1
|
Pandey SK, Sabharwal U, Tripathi S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Androgen Signaling in Prostate Cancer: When a Friend Turns Foe. Endocr Metab Immune Disord Drug Targets 2025; 25:37-56. [PMID: 38831575 DOI: 10.2174/0118715303313528240523101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Androgen (AR) signaling is the main signaling for the development of the prostate and its normal functioning. AR is highly specific for testosterone and dihydrotestosterone, significantly contributing to prostate development, physiology, and cancer. All these receptors have emerged as crucial therapeutic targets for PCa. In the year 1966, the Noble prize was awarded to Huggins and Hodge for their groundbreaking discovery of AR. As it is a pioneer transcription factor, it belongs to the steroid hormone receptor family and consists of domains, including DNA binding domain (DBD), hormone response elements (HRE), C-terminal ligand binding domain (LBD), and N-terminal regulatory domains. Structural variations in AR, such as AR gene amplification, LBD mutations, alternative splicing of exons, hypermethylation of AR, and co- regulators, are major contributors to PCa. It's signaling is crucial for the development and functioning of the prostate gland, with the AR being the key player. The specificity of AR for testosterone and dihydrotestosterone is important in prostate physiology. However, when it is dysregulated, AR contributes significantly to PCa. However, the structural variations in AR, such as gene amplification, mutations, alternative splicing, and epigenetic modifications, drive the PCa progression. Therefore, understanding AR function and dysregulation is essential for developing effective therapeutic strategies. Thus, the aim of this review was to examine how AR was initially pivotal for prostate development and how it turned out to show both positive and detrimental implications for the prostate.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Usha Sabharwal
- P. G. Department of Biosciences, Centre of Advanced Studies, Satellite Campus, Sardar Patel Maidan, 388120, Gujarat, India
| | - Swati Tripathi
- Section of Electron Microscopy, Supportive Centre for Brain Research, National Institute for Physiological Sciences (NIPS) Okazaki, 444-8787, Japan
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi, 110021, India
| | | |
Collapse
|
2
|
Stromsnes K, Fajardo CM, Soto-Rodriguez S, Kajander ERU, Lupu RI, Pozo-Rodriguez M, Boira-Nacher B, Font-Alberich M, Gambini-Castell M, Olaso-Gonzalez G, Gomez-Cabrera MC, Gambini J. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals (Basel) 2024; 17:1697. [PMID: 39770539 PMCID: PMC11679375 DOI: 10.3390/ph17121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is a chronic disease that is characterized by a loss of bone density, which mainly affects the microstructure of the bones due to a decrease in bone mass, thereby making them more fragile and susceptible to fractures. Osteoporosis is currently considered one of the pandemics of the 21st century, affecting around 200 million people. Its most serious consequence is an increased risk of bone fractures, thus making osteoporosis a major cause of disability and even premature death in the elderly. In this review, we discuss its causes, the biochemical mechanisms of bone regeneration, risk factors, pharmacological treatments, prevention and the effects of diet, focusing in this case on compounds present in a diet that could have palliative and preventive effects and could be used as concomitant treatments to drugs, which are and should always be the first option. It should be noted as a concluding remark that non-pharmacological treatments such as diet and exercise have, or should have, a relevant role in supporting pharmacology, which is the recommended prescription today, but we cannot ignore that they can have a great relevance in the treatment of this disease.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Cristian Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Silvana Soto-Rodriguez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Erika Ria Ulrika Kajander
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Remus-Iulian Lupu
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | | | - Balma Boira-Nacher
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Maria Font-Alberich
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Marcos Gambini-Castell
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Maria-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| |
Collapse
|
3
|
Bojtor B, Balla B, Vaszilko M, Szentpeteri S, Putz Z, Kosa JP, Lakatos P. Genetic Background of Medication-Related Osteonecrosis of the Jaw: Current Evidence and Future Perspectives. Int J Mol Sci 2024; 25:10488. [PMID: 39408816 PMCID: PMC11477157 DOI: 10.3390/ijms251910488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a rare side effect of antiresorptive drugs that significantly hinders the quality of life of affected patients. The disease develops in the presence of a combination of factors. Important pathogenetic factors include inflammation, inhibition of bone remodeling, or genetic predisposition. Since the first description of this rare side effect in 2003, a growing body of data has suggested a possible role for genetic factors in the disease. Several genes have been suggested to play an important role in the pathogenesis of MRONJ such as SIRT1, VEGFA, and CYP2C8. With the development of molecular biology, newer methods such as miRNA and gene expression studies have been introduced in MRONJ, in addition to methods that can examine the base sequence of the DNA. Describing the complex genetic background of MRONJ can help further understand its pathophysiology as well as identify new therapeutic targets to better manage this adverse drug reaction.
