1
|
Shylo NA, Trainor PA. Decrypting the phylogenetics history of EGF-CFC proteins Cripto and Cryptic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610562. [PMID: 39257814 PMCID: PMC11383694 DOI: 10.1101/2024.08.30.610562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
EGF-CFC proteins are obligate coreceptors for Nodal signaling and are thus required for gastrulation and left-right patterning. Species with multiple family members show evidence of specialization. For example, mouse Cripto is required for gastrulation, whereas Cryptic is involved in left-right patterning. However, the members of the family across model organisms have little sequence conservation beyond the EGF-CFC domain, posing challenges for determining their evolutionary history and functional conservation. In this study we outline the evolutionary history of the EGF-CFC family of proteins. We traced the EGF-CFC gene family from a single gene in the deuterostome ancestor through its expansion and functional specialization in tetrapods, and subsequent gene loss and translocation in eutherian mammals. Mouse Cripto and Cryptic, zebrafish Tdgf1, and all three Xenopus EGF-CFC genes (Tdgf1, Tdgf1.2 and Cripto.3) and are all descendants of the ancestral Tdgf1 gene. We propose that subsequent to the family expansion in tetrapods, Tdgf1B (Xenopus Tdgf1.2) acquired specialization in the left-right patterning cascade, and after its translocation in eutherians to a different chromosomal location, Cfc1/Cryptic has maintained that specialization.
Collapse
Affiliation(s)
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Miles LB, Calcinotto V, Oveissi S, Serrano RJ, Sonntag C, Mulia O, Lee C, Bryson-Richardson RJ. CRIMP: a CRISPR/Cas9 insertional mutagenesis protocol and toolkit. Nat Commun 2024; 15:5011. [PMID: 38866742 PMCID: PMC11169554 DOI: 10.1038/s41467-024-49341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Site-directed insertion is a powerful approach for generating mutant alleles, but low efficiency and the need for customisation for each target has limited its application. To overcome this, we developed a highly efficient targeted insertional mutagenesis system, CRIMP, and an associated plasmid toolkit, CRIMPkit, that disrupts native gene expression by inducing complete transcriptional termination, generating null mutant alleles without inducing genetic compensation. The protocol results in a high frequency of integration events and can generate very early targeted insertions, during the first cell division, producing embryos with expression in one or both halves of the body plan. Fluorescent readout of integration events facilitates selection of successfully mutagenized fish and, subsequently, visual identification of heterozygous and mutant animals. Together, these advances greatly improve the efficacy of generating and studying mutant lines. The CRIMPkit contains 24 ready-to-use plasmid vectors to allow easy and complete mutagenesis of any gene in any reading frame without requiring custom sequences, modification, or subcloning.
Collapse
Affiliation(s)
- Lee B Miles
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Sara Oveissi
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Rita J Serrano
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Carmen Sonntag
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Orlen Mulia
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Clara Lee
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | | |
Collapse
|
3
|
Huljev K, Shamipour S, Pinheiro D, Preusser F, Steccari I, Sommer CM, Naik S, Heisenberg CP. A hydraulic feedback loop between mesendoderm cell migration and interstitial fluid relocalization promotes embryonic axis formation in zebrafish. Dev Cell 2023; 58:582-596.e7. [PMID: 36931269 DOI: 10.1016/j.devcel.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/31/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Interstitial fluid (IF) accumulation between embryonic cells is thought to be important for embryo patterning and morphogenesis. Here, we identify a positive mechanical feedback loop between cell migration and IF relocalization and find that it promotes embryonic axis formation during zebrafish gastrulation. We show that anterior axial mesendoderm (prechordal plate [ppl]) cells, moving in between the yolk cell and deep cell tissue to extend the embryonic axis, compress the overlying deep cell layer, thereby causing IF to flow from the deep cell layer to the boundary between the yolk cell and the deep cell layer, directly ahead of the advancing ppl. This IF relocalization, in turn, facilitates ppl cell protrusion formation and migration by opening up the space into which the ppl moves and, thereby, the ability of the ppl to trigger IF relocalization by pushing against the overlying deep cell layer. Thus, embryonic axis formation relies on a hydraulic feedback loop between cell migration and IF relocalization.
Collapse
Affiliation(s)
- Karla Huljev
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Shayan Shamipour
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Diana Pinheiro
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Friedrich Preusser
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück centre for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Irene Steccari
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Suyash Naik
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
4
|
Truszkowski L, Batur D, Long H, Tarbashevich K, Vos BE, Trappmann B, Raz E. Primordial germ cells adjust their protrusion type while migrating in different tissue contexts in vivo. Development 2023; 150:286614. [PMID: 36515556 PMCID: PMC10110502 DOI: 10.1242/dev.200603] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
In both physiological processes and disease contexts, migrating cells have the ability to adapt to conditions in their environment. As an in vivo model for this process, we use zebrafish primordial germ cells that migrate throughout the developing embryo. When migrating within an ectodermal environment, the germ cells form fewer and smaller blebs when compared with their behavior within mesodermal environment. We find that cortical tension of neighboring cells is a parameter that affects blebbing frequency. Interestingly, the change in blebbing activity is accompanied by the formation of more actin-rich protrusions. These alterations in cell behavior that correlate with changes in RhoA activity could allow the cells to maintain dynamic motility parameters, such as migration speed and track straightness, in different settings. In addition, we find that the polarity of the cells can be affected by stiff structures positioned in their migration path This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lukasz Truszkowski
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Dilek Batur
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | - Bart E Vos
- Third Institute of Physics - Biophysics, Georg August University Göttingen, D-37007 Göttingen, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, D-48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| |
Collapse
|
5
|
Stock J, Kazmar T, Schlumm F, Hannezo E, Pauli A. A self-generated Toddler gradient guides mesodermal cell migration. SCIENCE ADVANCES 2022; 8:eadd2488. [PMID: 36103529 PMCID: PMC9473572 DOI: 10.1126/sciadv.add2488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sculpting of germ layers during gastrulation relies on the coordinated migration of progenitor cells, yet the cues controlling these long-range directed movements remain largely unknown. While directional migration often relies on a chemokine gradient generated from a localized source, we find that zebrafish ventrolateral mesoderm is guided by a self-generated gradient of the initially uniformly expressed and secreted protein Toddler/ELABELA/Apela. We show that the Apelin receptor, which is specifically expressed in mesodermal cells, has a dual role during gastrulation, acting as a scavenger receptor to generate a Toddler gradient, and as a chemokine receptor to sense this guidance cue. Thus, we uncover a single receptor-based self-generated gradient as the enigmatic guidance cue that can robustly steer the directional migration of mesoderm through the complex and continuously changing environment of the gastrulating embryo.
