biosystems 2014; 124:61-74. [PMID: 25195149 DOI: 10.1016/j.biosystems.2014.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
Experiments show that the meiotic-mitotic initiation switch in budding yeast functions robustly during the early hours of meiosis initiation. In this study, we explain these experimental observations first by understanding how this switching occurs during the early hours of meiosis by studying the temporal variation of this switch at the gene expression level. Then, we investigate the effects on this meiotic-mitotic switching from the perturbations of the most sensitive parameters in budding yeast meiosis initiation network. We use a mathematical model of meiosis initiation in budding yeast for this task and find the most sensitive group of parameters that influence the expressions of meiosis and mitosis initiators at all stages of the meiotic-mitotic switch. The results indicate that the transition region of the switch, where a double negative feedback loop between meiosis (Ime2) and mitosis (Cdk1/Cln3) initiators plays a major role, shows lower robustness. Feedback loops are frequently observed serving as a major robust adaption mechanism in many biological networks. Consequences of this less robust region appear in the transition region of the resulting switches. Most importantly, despite the differences observed in the transition region, we find that the meiotic-mitotic switch robustly maintains its main function of transition from meiosis to mitosis when the nutrients are re-supplied, against the perturbations in the sensitive parameters.
Collapse
Affiliation(s)
- C T Wannige
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
49
|
Shi J, Zheng M, Ye Y, Li M, Chen X, Hu X, Sun J, Zhang X, Jiang C. Drosophila Brahma complex remodels nucleosome organizations in multiple aspects. Nucleic Acids Res 2014; 42:9730-9. [PMID: 25081211 PMCID: PMC4150808 DOI: 10.1093/nar/gku717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes regulate nucleosome organizations. In Drosophila, gene Brm encodes the core Brahma complex, the ATPase subunit of SWI/SNF class of chromatin remodelers. Its role in modulating the nucleosome landscape in vivo is unclear. In this study, we knocked down Brm in Drosophila third instar larvae to explore the changes in nucleosome profiles and global gene transcription. The results show that Brm knockdown leads to nucleosome occupancy changes throughout the entire genome with a bias in occupancy decrease. In contrast, the knockdown has limited impacts on nucleosome position shift. The knockdown also alters another important physical property of nucleosome positioning, fuzziness. Nucleosome position shift, gain or loss and fuzziness changes are all enriched in promoter regions. Nucleosome arrays around the 5' ends of genes are reorganized in five patterns as a result of Brm knockdown. Intriguingly, the concomitant changes in the genes adjacent to the Brahma-dependent remodeling regions have important roles in development and morphogenesis. Further analyses reveal abundance of AT-rich motifs for transcription factors in the remodeling regions.
Collapse
Affiliation(s)
- Jiejun Shi
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meizhu Zheng
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Youqiong Ye
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaolong Chen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinjie Hu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaobai Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cizhong Jiang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai Key Laboratory of Signaling and Disease Research, the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
50
|
Sarkar S, Dalgaard JZ, Millar JBA, Arumugam P. The Rim15-endosulfine-PP2ACdc55 signalling module regulates entry into gametogenesis and quiescence via distinct mechanisms in budding yeast. PLoS Genet 2014; 10:e1004456. [PMID: 24968058 PMCID: PMC4072559 DOI: 10.1371/journal.pgen.1004456] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/09/2014] [Indexed: 01/31/2023] Open
Abstract
Quiescence and gametogenesis represent two distinct survival strategies in response to nutrient starvation in budding yeast. Precisely how environmental signals are sensed by yeast cells to trigger quiescence and gametogenesis is not fully understood. A conserved signalling module consisting of Greatwall kinase, Endosulfine and Protein Phosphatase PP2ACdc55 proteins regulates entry into mitosis in Xenopus egg extracts and meiotic maturation in flies. We report here that an analogous signalling module consisting of the serine-threonine kinase Rim15, the Endosulfines Igo1 and Igo2 and the Protein Phosphatase PP2ACdc55, regulates entry into both quiescence and gametogenesis in budding yeast. PP2ACdc55 inhibits entry into gametogenesis and quiescence. Rim15 promotes entry into gametogenesis and quiescence by converting Igo1 into an inhibitor of PP2ACdc55 by phosphorylating at a conserved serine residue. Moreover, we show that the Rim15-Endosulfine-PP2ACdc55 pathway regulates entry into quiescence and gametogenesis by distinct mechanisms. In addition, we show that Igo1 and Igo2 are required for pre-meiotic autophagy but the lack of pre-meiotic autophagy is insufficient to explain the sporulation defect of igo1Δ igo2Δ cells. We propose that the Rim15-Endosulfine-PP2ACdc55 signalling module triggers entry into quiescence and gametogenesis by regulating dephosphorylation of distinct substrates. The fundamental property of a cell is to sense changes in the environment and then respond in a way that maximizes its chances of survival. When diploid budding yeast cells are subjected to complete nutrient starvation they have two possible fates, namely quiescence and gametogenesis. Quiescent cells have reduced rates of transcription and translation and increased stress tolerance. Gametogenesis results in production of haploid spores that can survive for long periods of time. In this paper, we report a signalling module that regulates entry into both quiescence and gametogenesis in budding yeast. The module consists of three molecular components namely a serine-threonine kinase Rim15, a phosphatase PP2ACdc55 and a conserved protein called as endosulfine. PP2ACdc55 negatively regulates entry into gametogenesis and quiescence. Upon nutrient starvation, Rim15 becomes active and phosphorylates endosulfine. This converts endosulfine to an inhibitor of PP2ACdc55 and thereby leading to entry into quiescence and gametogenesis. Remarkably, an analogous module consisting of Greatwall kinase, PP2A-B55δ and endosulfine regulates entry into mitosis in frog egg extracts and meiotic maturation in flies suggesting that this signalling module is highly conserved and co-opted during evolution to control distinct biological processes in different organisms.
Collapse
Affiliation(s)
- Sourav Sarkar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jacob Z. Dalgaard
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jonathan B. A. Millar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Prakash Arumugam
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|