Collapse
Affiliation(s)
- Bence Bojtor
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
| | - Bernadett Balla
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Mihaly Vaszilko
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary; (M.V.); (S.S.)
| | - Szofia Szentpeteri
- Department of Oro-Maxillofacial Surgery and Stomatology, Semmelweis University, 1085 Budapest, Hungary; (M.V.); (S.S.)
| | - Zsuzsanna Putz
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Janos P. Kosa
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| | - Peter Lakatos
- Department of Internal Medicine and Oncology, Semmelweis University, 1083 Budapest, Hungary; (B.B.); (Z.P.); (J.P.K.)
- Hungarian Research Network SE-ENDOMOLPAT Research Group, 1085 Budapest, Hungary;
| |
Collapse
|
4
|
Marques-Carvalho A, Sardão VA, Kim HN, Almeida M. ECSIT is essential for RANKL-induced stimulation of mitochondria in osteoclasts and a target for the anti-osteoclastogenic effects of estrogens. Front Endocrinol (Lausanne) 2023; 14:1110369. [PMID: 37152948 PMCID: PMC10157190 DOI: 10.3389/fendo.2023.1110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Estrogens inhibit bone resorption and preserve bone mass, at least in part, via direct effects on osteoclasts. The binding of RANKL, the critical cytokine for osteoclast differentiation, to its receptor in osteoclast precursor cells of the monocyte lineage recruits the adaptor protein TRAF6 and activates multiple signaling pathways. Early effects of RANKL include stimulation of mitochondria. 17β-estradiol (E2) prevents the effects of RANKL on mitochondria and promotes mitochondria mediated apoptotic cell death. However, the molecular mechanisms responsible for the actions of RANKL and estrogens on mitochondria remain unknown. Evolutionarily Conserved Signaling Intermediate in Toll Pathway (ECSIT) is a complex I-associated protein that regulates immune responses in macrophages following the engagement of Toll-like receptors, which also recruit TRAF6. Here, we examined whether ECSIT could be implicated in the rapid effects of RANKL and E2 on osteoclast progenitors. Methods Bone marrow-derived macrophages (BMMs) from C57BL/6 mice were cultured with RANKL (30 ng/ml) with or without E2 (10-8 M). ECSIT-TRAF6 interaction was evaluated by co-immunoprecipitation and ECSIT levels in mitochondria and cytosolic fractions by Western blot. ShRNA lentivirus particles were used to knockdown ECSIT. Osteoclasts were enumerated after tartrate-resistant acid phosphatase staining. Oxygen consumption and extracellular acidification rates were measured with Seahorse XFe96 Analyzer. ATP, lactate, and NAD/NADH were measured with commercial assay kits. NADH oxidation to NAD was used to evaluate Complex I activity. Total and mitochondrial ROS, and mitochondrial membrane potential were measured with H2DCFDA, MitoSOX, and TMRM probes, respectively. Degradation of DEVD-AFC was used to measure Caspase-3 activity. Results We found that RANKL promoted ECSIT-TRAF6 interaction and increased the levels of ECSIT in mitochondria. E2 abrogated these effects of RANKL. Silencing of ECSIT decreased osteoclast differentiation and abrogated the inhibitory effects of E2 on osteoclastogenesis. Loss of ECSIT decreased complex I activity, oxygen consumption, NAD+/NADH redox ratio, and ATP production and increased mitochondrial ROS. In the absence of ECSIT, the stimulatory actions of RANKL on complex I activity and all other markers of oxidative phosphorylation, as well as their inhibition by E2, were prevented. Instead, RANKL stimulated apoptosis of osteoclast progenitors. Discussion These findings suggest that dysregulated mitochondria cause a switch in RANKL signaling from pro-survival to pro-apoptotic. In addition, our results indicate that ECSIT represents a central node for the early effects of RANKL on mitochondria and that inhibition of ECSIT-mediated mitochondria stimulation might contribute to the bone protective actions of estrogens.