Collapse
Affiliation(s)
- Jessica Stock
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tomas Kazmar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Friederike Schlumm
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST), Klosterneuburg, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
6
|
Krueger LA, Morris AC. Eyes on CHARGE syndrome: Roles of CHD7 in ocular development. Front Cell Dev Biol 2022; 10:994412. [PMID: 36172288 PMCID: PMC9512043 DOI: 10.3389/fcell.2022.994412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The development of the vertebrate visual system involves complex morphogenetic interactions of cells derived from multiple embryonic lineages. Disruptions in this process are associated with structural birth defects such as microphthalmia, anophthalmia, and coloboma (collectively referred to as MAC), and inherited retinal degenerative diseases such as retinitis pigmentosa and allied dystrophies. MAC and retinal degeneration are also observed in systemic congenital malformation syndromes. One important example is CHARGE syndrome, a genetic disorder characterized by coloboma, heart defects, choanal atresia, growth retardation, genital abnormalities, and ear abnormalities. Mutations in the gene encoding Chromodomain helicase DNA binding protein 7 (CHD7) cause the majority of CHARGE syndrome cases. However, the pathogenetic mechanisms that connect loss of CHD7 to the ocular complications observed in CHARGE syndrome have not been identified. In this review, we provide a general overview of ocular development and congenital disorders affecting the eye. This is followed by a comprehensive description of CHARGE syndrome, including discussion of the spectrum of ocular defects that have been described in this disorder. In addition, we discuss the current knowledge of CHD7 function and focus on its contributions to the development of ocular structures. Finally, we discuss outstanding gaps in our knowledge of the role of CHD7 in eye formation, and propose avenues of investigation to further our understanding of how CHD7 activity regulates ocular and retinal development.
Collapse
Affiliation(s)
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
8
|
Afify SM, Hassan G, Nawara HM, H Zahra M, Xu Y, Alam MJ, Saitoh K, Mansour H, Abu Quora HA, Sheta M, Monzur S, Du J, Oh SY, Seno A, Salomon DS, Seno M. Optimization of production and characterization of a recombinant soluble human Cripto-1 protein inhibiting self-renewal of cancer stem cells. J Cell Biochem 2022; 123:1183-1196. [PMID: 35578735 DOI: 10.1002/jcb.30272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12 cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 37°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCs at high dose and induced cell differentiation.
Collapse
Affiliation(s)
- Said M Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, 32511, Shebin El Kom, Menofiua, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Current address: Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, Japan
| | - Hend M Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Maram H Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan
| | - Yanning Xu
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan.,Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University, Tianjin, China
| | - Md Jahangir Alam
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Koichi Saitoh
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Hager Mansour
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Hagar A Abu Quora
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Mona Sheta
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sadia Monzur
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - Juan Du
- Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | | | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| | - David S Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan.,Graduate School of Natural Science and Technology, Okayama University, 7000086, okayama, okayama, Japan.,Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
9
|
White RJ, Mackay E, Wilson SW, Busch-Nentwich EM. Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants. eLife 2022; 11:72825. [PMID: 35175196 PMCID: PMC8884726 DOI: 10.7554/elife.72825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
In model organisms, RNA-sequencing (RNA-seq) is frequently used to assess the effect of genetic mutations on cellular and developmental processes. Typically, animals heterozygous for a mutation are crossed to produce offspring with different genotypes. Resultant embryos are grouped by genotype to compare homozygous mutant embryos to heterozygous and wild-type siblings. Genes that are differentially expressed between the groups are assumed to reveal insights into the pathways affected by the mutation. Here we show that in zebrafish, differentially expressed genes are often over-represented on the same chromosome as the mutation due to different levels of expression of alleles from different genetic backgrounds. Using an incross of haplotype-resolved wild-type fish, we found evidence of widespread allele-specific expression, which appears as differential expression when comparing embryos homozygous for a region of the genome to their siblings. When analysing mutant transcriptomes, this means that the differential expression of genes on the same chromosome as a mutation of interest may not be caused by that mutation. Typically, the genomic location of a differentially expressed gene is not considered when interpreting its importance with respect to the phenotype. This could lead to pathways being erroneously implicated or overlooked due to the noise of spurious differentially expressed genes on the same chromosome as the mutation. These observations have implications for the interpretation of RNA-seq experiments involving outbred animals and non-inbred model organisms.
Collapse
Affiliation(s)
- Richard J White
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eirinn Mackay
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Elisabeth M Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
12
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
13
|
Composite morphogenesis during embryo development. Semin Cell Dev Biol 2021; 120:119-132. [PMID: 34172395 DOI: 10.1016/j.semcdb.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis drives the formation of functional living shapes. Gene expression patterns and signaling pathways define the body plans of the animal and control the morphogenetic processes shaping the embryonic tissues. During embryogenesis, a tissue can undergo composite morphogenesis resulting from multiple concomitant shape changes. While previous studies have unraveled the mechanisms that drive simple morphogenetic processes, how a tissue can undergo multiple and simultaneous changes in shape is still not known and not much explored. In this chapter, we focus on the process of concomitant tissue folding and extension that is vital for the animal since it is key for embryo gastrulation and neurulation. Recent pioneering studies focus on this problem highlighting the roles of different spatially coordinated cell mechanisms or of the synergy between different patterns of gene expression to drive composite morphogenesis.
Collapse
|
14
|
Lord ND, Carte AN, Abitua PB, Schier AF. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 2021; 10:e54894. [PMID: 34036935 PMCID: PMC8266389 DOI: 10.7554/elife.54894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Embryos must communicate instructions to their constituent cells over long distances. These instructions are often encoded in the concentration of signals called morphogens. In the textbook view, morphogen molecules diffuse from a localized source to form a concentration gradient, and target cells adopt fates by measuring the local morphogen concentration. However, natural patterning systems often incorporate numerous co-factors and extensive signaling feedback, suggesting that embryos require additional mechanisms to generate signaling patterns. Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal gradient formation. We further show that the range of endogenous Nodal ligands is set by the EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands. We recapitulate these experimental results with a computational model in which Oep regulates the diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts, and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and sensitization of responding cells.
Collapse
Affiliation(s)
- Nathan D Lord
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Adam N Carte
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
| | - Philip B Abitua
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Biozentrum, University of BaselBaselSwitzerland
- Allen Discovery Center for Cell Lineage Tracing, University of WashingtonSeattleUnited States
| |
Collapse
|
15
|
Fricke T, Smalakyte D, Lapinski M, Pateria A, Weige C, Pastor M, Kolano A, Winata C, Siksnys V, Tamulaitis G, Bochtler M. Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish. CRISPR J 2020; 3:299-313. [PMID: 32833532 PMCID: PMC7469701 DOI: 10.1089/crispr.2020.0032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RNA interference is a powerful experimental tool for RNA knockdown, but not all organisms are amenable. Here, we provide a proof of principle demonstration that a type III Csm effector complex can be used for programmable mRNA transcript degradation in eukaryotes. In zebrafish, Streptococcus thermophilus Csm complex (StCsm) proved effective for knockdown of maternally expressed EGFP in germ cells of Tg(ddx4:ddx4-EGFP) fish. It also led to significant, albeit less drastic, fluorescence reduction at one day postfertilization in Tg(myl7:GFP) and Tg(fli1:EGFP) fish that express EGFP zygotically. StCsm targeted against the endogenous tdgf1 elicited the characteristic one-eyed phenotype with greater than 50% penetrance, and hence with similar efficiency to morpholino-mediated knockdown. We conclude that Csm-mediated knockdown is very efficient for maternal transcripts and can also be used for mixed maternal/early zygotic and early zygotic transcripts, in some cases reaching comparable efficiency to morpholino-based knockdown without significant off-target effects.
Collapse
Affiliation(s)
- Thomas Fricke
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Dalia Smalakyte
- Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Maciej Lapinski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Charles Weige
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michal Pastor
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| | - Agnieszka Kolano
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
| |
Collapse
|
16
|
Williams ML, Solnica-Krezel L. Nodal and planar cell polarity signaling cooperate to regulate zebrafish convergence and extension gastrulation movements. eLife 2020; 9:54445. [PMID: 32319426 PMCID: PMC7250581 DOI: 10.7554/elife.54445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
During vertebrate gastrulation, convergence and extension (C and E) of the primary anteroposterior (AP) embryonic axis is driven by polarized mediolateral (ML) cell intercalations and is influenced by AP axial patterning. Nodal signaling is essential for patterning of the AP axis while planar cell polarity (PCP) signaling polarizes cells with respect to this axis, but how these two signaling systems interact during C and E is unclear. We find that the neuroectoderm of Nodal-deficient zebrafish gastrulae exhibits reduced C and E cell behaviors, which require Nodal signaling in both cell- and non-autonomous fashions. PCP signaling is partially active in Nodal-deficient embryos and its inhibition exacerbates their C and E defects. Within otherwise naïve zebrafish blastoderm explants, however, Nodal induces C and E in a largely PCP-dependent manner, arguing that Nodal acts both upstream of and in parallel with PCP during gastrulation to regulate embryonic axis extension cooperatively.
Collapse
Affiliation(s)
- Margot Lk Williams
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
17
|
|
18
|
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife 2019; 8:50160. [PMID: 31670659 PMCID: PMC6874477 DOI: 10.7554/elife.50160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/24/2022] Open
Abstract
Sequential developmental events, starting from the moment of fertilization, are crucial for the acquisition of animal body plan. Subtle modifications in such early events are likely to have major impacts in later morphogenesis, bringing along morphological diversification. Here, comparing the blind cave and the surface morphotypes of Astyanax mexicanus fish, we found heterochronies during gastrulation that produce organizer and axial mesoderm tissues with different properties (including differences in the expression of dkk1b) that may have contributed to cavefish brain evolution. These variations observed during gastrulation depend fully on maternal factors. The developmental evolution of retinal morphogenesis and hypothalamic patterning are among those traits that retained significant maternal influence at larval stages. Transcriptomic analysis of fertilized eggs from both morphotypes and reciprocal F1 hybrids showed a strong and specific maternal signature. Our work strongly suggests that maternal effect genes and developmental heterochronies that occur during gastrulation have impacted morphological brain change during cavefish evolution.
Collapse
Affiliation(s)
- Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS UMR9197, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
19
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
20
|
Montague TG, Gagnon JA, Schier AF. Conserved regulation of Nodal-mediated left-right patterning in zebrafish and mouse. Development 2018; 145:dev.171090. [PMID: 30446628 DOI: 10.1242/dev.171090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023]
Abstract
Nodal is the major effector of left-right axis development. In mice, Nodal forms heterodimers with Gdf1 and is inhibited by Cerl2/Dand5 at the node, and by Lefty1 in the lateral plate mesoderm (LPM). Studies in zebrafish have suggested some parallels, but also differences, between left-right patterning in mouse and zebrafish. To address these discrepancies, we generated single and double zebrafish mutants for southpaw (spaw, the Nodal ortholog), dand5 and lefty1, and performed biochemical and activity assays with Spaw and Vg1/Gdf3 (the Gdf1 ortholog). Contrary to previous findings, spaw mutants failed to initiate spaw expression in the LPM, and asymmetric heart looping was absent, similar to mouse Nodal mutants. In blastoderm assays, Vg1 and Spaw were interdependent for target gene induction, and contrary to previous results, formed heterodimers. Loss of Dand5 or Lefty1 caused bilateral spaw expression, similar to mouse mutants, and Lefty1 was replaceable with a uniform Nodal signaling inhibitor. Collectively, these results indicate that Dand5 activity biases Spaw-Vg1 heterodimer activity to the left, Spaw around Kupffer's vesicle induces the expression of spaw in the LPM and global Nodal inhibition maintains the left bias of Spaw activity, demonstrating conservation between zebrafish and mouse mechanisms of left-right patterning.
Collapse
Affiliation(s)
- Tessa G Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA .,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.,Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
21
|
Exogenous Cripto-1 Suppresses Self-Renewal of Cancer Stem Cell Model. Int J Mol Sci 2018; 19:ijms19113345. [PMID: 30373174 PMCID: PMC6274844 DOI: 10.3390/ijms19113345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/11/2023] Open
Abstract
Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 µg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 µg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 µg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.
Collapse
|
22
|
Warga RM, Kane DA. Wilson cell origin for kupffer's vesicle in the zebrafish. Dev Dyn 2018; 247:1057-1069. [DOI: 10.1002/dvdy.24657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rachel M. Warga
- Department of Biological Sciences; Western Michigan University; Kalamazoo Michigan
| | - Donald A. Kane
- Department of Biological Sciences; Western Michigan University; Kalamazoo Michigan
| |
Collapse
|
23
|
Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC. Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 2018; 14:e1007652. [PMID: 30208061 PMCID: PMC6152997 DOI: 10.1371/journal.pgen.1007652] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/24/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022] Open
Abstract
One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.