Collapse
Affiliation(s)
- Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Vilma A. Sardão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Multidisciplinary Institute of Aging (MIA-Portugal), University of Coimbra, Coimbra, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
5
|
Miglietta F, Iamartino L, Palmini G, Giusti F, Marini F, Iantomasi T, Brandi ML. Endocrine sequelae of hematopoietic stem cell transplantation: Effects on mineral homeostasis and bone metabolism. Front Endocrinol (Lausanne) 2023; 13:1085315. [PMID: 36714597 PMCID: PMC9877332 DOI: 10.3389/fendo.2022.1085315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an established therapeutic strategy for the treatment of malignant (leukemia and lymphoma) and non-malignant (thalassemia, anemia, and immunodeficiency) hematopoietic diseases. Thanks to the improvement in patient care and the development of more tolerable conditioning treatments, which has extended the applicability of therapy to the elderly, a growing number of patients have successfully benefited from HSCT therapy and, more importantly, HSCT transplant-related mortality has consistently reduced in recent years. However, concomitantly to long term patient survival, a growing incidence of late HSCT-related sequelae has been reported, being variably associated with negative effects on quality of life of patients and having a non-negligible impact on healthcare systems. The most predominantly observed HSCT-caused complications are chronic alterations of the endocrine system and metabolism, which endanger post-operative quality of life and increase morbidity and mortality of transplanted patients. Here, we specifically review the current knowledge on HSCT-derived side-effects on the perturbation of mineral metabolism; in particular, the homeostasis of calcium, focusing on current reports regarding osteoporosis and recurrent renal dysfunctions that have been observed in a percentage of HSC-transplanted patients. Possible secondary implications of conditioning treatments for HSCT on the physiology of the parathyroid glands and calcium homeostasis, alone or in association with HSCT-caused renal and bone defects, are critically discussed as well.
Collapse
Affiliation(s)
- Francesca Miglietta
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Giusti
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Marini
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
6
|
Schafstedde M, Nordmeyer S. The role of androgens in pressure overload myocardial hypertrophy. Front Endocrinol (Lausanne) 2023; 14:1112892. [PMID: 36817598 PMCID: PMC9929540 DOI: 10.3389/fendo.2023.1112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Pressure overload hypertrophy of the left ventricle is a common result of many cardiovascular diseases. Androgens show anabolic effects in skeletal muscles, but also in myocardial hypertrophy. We carefully reviewed literature regarding possible effects of androgens on specific left ventricular hypertrophy in pressure overload conditions excluding volume overload conditions or generel sex differences.
Collapse
Affiliation(s)
- Marie Schafstedde
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Nordmeyer
- Department of Congenital Heart Disease – Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Partner Site Berlin, German Center for Cardiovascular Research (DZHK), Berlin, Germany
- *Correspondence: Sarah Nordmeyer,
| |
Collapse
|
7
|
Zearalenone Promotes Uterine Development of Weaned Gilts by Interfering with Serum Hormones and Up-Regulating Expression of Estrogen and Progesterone Receptors. Toxins (Basel) 2022; 14:toxins14110732. [PMID: 36355982 PMCID: PMC9695532 DOI: 10.3390/toxins14110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023] Open
Abstract
In this study, we aimed to assess the effect of diet ZEA on serum hormones, the location and expression of estrogen receptor ERα/β and progesterone receptor (PR) of the uterus in weaned piglets and to reveal the mechanism underneath. A total of 40 healthy weaned gilts were randomly allocated to basal diet supplemented with 0 (Control), 0.5 (ZEA0.5), 1.0 (ZEA1.0) and 1.5 (ZEA1.5) mg ZEA/kg and fed individually for 35 days. Meanwhile, the porcine endometrial epithelial cells (PECs) were incubated for 24 h with ZEA at 0 (Control), 5 (ZEA5), 20 (ZEA20) and 80 (ZEA80) μmol/L, respectively. The results showed that nutrient apparent digestibility (CP and GE), nutrient apparent availability (ME/GE, BV and NPU), the uterine immunoreactive integrated optic density (IOD), relative mRNA and protein expression of ER-α, ER-β and PR and the relative mRNA and protein expression of ER-α and ER-β in PECs all increased linearly (p < 0.05) with ZEA. Collectively, ZEA can interfere with the secretion of some reproductive hormones in the serum and promote the expression of estrogen/progesterone receptors in the uterus and PECs. All these indicate that ZEA may promote the development of the uterus in weaned gilts through estrogen receptor pathway.