Collapse
Affiliation(s)
- Hirotaka Ata
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States of America
| | - Thomas L. Ekstrom
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
| | - Gabriel Martínez-Gálvez
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Carla M. Mann
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Alexey V. Dvornikov
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Kyle J. Schaefbauer
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Alvin C. Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Drena Dobbs
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Karl J. Clark
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Stephen C. Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
24
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
25
|
Kindt LM, Coughlin AR, Perosino TR, Ersfeld HN, Hampton M, Liang JO. Identification of transcripts potentially involved in neural tube closure using RNA sequencing. Genesis 2018; 56:e23096. [PMID: 29488319 DOI: 10.1002/dvg.23096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
Anencephaly is a fatal human neural tube defect (NTD) in which the anterior neural tube remains open. Zebrafish embryos with reduced Nodal signaling display an open anterior neural tube phenotype that is analogous to anencephaly. Previous work from our laboratory suggests that Nodal signaling acts through induction of the head mesendoderm and mesoderm. Head mesendoderm/mesoderm then, through an unknown mechanism, promotes formation of the polarized neuroepithelium that is capable of undergoing the movements required for closure. We compared the transcriptome of embryos treated with a Nodal signaling inhibitor at sphere stage, which causes NTDs, to embryos treated at 30% epiboly, which does not cause NTDs. This screen identified over 3,000 transcripts with potential roles in anterior neurulation. Expression of several genes encoding components of tight and adherens junctions was significantly reduced, supporting the model that Nodal signaling regulates formation of the neuroepithelium. mRNAs involved in Wnt, FGF, and BMP signaling were also differentially expressed, suggesting these pathways might regulate anterior neurulation. In support of this, we found that pharmacological inhibition of FGF-receptor function causes an open anterior NTD as well as loss of mesodermal derivatives. This suggests that Nodal and FGF signaling both promote anterior neurulation through induction of head mesoderm.
Collapse
Affiliation(s)
- Lexy M Kindt
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | - Alicia R Coughlin
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| | | | - Haley N Ersfeld
- Department of Biology, University of Minnesota Duluth, Duluth
| | - Marshall Hampton
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth.,Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth
| | - Jennifer O Liang
- Department of Biology, University of Minnesota Duluth, Duluth.,Integrated Biosciences Graduate Program, University of Minnesota, Duluth
| |
Collapse
|
26
|
Vopalensky P, Pralow S, Vastenhouw NL. Reduced expression of the Nodal co-receptor Oep causes loss of mesendodermal competence in zebrafish. Development 2018; 145:dev.158832. [PMID: 29440298 DOI: 10.1242/dev.158832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
Abstract
The activation of specific gene expression programs depends on the presence of the appropriate signals and the competence of cells to respond to those signals. Although it is well established that cellular competence is regulated in space and time, the molecular mechanisms underlying the loss of competence remain largely unknown. Here, we determine the time window during which zebrafish prospective ectoderm loses its ability to respond to Nodal signals, and show that this coincides with a decrease in the levels of the Nodal co-receptor One-eyed pinhead (Oep). Bypassing Oep using a photoactivatable receptor, or an Oep-independent ligand, allows activation of Nodal target genes for an extended period of time. These results suggest that the reduced expression of Oep causes the loss of responsiveness to Nodal signals in the prospective ectoderm. Indeed, extending the presence of Oep prolongs the window of competence to respond to Nodal signals. Our findings suggest a simple mechanism in which the decreasing level of one component of the Nodal signaling pathway regulates the loss of mesendodermal competence in the prospective ectoderm.
Collapse
Affiliation(s)
- Pavel Vopalensky
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Sabrina Pralow
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
27
|
Wei S, Wang Q. Molecular regulation of Nodal signaling during mesendoderm formation. Acta Biochim Biophys Sin (Shanghai) 2018; 50:74-81. [PMID: 29206913 DOI: 10.1093/abbs/gmx128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
One of the most important events during vertebrate embryogenesis is the formation or specification of the three germ layers, endoderm, mesoderm, and ectoderm. After a series of rapid cleavages, embryos form the mesendoderm and ectoderm during late blastulation and early gastrulation. The mesendoderm then further differentiates into the mesoderm and endoderm. Nodal, a member of the transforming growth factor β (TGF-β) superfamily, plays a pivotal role in mesendoderm formation by regulating the expression of a number of critical transcription factors, including Mix-like, GATA, Sox, and Fox. Because the Nodal signal transduction pathway is well-characterized, increasing effort has been made to delineate the spatiotemporal modulation of Nodal signaling during embryonic development. In this review, we summarize the recent progress delineating molecular regulation of Nodal signal intensity and duration during mesendoderm formation.
Collapse
Affiliation(s)
- Shi Wei
- The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Burdine RD, Grimes DT. Antagonistic interactions in the zebrafish midline prior to the emergence of asymmetric gene expression are important for left-right patterning. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0402. [PMID: 27821532 DOI: 10.1098/rstb.2015.0402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Left-right (L-R) asymmetry of the internal organs of vertebrates is presaged by domains of asymmetric gene expression in the lateral plate mesoderm (LPM) during somitogenesis. Ciliated L-R coordinators (LRCs) are critical for biasing the initiation of asymmetrically expressed genes, such as nodal and pitx2, to the left LPM. Other midline structures, including the notochord and floorplate, are then required to maintain these asymmetries. Here we report an unexpected role for the zebrafish EGF-CFC gene one-eyed pinhead (oep) in the midline to promote pitx2 expression in the LPM. Late zygotic oep (LZoep) mutants have strongly reduced or absent pitx2 expression in the LPM, but this expression can be rescued to strong levels by restoring oep in midline structures only. Furthermore, removing midline structures from LZoep embryos can rescue pitx2 expression in the LPM, suggesting the midline is a source of an LPM pitx2 repressor that is itself inhibited by oep Reducing lefty1 activity in LZoep embryos mimics removal of the midline, implicating lefty1 in the midline-derived repression. Together, this suggests a model where Oep in the midline functions to overcome a midline-derived repressor, involving lefty1, to allow for the expression of left side-specific genes in the LPM.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Daniel T Grimes
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Abstract
In the last 30 years, the zebrafish has become a widely used model organism for research on vertebrate development and disease. Through a powerful combination of genetics and experimental embryology, significant inroads have been made into the regulation of embryonic axis formation, organogenesis, and the development of neural networks. Research with this model has also expanded into other areas, including the genetic regulation of aging, regeneration, and animal behavior. Zebrafish are a popular model because of the ease with which they can be maintained, their small size and low cost, the ability to obtain hundreds of embryos on a daily basis, and the accessibility, translucency, and rapidity of early developmental stages. This primer describes the swift progress of genetic approaches in zebrafish and highlights recent advances that have led to new insights into vertebrate biology.
Collapse
|
30
|
Danesin C, Soula C. Moving the Shh Source over Time: What Impact on Neural Cell Diversification in the Developing Spinal Cord? J Dev Biol 2017; 5:jdb5020004. [PMID: 29615562 PMCID: PMC5831764 DOI: 10.3390/jdb5020004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
A substantial amount of data has highlighted the crucial influence of Shh signalling on the generation of diverse classes of neurons and glial cells throughout the developing central nervous system. A critical step leading to this diversity is the establishment of distinct neural progenitor cell domains during the process of pattern formation. The forming spinal cord, in particular, has served as an excellent model to unravel how progenitor cells respond to Shh to produce the appropriate pattern. In recent years, considerable advances have been made in our understanding of important parameters that control the temporal and spatial interpretation of the morphogen signal at the level of Shh-receiving progenitor cells. Although less studied, the identity and position of Shh source cells also undergo significant changes over time, raising the question of how moving the Shh source contributes to cell diversification in response to the morphogen. Here, we focus on the dynamics of Shh-producing cells and discuss specific roles for these time-variant Shh sources with regard to the temporal events occurring in the receiving field.
Collapse
Affiliation(s)
- Cathy Danesin
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| | - Cathy Soula
- Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31520 Toulouse, France.
| |
Collapse
|
31
|
Chen L, Groenewoud A, Tulotta C, Zoni E, Kruithof-de Julio M, van der Horst G, van der Pluijm G, Ewa Snaar-Jagalska B. A zebrafish xenograft model for studying human cancer stem cells in distant metastasis and therapy response. Methods Cell Biol 2016; 138:471-496. [PMID: 28129855 DOI: 10.1016/bs.mcb.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lethal and incurable bone metastasis is one of the main causes of death in multiple types of cancer. A small subpopulation of cancer stem/progenitor-like cells (CSCs), also known as tumor-initiating cells from heterogenetic cancer is considered to mediate bone metastasis. Although over the past decades numerous studies have been performed in different types of cancer, it is still difficult to track small numbers of CSCs during the onset of metastasis. With use of noninvasive high-resolution imaging, transparent zebrafish embryos can be employed to dynamically visualize cancer progression and reciprocal interaction with stroma in a living organism. Recently we established a zebrafish CSC-xenograft model to visually and functionally analyze the role of CSCs and their interactions with the microenvironment at the onset of metastasis. Given the highly conserved human and zebrafish genome, transplanted human cancer cells are able to respond to zebrafish cytokines, modulate the zebrafish microenvironment, and take advantage of the zebrafish stroma during cancer progression. This chapter delineates the zebrafish CSC-xenograft model as a useful tool for both CSC biological study and anticancer drug screening.
Collapse
Affiliation(s)
- L Chen
- Leiden University, Leiden, The Netherlands
| | | | - C Tulotta
- Leiden University, Leiden, The Netherlands
| | - E Zoni
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | - M Kruithof-de Julio
- University of Bern, Bern, Switzerland; Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | |
Collapse
|
32
|
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol 2016; 6:150200. [PMID: 26791244 PMCID: PMC4736825 DOI: 10.1098/rsob.150200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development.
Collapse
Affiliation(s)
- Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AJ, UK
| | | |
Collapse
|
33
|
Díaz-Balzac CA, Rahman M, Lázaro-Peña MI, Martin Hernandez LA, Salzberg Y, Aguirre-Chen C, Kaprielian Z, Bülow HE. Muscle- and Skin-Derived Cues Jointly Orchestrate Patterning of Somatosensory Dendrites. Curr Biol 2016; 26:2379-87. [PMID: 27451901 PMCID: PMC5021591 DOI: 10.1016/j.cub.2016.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/22/2023]
Abstract
Sensory dendrite arbors are patterned through cell-autonomously and non-cell-autonomously functioning factors [1-3]. Yet, only a few non-cell-autonomously acting proteins have been identified, including semaphorins [4, 5], brain-derived neurotrophic factors (BDNFs) [6], UNC-6/Netrin [7], and the conserved MNR-1/Menorin-SAX-7/L1CAM cell adhesion complex [8, 9]. This complex acts from the skin to pattern the stereotypic dendritic arbors of PVD and FLP somatosensory neurons in Caenorhabditis elegans through the leucine-rich transmembrane receptor DMA-1/LRR-TM expressed on PVD neurons [8, 9]. Here we describe a role for the diffusible C. elegans protein LECT-2, which is homologous to vertebrate leukocyte cell-derived chemotaxin 2 (LECT2)/Chondromodulin II. LECT2/Chondromodulin II has been implicated in a variety of pathological conditions [10-13], but the developmental functions of LECT2 have remained elusive. We find that LECT-2/Chondromodulin II is required for development of PVD and FLP dendritic arbors and can act as a diffusible cue from a distance to shape dendritic arbors. Expressed in body-wall muscles, LECT-2 decorates neuronal processes and hypodermal cells in a pattern similar to the cell adhesion molecule SAX-7/L1CAM. LECT-2 functions genetically downstream of the MNR-1/Menorin-SAX-7/L1CAM adhesion complex and upstream of the DMA-1 receptor. LECT-2 localization is dependent on SAX-7/L1CAM, but not on MNR-1/Menorin or DMA-1/LRR-TM, suggesting that LECT-2 functions as part of the skin-derived MNR-1/Menorin-SAX-7/L1CAM adhesion complex. Collectively, our findings suggest that LECT-2/Chondromodulin II acts as a muscle-derived, diffusible cofactor together with a skin-derived cell adhesion complex to orchestrate the molecular interactions of three tissues during patterning of somatosensory dendrites.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - María I Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Yehuda Salzberg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cristina Aguirre-Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Zaven Kaprielian
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hannes E Bülow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
34
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
36
|
Li M, Zou Y, Lu Q, Tang N, Heng A, Islam I, Tong HJ, Dawe GS, Cao T. Efficient derivation of dopaminergic neurons from SOX1⁻ floor plate cells under defined culture conditions. J Biomed Sci 2016; 23:34. [PMID: 26956435 PMCID: PMC4782356 DOI: 10.1186/s12929-016-0251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/25/2016] [Indexed: 12/03/2022] Open
Abstract
Background Parkinson’s disease (PD) is a severe neurodegenerative disease associated with loss of dopaminergic neurons. Derivation of dopaminergic neurons from human embryonic stem cells (hESCs) could provide new therapeutic options for PD therapy. Dopaminergic neurons are derived from SOX− floor plate (FP) cells during embryonic development in many species and in human cell culture in vitro. Early treatment with sonic hedgehog (Shh) has been reported to efficiently convert hESCs into FP lineages. Methods In this study, we attempted to utilize a Shh-free approach in deriving SOX1− FP cells from hESCs in vitro. Neuroectoderm conversion from hESCs was achieved with dual inhibition of the BMP4 (LDN193189) and TGF-β signaling pathways (SB431542) for 24 h under defined culture conditions. Results Following a further 5 days of treatment with LDN193189 or LDN193189 + SB431542, SOX1− FP cells constituted 70–80 % of the entire cell population. Upon treatment with Shh and FGF8, the SOX1− FP cells were efficiently converted to functional Nurr1+ and TH+ dopaminergic cells (patterning), which constituted more than 98 % of the entire cell population. However, when the same growth factors were applied to SOX1+ cells, only less than 4 % of the cells became Nurr1+, indicating that patterning was effective only if SOX1 expression was down-regulated. After transplanting the Nurr1+ and TH+ cells into a hemiparkinsonian rat model, significant improvements were observed in amphetamine induced ipslateral rotations, apomorphine induced contra-lateral rotations and Rota rod motor tests over a duration of 8 weeks. Conclusions Our findings thus provide a convenient approach to FP development and functional dopaminergic neuron derivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0251-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingming Li
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Yu Zou
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Qiqi Lu
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Ning Tang
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore
| | - Alexis Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Intekhab Islam
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Huei Jinn Tong
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, The National University of Singapore, Kent Ridge, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore.,Singapore Institute for Neurotechnology (SINAPSE), The National University of Singapore, Kent Ridge, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Kent Ridge, Singapore. .,Tissue Engineering Program, Life Sciences Institute of the National University of Singapore, Kent Ridge, Singapore. .,National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), Kent Ridge, Singapore.