Collapse
|
8
|
Carletti A, Cardoso C, Lobo-Arteaga J, Sales S, Juliao D, Ferreira I, Chainho P, Dionísio MA, Gaudêncio MJ, Afonso C, Lourenço H, Cancela ML, Bandarra NM, Gavaia PJ. Antioxidant and Anti-inflammatory Extracts From Sea Cucumbers and Tunicates Induce a Pro-osteogenic Effect in Zebrafish Larvae. Front Nutr 2022; 9:888360. [PMID: 35614979 PMCID: PMC9125325 DOI: 10.3389/fnut.2022.888360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Bone metabolic disorders such as osteoporosis are characterized by the loss of mineral from the bone tissue leading to its structural weakening and increased susceptibility to fractures. A growing body of evidence suggests that inflammation and oxidative stress play an important role in the pathophysiological processes involved in the rise of these conditions. As the currently available therapeutic strategies are often characterized by toxic effects associated with their long-term use, natural antioxidants and anti-inflammatory compounds such as polyphenols promise to be a valuable alternative for the prevention and treatment of these disorders. In this scope, the marine environment is becoming an important source of bioactive compounds with potential pharmacological applications. Here, we explored the bioactive potential of three species of holothurians (Echinodermata) and four species of tunicates (Chordata) as sources of antioxidant and anti-inflammatory compounds with a particular focus on polyphenolic substances. Hydroethanolic and aqueous extracts were obtained from animals' biomass and screened for their content of polyphenols and their antioxidant and anti-inflammatory properties. Hydroethanolic fractions of three species of tunicates displayed high polyphenolic content associated with strong antioxidant potential and anti-inflammatory activity. Extracts were thereafter tested for their capacity to promote bone formation and mineralization by applying an assay that uses the developing operculum of zebrafish (Danio rerio) to assess the osteogenic activity of compounds. The same three hydroethanolic fractions from tunicates were characterized by a strong in vivo osteogenic activity, which positively correlated with their anti-inflammatory potential as measured by COX-2 inhibition. This study highlights the therapeutic potential of polyphenol-rich hydroethanolic extracts obtained from three species of tunicates as a substrate for the development of novel drugs for the treatment of bone disorders correlated to oxidative stress and inflammatory processes.
Collapse
Affiliation(s)
- Alessio Carletti
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Carlos Cardoso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Jorge Lobo-Arteaga
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Sabrina Sales
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Diana Juliao
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Inês Ferreira
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - Paula Chainho
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria Ana Dionísio
- Marine and Environmental Sciences Centre (MARE), NOVA University of Lisbon, Lisbon, Portugal
| | - Maria J. Gaudêncio
- Division of Environmental Oceanography, Portuguese Institute for the Sea and Atmosphere, Algés, Portugal
| | - Cláudia Afonso
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Helena Lourenço
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
| | - M. Leonor Cancela
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Centre for BioMedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere (IPMA), Algés, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Paulo J. Gavaia
- Faculty of Biomedical Sciences and Medicine (FCBM), University of Algarve, Faro, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
9
|
Estradiol and Estrogen-like Alternative Therapies in Use: The Importance of the Selective and Non-Classical Actions. Biomedicines 2022; 10:biomedicines10040861. [PMID: 35453610 PMCID: PMC9029610 DOI: 10.3390/biomedicines10040861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Estrogen is one of the most important female sex hormones, and is indispensable for reproduction. However, its role is much wider. Among others, due to its neuroprotective effects, estrogen protects the brain against dementia and complications of traumatic injury. Previously, it was used mainly as a therapeutic option for influencing the menstrual cycle and treating menopausal symptoms. Unfortunately, hormone replacement therapy might be associated with detrimental side effects, such as increased risk of stroke and breast cancer, raising concerns about its safety. Thus, tissue-selective and non-classical estrogen analogues have become the focus of interest. Here, we review the current knowledge about estrogen effects in a broader sense, and the possibility of using selective estrogen-receptor modulators (SERMs), selective estrogen-receptor downregulators (SERDs), phytoestrogens, and activators of non-genomic estrogen-like signaling (ANGELS) molecules as treatment.