| |
Collapse
|
37
|
Pauli A, Montague TG, Lennox KA, Behlke MA, Schier AF. Antisense Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. PLoS One 2015; 10:e0139504. [PMID: 26436892 PMCID: PMC4593562 DOI: 10.1371/journal.pone.0139504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/12/2015] [Indexed: 01/04/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are synthetic, single-strand RNA-DNA hybrids that induce catalytic degradation of complementary cellular RNAs via RNase H. ASOs are widely used as gene knockdown reagents in tissue culture and in Xenopus and mouse model systems. To test their effectiveness in zebrafish, we targeted 20 developmental genes and compared the morphological changes with mutant and morpholino (MO)-induced phenotypes. ASO-mediated transcript knockdown reproduced the published loss-of-function phenotypes for oep, chordin, dnd, ctnnb2, bmp7a, alk8, smad2 and smad5 in a dosage-sensitive manner. ASOs knocked down both maternal and zygotic transcripts, as well as the long noncoding RNA (lncRNA) MALAT1. ASOs were only effective within a narrow concentration range and were toxic at higher concentrations. Despite this drawback, quantitation of knockdown efficiency and the ability to degrade lncRNAs make ASOs a useful knockdown reagent in zebrafish.
Collapse
Affiliation(s)
- Andrea Pauli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
| | - Kim A. Lennox
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., Coralville, Iowa, United States of America
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Masschusetts, United States of America
- * E-mail: (AP); (AFS)
| |
Collapse
|
38
|
Payumo AY, Walker WJ, McQuade LE, Yamazoe S, Chen JK. Optochemical dissection of T-box gene-dependent medial floor plate development. ACS Chem Biol 2015; 10:1466-75. [PMID: 25781211 DOI: 10.1021/cb5010178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to their cell-autonomous roles in mesoderm development, the zebrafish T-box transcription factors no tail a (ntla) and spadetail (spt/tbx16) are required for medial floor plate (MFP) formation. Posterior MFP cells are completely absent in zebrafish embryos lacking both Ntla and Spt function, and genetic mosaic analyses have shown that the two T-box genes promote MFP development in a non-cell-autonomous manner. On the basis of these observations, it has been proposed that Ntla/Spt-dependent mesoderm-derived signals are required for the induction of posterior but not anterior MFP cells. To investigate the mechanisms by which Ntla and Spt regulate MFP development, we have used photoactivatable caged morpholinos (cMOs) to silence these T-box genes with spatiotemporal control. We find that posterior MFP formation requires Ntla or Spt activity during early gastrulation, specifically in lateral margin-derived cells that converge toward the midline during epiboly and somitogenesis. Nodal signaling-dependent MFP specification is maintained in the absence of Ntla and Spt function; however, midline cells in ntla;spt morphants exhibit aberrant morphogenetic movements, resulting in their anterior mislocalization. Our findings indicate that Ntla and Spt do not differentially regulate MFP induction along the anterior-posterior axis; rather, the T-box genes act redundantly within margin-derived cells to promote the posterior extension of MFP progenitors.
Collapse
Affiliation(s)
- Alexander Y. Payumo
- Department of Chemical and Systems Biology, ‡Department of Developmental
Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Whitney J. Walker
- Department of Chemical and Systems Biology, ‡Department of Developmental
Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Lindsey E. McQuade
- Department of Chemical and Systems Biology, ‡Department of Developmental
Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Sayumi Yamazoe
- Department of Chemical and Systems Biology, ‡Department of Developmental
Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - James K. Chen
- Department of Chemical and Systems Biology, ‡Department of Developmental
Biology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
39
|
Dubrulle J, Jordan BM, Akhmetova L, Farrell JA, Kim SH, Solnica-Krezel L, Schier AF. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. eLife 2015; 4. [PMID: 25869585 PMCID: PMC4395910 DOI: 10.7554/elife.05042] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/02/2015] [Indexed: 12/24/2022] Open
Abstract
Morphogen gradients expose cells to different signal concentrations and induce target genes with different ranges of expression. To determine how the Nodal morphogen gradient induces distinct gene expression patterns during zebrafish embryogenesis, we measured the activation dynamics of the signal transducer Smad2 and the expression kinetics of long- and short-range target genes. We found that threshold models based on ligand concentration are insufficient to predict the response of target genes. Instead, morphogen interpretation is shaped by the kinetics of target gene induction: the higher the rate of transcription and the earlier the onset of induction, the greater the spatial range of expression. Thus, the timing and magnitude of target gene expression can be used to modulate the range of expression and diversify the response to morphogen gradients. DOI:http://dx.doi.org/10.7554/eLife.05042.001 How a cell can tell where it is in a developing embryo has fascinated scientists for decades. The pioneering computer scientist and mathematical biologist Alan Turing was the first person to coin the term ‘morphogen’ to describe a protein that provides information about locations in the body. A morphogen is released from a group of cells (called the ‘source’) and as it moves away its activity (called the ‘signal’) declines gradually. Cells sense this signal gradient and use it to detect their position with respect to the source. Nodal is an important morphogen and is required to establish the correct identity of cells in the embryo; for example, it helps determine which cells should become a brain or heart or gut cell and so on. The zebrafish is a widely used model to study animal development, in part because its embryos are transparent; this allows cells and proteins to be easily observed under a microscope. When Nodal acts on cells, another protein called Smad2 becomes activated, moves into the cell's nucleus, and then binds to specific genes. This triggers the expression of these genes, which are first copied into mRNA molecules via a process known as transcription and are then translated into proteins. The protein products of these targeted genes control cell identity and movement. Several models have been proposed to explain how different concentrations of Nodal switch on the expression of different target genes; that is to say, to explain how a cell interprets the Nodal gradient. Dubrulle et al. have now measured factors that underlie how this gradient is interpreted. Individual cells in zebrafish embryos were tracked under a microscope, and Smad2 activation and gene expression were assessed. Dubrulle et al. found that, in contradiction to previous models, the amount of Nodal present on its own was insufficient to predict the target gene response. Instead, their analysis suggests that the size of each target gene's response depends on its rate of transcription and how quickly it is first expressed in response to Nodal. These findings of Dubrulle et al. suggest that timing and transcription rate are important in determining the appropriate response to Nodal. Further work will be now needed to find out whether similar mechanisms regulate other processes that rely on the activity of morphogens. DOI:http://dx.doi.org/10.7554/eLife.05042.002
Collapse
Affiliation(s)
- Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Benjamin M Jordan
- Department of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, United States
| | - Laila Akhmetova
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Seok-Hyung Kim
- Division of Medicine, Medical University of South Carolina, Charleston, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, United States
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
40
|
Pillai-Kastoori L, Wen W, Morris AC. Keeping an eye on SOXC proteins. Dev Dyn 2015; 244:367-376. [PMID: 25476579 PMCID: PMC4344926 DOI: 10.1002/dvdy.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 11/28/2014] [Indexed: 12/17/2022] Open
Abstract
The formation of a mature, functional eye requires a complex series of cell proliferation, migration, induction among different germinal layers, and cell differentiation. These processes are regulated by extracellular cues such as the Wnt/BMP/Hh/Fgf signaling pathways, as well as cell intrinsic transcription factors that specify cell fate. In this review article, we provide an overview of stages of embryonic eye morphogenesis, extrinsic and intrinsic factors that are required for each stage, and pediatric ocular diseases that are associated with defective eye development. In addition, we focus on recent findings about the roles of the SOXC proteins in regulating vertebrate ocular development and implicating SOXC mutations in human ocular malformations.
Collapse
Affiliation(s)
| | - Wen Wen
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ann C. Morris
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
41
|
|
42
|
Cao R, Long F, Wang L, Xu Y, Guo Y, Li F, Chen S, Sun K, Xu R. Duplication and deletion of CFC1 associated with heterotaxy syndrome. DNA Cell Biol 2014; 34:101-6. [PMID: 25423076 DOI: 10.1089/dna.2014.2616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterotaxy syndrome, which causes significant morbidity and mortality, is a class of congenital disorders, in which normal left-right asymmetry cannot be properly established. To explore the role of copy number variants (CNVs) in the occurrence of heterotaxy syndrome, we recruited 93 heterotaxy patients and studied 12 of them by the Affymetrix Genome-Wide Human SNP 6.0 Array. The results were confirmed in the remaining 81 patients and 500 healthy children by quantitative real-time polymerase chain reaction (qPCR). The analysis of the SNP6.0 array showed a duplication of chromosome 2q21.1, which was verified by qPCR. The result of qPCR in the other 81 patients showed that 8/81 patients had the CNVs of 2q21.1 and the only overlapping gene in these patients is CFC1. However, in the 500 healthy children, only one carried the duplication of CFC1 (p=3.5×10(-7)). The duplication and deletion of CFC1 may play key roles in the occurrence of heterotaxy syndrome. Moreover, the transposed great arteries, double outlet right ventricle, single atrium, and single ventricle may share a common genetic etiology with the heterotaxy syndrome.
Collapse
Affiliation(s)
- Ruixue Cao
- 1 Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Block the function of nonmuscle myosin II by blebbistatin induces zebrafish embryo cardia bifida. In Vitro Cell Dev Biol Anim 2014; 51:211-7. [PMID: 25403653 DOI: 10.1007/s11626-014-9836-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Nonmuscle myosin II (NM II) is the name given to the multi-subunit protein product of three genes encoding different nonmuscle myosin heavy chains including NM II-A, NM II-B, and NM II-C. Blebbistatin is a small molecule that has been shown to be a relatively specific inhibitor of NM II. Blocking the function of NM II by blebbistatin induces zebrafish embryo cardia bifida at a dose-dependent manner. In situ hybridization analysis with ventricular marker ventricular myosin heavy chain (vmhc) and atrial marker atrial myosin heavy chain (amhc) showed each of the heart contained both distinct atria and ventricle. However, the cardia bifida embryos had highly variable distance between two separate ventricles. We also provided evidence that time window from 12 to 20 h post fertilization (hpf) is necessary and sufficient for cardia bifida formation caused by blebbistatin treatment. Expression of spinster homolog 2 (spns2) was decreased in blebbistatin-treated embryos, suggesting the cardia bifida phenotype caused by NM II inhibition was relevant to precardiac mesoderm migration defects. Through in situ hybridization analysis, we showed that foxa1 was expressed in endoderm of blebbistatin-treated embryos at 24-hpf stage, suggesting the endoderm formation is normal in cardia bifida embryos caused by blebbistatin treatment. In addition, we demonstrated that blebbistatin treatment resulted in morphology alteration of zebrafish cardiomyocytes in vivo and neonatal mouse cardiomyocytes in vitro.
Collapse
|
44
|
Terashima AV, Mudumana SP, Drummond IA. Odd skipped related 1 is a negative feedback regulator of nodal-induced endoderm development. Dev Dyn 2014; 243:1571-80. [PMID: 25233796 DOI: 10.1002/dvdy.24191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/03/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Early embryo patterning is orchestrated by tightly regulated morphogen gradients. The Nodal morphogen patterns the mesendoderm, giving rise to all endoderm and head and trunk mesoderm. High Nodal concentrations favor endoderm differentiation while lower promote mesoderm differentiation. Nodal signaling is controlled by both positive and negative feedback regulation to ensure robust developmental patterning. RESULTS Here we identify odd skipped related 1 (osr1), a zinc finger transcription factor, as a new element in Nodal feedback regulation affecting endoderm development. We show that osr1 expression in zebrafish germ ring mesendoderm requires Nodal signaling; osr1 expression was lost in embryos lacking Nodal signaling. Conversely, osr1 expression was ectopically induced by the activation of Nodal signaling. Furthermore we demonstrate that osr1 responds directly to Nodal signaling. Additionally, osr1 knockdown generated excess endoderm cells marked by sox32 expression while expression of osr1 mRNA was not affected in sox32-deficient embryos. CONCLUSIONS Our findings identify osr1 as a Nodal-induced, negative feedback regulator of Nodal signaling that acts at the earliest stages of endoderm differentiation to limit the number of endoderm progenitors. As such, we propose that osr1 represents a novel network motif controlling the output of Nodal signaling to regulate mesendoderm patterning.