Collapse
|
10
|
Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules 2022; 12:biom12030437. [PMID: 35327629 PMCID: PMC8946560 DOI: 10.3390/biom12030437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Within this review, sex-specific differences in alveolar epithelial functions are discussed with special focus on preterm infants and the respiratory disorders associated with premature birth. First, a short overview about fetal lung development, the challenges the lung faces during perinatal lung transition to air breathing and respiratory distress in preterm infants is given. Next, clinical observations concerning sex-specific differences in pulmonary morbidity of human preterm infants are noted. The second part discusses potential sex-specific causes of pulmonary complications, including pulmonary steroid receptors and local lung steroid metabolism. With regard to pulmonary steroid metabolism, it is important to highlight which steroidogenic enzymes are expressed at which stage during fetal lung development. Thereafter, we review the knowledge concerning sex-specific aspects of lung growth and maturation. Special focus is given to alveolar epithelial Na+ transport as a driver of perinatal lung transition and the sex differences that were noted in this process.
Collapse
|
11
|
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021; 10:3198. [PMID: 34831421 PMCID: PMC8619311 DOI: 10.3390/cells10113198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
The androgen receptor (AR) is a member of the nuclear receptor superfamily and has three functional domains, namely the N-terminal, DNA binding, and C-terminal domain. The N-terminal domain harbors potent transactivation functions, whereas the C-terminal domain binds to androgens and antiandrogens used to treat prostate cancer. AR has genomic activity being DNA binding-dependent or through interaction with other DNA-bound transcription factors, as well as a number of non-genomic, non-canonical functions, such as the activation of the ERK, AKT, and MAPK pathways. A bulk of evidence indicates that non-coding RNAs have functional interactions with AR. This type of interaction is implicated in the pathogenesis of human malignancies, particularly prostate cancer. In the current review, we summarize the available data on the role of microRNAs, long non-coding RNAs, and circular RNAs on the expression of AR and modulation of AR signaling, as well as the effects of AR on their expression. Recognition of the complicated interaction between non-coding RNAs and AR has practical importance in the design of novel treatment options, as well as modulation of response to conventional therapeutics.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran;
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983535511, Iran
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany;
| |
Collapse
|
12
|
Kurihara M, Mukudai Y, Watanabe H, Asakura M, Abe Y, Houri A, Chikuda J, Shimane T, Shirota T. Autophagy prevents osteocyte cell death under hypoxic conditions. Cells Tissues Organs 2021; 210:326-338. [PMID: 34412050 DOI: 10.1159/000519086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mai Kurihara
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Hitoshi Watanabe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Mariko Asakura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Yuzo Abe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Asami Houri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Junichiro Chikuda
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
13
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
15
|
Bitenc-Jasiejko A, Konior K, Gonta K, Dulęba M, Lietz-Kijak D. Prophylaxis of Pain and Fractures within Feet in the Course of Osteoporosis: The Issue of Diagnosing. Pain Res Manag 2020; 2020:1391026. [PMID: 33312316 PMCID: PMC7719525 DOI: 10.1155/2020/1391026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Background Considering the enormous risk of fractures in the course of osteoporosis in the area of the feet, an important aspect of prophylaxis is periodic and, in special cases, ongoing monitoring of defects and deformations as well as pressure distribution. The purpose of this article is to indicate the role of the examination of posture and pressure distribution during standing, postural balance, and gait, in the prevention of fatigue fractures in the course of osteoporosis, based on the literature review and examples of patients. Methods The manuscript consists of two parts; it has a review-analytical character. The first part reviews the literature. The data were obtained using the MEDLINE (PubMed), as well as Cochrane and Embase databases. The database review was carried out focusing