Collapse
|
45
|
Khuansuwan S, Gamse JT. Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing. Dev Biol 2014; 395:144-53. [PMID: 25173875 DOI: 10.1016/j.ydbio.2014.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/17/2014] [Accepted: 08/17/2014] [Indexed: 02/03/2023]
Abstract
We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post-fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish.
Collapse
Affiliation(s)
- Sataree Khuansuwan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Joshua T Gamse
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
46
|
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 2014; 29:51-8. [PMID: 25153355 DOI: 10.1016/j.semcancer.2014.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Collapse
|
47
|
Liu X, Ma Y, Zhang C, Wei S, Cao Y, Wang Q. Nodal promotes mir206 expression to control convergence and extension movements during zebrafish gastrulation. J Genet Genomics 2013; 40:515-21. [PMID: 24156917 DOI: 10.1016/j.jgg.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/15/2013] [Accepted: 07/22/2013] [Indexed: 11/25/2022]
Abstract
Nodal, a member of the transforming growth factor β (TGF-β) superfamily, has been shown to play a role in mesendoderm induction and gastrulation movements. The activity of Nodal signaling can be modulated by microRNAs (miRNAs) as previously reported, but little is known about which miRNAs are regulated by Nodal during gastrulation. In the present study, we found that the expression of mir206, one of the most abundant miRNAs during zebrafish early embryo development, is regulated by Nodal signaling. Abrogation of Nodal signal activity results in defective convergence and extension (CE) movements, and these cell migration defects can be rescued by supplying an excess of mir206, suggesting that mir206 acts downstream of Nodal signaling to regulate CE movements. Furthermore, in mir206 morphants, the expression of cell adhesion molecule E-cadherin is significantly increased, while the key transcriptional repressor of E-cadherin, snail1a, is depressed. Our study uncovers a novel mechanism by which Nodal-regulated mir206 modulates gastrulation movements in connection with the Snail/E-cadherin pathway.
Collapse
Affiliation(s)
- Xiuli Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
48
|
Sequential effects of spadetail, one-eyed pinhead and no tail on midline convergence of nephric primordia during zebrafish embryogenesis. Dev Biol 2013; 384:290-300. [PMID: 23860396 DOI: 10.1016/j.ydbio.2013.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/12/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022]
Abstract
Midline convergence of organ primordia is an important mechanism that shapes the vertebrate body plan. Here, we focus on the morphogenetic movements of pronephric glomerular primordia (PGP) occurring during zebrafish embryonic kidney development. To characterize the process of PGP midline convergence, we used Wilms' tumour 1a (wt1a) as a marker to label kidney primordia, and performed quantitative analyses of the migration of the bilateral PGP. The PGP initially are approximately 350 μm apart in a wild type embryo at 10h post fertilization (hpf). The inter-PGP distance decreases exponentially between 10 and 48 hpf, while the anterior-posterior (A-P) dimension of each PGP increases linearly between 10 and 12 hpf, then decreases substantially between 12 and 24 hpf. Using mutants in the Nodal receptor cofactor one-eyed pinhead (oep) and the T-box transcription factors spadetail (spt) and no tail (ntl), we were able to define distinctive regulation underlying these sequential phases of PGP midline migration. Zygotic oep mutants (Zoep(-/-)) exhibited defects in midline convergence after 16 hpf. Spt is necessary for PGP convergence from 10 hpf, whereas ntl's effect on convergence does not begin until 24 hpf. Notably, we observed normal cardiac convergence in spt(-/-) and ntl(-/-) embryos implying that these novel roles of spt and ntl in PGP migration cannot be explained simply by generalised effects on midline convergence. These findings demonstrate that quantitative approaches to developmental migration allow the parsing of early patterning events, and in this instance suggest that the zebrafish may offer insights into midline urogenital migration anomalies in humans.
Collapse
|
49
|
Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fényes F, Mehroke S, Scahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 2013; 496:494-7. [PMID: 23594742 PMCID: PMC3743023 DOI: 10.1038/nature11992] [Citation(s) in RCA: 455] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.
Collapse
Affiliation(s)
- Ross N W Kettleborough
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
O'Neill K, Thorpe C. BMP signaling and spadetail regulate exit of muscle precursors from the zebrafish tailbud. Dev Biol 2013; 375:117-27. [PMID: 23246591 DOI: 10.1016/j.ydbio.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022]
Abstract
The tailbud is a population of stem cells in the posterior embryonic tail. During zebrafish development, these stem cells give rise to the main structures of the embryo's posterior body, including the tail somites. Progenitor cells reside in the tailbud for variable amounts of time before they exit and begin to differentiate. There must be a careful balance between cells that leave the tailbud and cells that are held back in order to give rise to later somites. However, this meticulous process is not well understood. A gene that has shed some light on this area is the t-box transcription factor spadetail (spt). When spt is mutated, embryos develop an enlarged tailbud and are only able to form roughly half of their somites. This phenotype is due to the fact that some of the somitic precursors are not able to leave the tailbud or differentiate. Another factor involved in tail morphogenesis is the Bone Morphogenetic Protein (BMP) pathway. BMPs are important for many processes during early development, including cell migration. Chordino (chd) is a secreted protein that inhibits BMP signaling. BMPs are upregulated in chd mutants, however, these mutants are able to form organized somites. In embryos where chd and spt are mutated, somites are completely absent. These double mutants also develop a large tailbud due to the accumulation of progenitor cells that are never able to leave or differentiate. To study the dynamics of cells in the tailbud and their role in somite formation, we have analyzed the genetic factors and pathway interactions involved, conducted transplant experiments to look at behavior of mutant cells in different genetic backgrounds, and used time lapse microscopy to characterize cell movements and behavior in wild type and mutant tailbuds. These data suggest that spt expression and BMP inhibition are both required for somitic precursors to exit the tailbud. They also elucidate that chd;spt tailbud mesodermal progenitor cells (MPC) behave autonomously and their dynamics within the tailbud are drastically different than WT MPCs.
Collapse
Affiliation(s)
- Katelyn O'Neill
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|