mainly on English-language publications, while taking into account the topicality of scientific and research works in the area of osteoporosis. The problem of multiaspects in the area of bone density was pointed out. Considering the above, in the second part, the authors analyzed 11 exemplary patients with osteoporosis, referring to the assessment of foot and lower limb defects using traditional posturological methods and including pedobarography to diagnostic procedures that are used in the assessment of pressure distribution, standing and moving, and an attempt to balance. Results Analysis of the research and scientific literature proved the lack of unambiguous diagnostic procedures of the locomotor system recommended for the prevention of fatigue fractures in the course of osteoporosis. The main diagnostic recommendations are imaging tests (most often X-ray), which are recommended in the case of specific clinical symptoms. The analysis of exemplary patients with osteoporosis showed numerous disorders in the distribution of pressure in the plantar part of the feet, which are related, among other things, with their individual defects and lower limbs. Conclusions Detailed posture diagnostics and gait estimation, along with the analysis of pressure distribution within the feet are a very important aspect of the prevention of structural degradation and fatigue fractures within the feet. An important postulate for further research and scientific work is the elaboration of the procedures that will serve the preventive diagnostics of the locomotor system, aimed at early detection of threats of fatigue fractures.
Collapse
Affiliation(s)
- Aleksandra Bitenc-Jasiejko
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krzysztof Konior
- Doctoral Study Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Medical Center in Nowogard, Szczecin, Poland
| | - Kinga Gonta
- College of Physiotherapy in Wroclaw, Ortogenic Rehabilitation and Podology Center in Wroclaw, Wroclaw, Poland
| | - Magdalena Dulęba
- College of Physiotherapy in Wroclaw, Ortogenic Rehabilitation and Podology Center in Wroclaw, Wroclaw, Poland
| | - Danuta Lietz-Kijak
- Department of Propaedeutic, Physical Diagnostics and Dental Physiotherapy, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
16
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Brunetti G, Storlino G, Oranger A, Colaianni G, Faienza MF, Ingravallo G, Di Comite M, Reseland JE, Celi M, Tarantino U, Passeri G, Ware CF, Grano M, Colucci S. LIGHT/TNFSF14 regulates estrogen deficiency-induced bone loss. J Pathol 2020; 250:440-451. [PMID: 31990039 DOI: 10.1002/path.5385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Bone loss induced by ovariectomy is due to the direct activity on bone cells and mesenchymal cells and to the dysregulated activity of bone marrow cells, including immune cells and stromal cells, but the underlying mechanisms are not completely known. Here, we demonstrate that ovariectomy induces the T-cell co-stimulatory cytokine LIGHT, which stimulates both osteoblastogenesis and osteoclastogenesis by modulating osteoclastogenic cytokine expression, including TNF, osteoprotegerin, and the receptor activator of nuclear factor-κB ligand (RANKL). Predictably, LIGHT-deficient (Tnfsf14-/- ) mice are protected from ovariectomy-dependent bone loss, whereas trabecular bone mass increases in mice deficient in both LIGHT and T and B lymphocytes (Rag -/- Tnfsf14 -/- ) and is associated with an inversion of the TNF and RANKL/OPG ratio. Furthermore, women with postmenopausal osteoporosis display high levels of LIGHT in circulating T cells and monocytes. Taken together, these results indicate that LIGHT mediates bone loss induced by ovariectomy, suggesting that patients with postmenopausal osteoporosis may benefit from LIGHT antagonism. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Giacomina Brunetti
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giuseppina Storlino
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Graziana Colaianni
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Maria F Faienza
- Department of Biomedical Science and Human Oncology, Paediatric Unit, University of Bari, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari, Bari, Italy
| | - Mariasevera Di Comite
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Janne E Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Blindern, Oslo, Norway
| | - Monica Celi
- Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Umberto Tarantino
- Department of Orthopedics and Traumatology, Tor Vergata University of Rome, Rome, Italy
| | - Giovanni Passeri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Silvia Colucci
- Department of Basic and Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| |
Collapse
|
18
|
Taniyama T, Saruta J, Mohammadzadeh Rezaei N, Nakhaei K, Ghassemi A, Hirota M, Okubo T, Ikeda T, Sugita Y, Hasegawa M, Ogawa T. UV-Photofunctionalization of Titanium Promotes Mechanical Anchorage in A Rat Osteoporosis Model. Int J Mol Sci 2020; 21:ijms21041235. [PMID: 32059603 PMCID: PMC7072956 DOI: 10.3390/ijms21041235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Effects of UV-photofunctionalization on bone-to-titanium integration under challenging systemic conditions remain unclear. We examined the behavior and response of osteoblasts from sham-operated and ovariectomized (OVX) rats on titanium surfaces with or without UV light pre-treatment and the strength of bone-implant integration. Osteoblasts from OVX rats showed significantly lower alkaline phosphatase, osteogenic gene expression, and mineralization activities than those from sham rats. Bone density variables in the spine were consistently lower in OVX rats. UV-treated titanium was superhydrophilic and the contact angle of ddH2O was ≤5°. Titanium without UV treatment was hydrophobic with a contact angle of ≥80°. Initial attachment to titanium, proliferation, alkaline phosphatase activity, and gene expression were significantly increased on UV-treated titanium compared to that on control titanium in osteoblasts from sham and OVX rats. Osteoblastic functions compromised by OVX were elevated to levels equivalent to or higher than those of sham-operated osteoblasts following culture on UV-treated titanium. The strength of in vivo bone-implant integration for UV-treated titanium was 80% higher than that of control titanium in OVX rats and even higher than that of control implants in sham-operated rats. Thus, UV-photofunctionalization effectively enhanced bone-implant integration in OVX rats to overcome post-menopausal osteoporosis-like conditions.
Collapse
Affiliation(s)
- Takashi Taniyama
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Orthopedic Surgery, Yokohama City Minato Red Cross Hospital, 3-12-1 Shinyamashita, Yokohama 231-8682, Kanagawa, Japan
| | - Juri Saruta
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka, Yokosuka 238-8580, Kanagawa, Japan
- Correspondence: ; Tel./Fax: +81-46-822-9537
| | - Naser Mohammadzadeh Rezaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Kourosh Nakhaei
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Amirreza Ghassemi
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Makoto Hirota
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
- Department of Oral and Maxillofacial Surgery/Orthodontics, Yokohama City University Medical Center, 4-57 Urafune-cho, Yokohama 232-0024, Kanagawa, Japan
| | - Takahisa Okubo
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Takayuki Ikeda
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Yoshihiko Sugita
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Masakazu Hasegawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA; (T.T.); (N.M.R.); (K.N.); (A.G.); (M.H.); (T.O.); (T.I.); (Y.S.); (M.H.); (T.O.)
| |
Collapse
|
19
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|
20
|
Russo V, Chen R, Armamento-Villareal R. Hypogonadism, Type-2 Diabetes Mellitus, and Bone Health: A Narrative Review. Front Endocrinol (Lausanne) 2020; 11:607240. [PMID: 33537005 PMCID: PMC7848021 DOI: 10.3389/fendo.2020.607240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
One of the complications from chronic hyperglycemia and insulin resistance due to type 2 diabetes mellitus (T2DM) on the hypothalamic-pituitary-gonadal axis in men is the high prevalence of hypogonadotropic hypogonadism (HH). Both T2DM and hypogonadism are associated with impaired bone health and increased fracture risk but whether the combination results in even worse bone disease than either one alone is not well-studied. It is possible that having both conditions predisposes men to an even greater risk for fracture than either one alone. Given the common occurrence of HH or hypogonadism in general in T2DM, a significant number of men could be at risk. To date, there is very little information on the bone health men with both hypogonadism and T2DM. Insulin resistance, which is the primary defect in T2DM, is associated with low testosterone (T) levels in men and may play a role in the bidirectional relationship between these two conditions, which together may portend a worse outcome for bone. The present manuscript aims to review the available evidences on the effect of the combination of hypogonadism and T2DM on bone health and metabolic profile, highlights the possible metabolic role of the skeleton, and examines the pathways involved in the interplay between bone, insulin resistance, and gonadal steroids.
Collapse
Affiliation(s)
- Vittoria Russo
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Rui Chen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- *Correspondence: Reina Armamento-Villareal,
| |
Collapse
|
21
|
Kim S, Barad Z, Cheong RY, Ábrahám IM. Sex differences in rapid nonclassical action of 17β-oestradiol on intracellular signalling and oestrogen receptor α expression in basal forebrain cholinergic neurones in mouse. J Neuroendocrinol 2020; 32:e12830. [PMID: 31943420 DOI: 10.1111/jne.12830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Rapid nonclassical effects of 17β-oestradiol (E2 ) on intracellular signalling have been identified in the basal forebrain, although the extent to which these actions may be different in males and females is unknown. Previous work has shown that E2 rapidly phosphorylates cAMP responsive element binding protein (CREB) via ΕRα in female cholinergic neurones. Using this indicator, the present study examined whether nonclassical actions of E2 occur in a sexually dimorphic manner within basal forebrain cholinergic neurones in mice. In addition, we investigated the expression and intracellular distribution of oestrogen receptor (ΕR)α in cholinergic neurones in female and male mice. Animals were gonadectomised and treated 2 weeks later with E2 . The number of CREB-expressing cholinergic neurones was not altered in any of the brain regions after E2 treatment in both males and females. However, E2 treatment rapidly (< 15 minutes) increased (P < 0.05) the number of cholinergic neurones expressing phosphorylated CREB (pCREB) in the substantia innominata and medial septum but not in the striatum in female mice. By contrast, E2 did not change pCREB expression in cholinergic neurones in male mice at any time point (15 minutes, 1 hour, 4 hours), irrespective of the neuroanatomical location. We also observed that, in females, more cholinergic neurones expressed nuclear ΕRα in all regions, whereas males showed more cholinergic neurones with cytoplasmic or both nuclear and cytoplasmic expression of ΕRα. Taken together, these results demonstrate a marked sex difference in the E2 -induced nonclassical effect and intracellular distribution of ΕRα in basal forebrain cholinergic neurones in vivo.
Collapse
Affiliation(s)
- SooHyun Kim
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachel Y Cheong
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - István M Ábrahám
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
- MTA NAP-B Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, Pécs, Hungary
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Osteocytes are the main mechanosensitive cells in bone. Integrin-based adhesions have been shown to facilitate mechanotransduction, and therefore play an important role in load-induced bone formation. This review outlines the role of integrins in osteocyte function (cell adhesion, signalling, and mechanotransduction) and possible role in disease. RECENT FINDINGS Both β1 and β3 integrins subunits have been shown to be required for osteocyte mechanotransduction. Antagonism of these integrin subunits in osteocytes resulted in impaired responses to fluid shear stress. Various disease states (osteoporosis, osteoarthritis, bone metastases) have been shown to result in altered integrin expression and function. Osteocyte integrins are required for normal cell function, with dysregulation of integrins seen in disease. Understanding the mechanism of faulty integrins in disease may aid in the creation of novel therapeutic approaches.
Collapse
Affiliation(s)
- Ivor P Geoghegan
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
| | - David A Hoey
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, Ireland
| | - Laoise M McNamara
- Department of Mechanical and Biomedical Engineering, Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland, Galway, Ireland.
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Ireland.
| |
Collapse
|
23
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Bleach R, McIlroy M. The Divergent Function of Androgen Receptor in Breast Cancer; Analysis of Steroid Mediators and Tumor Intracrinology. Front Endocrinol (Lausanne) 2018; 9:594. [PMID: 30416486 PMCID: PMC6213369 DOI: 10.3389/fendo.2018.00594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) is the most widely expressed steroid receptor protein in normal breast tissue and is detectable in approximately 90% of primary breast cancers and 75% of metastatic lesions. However, the role of AR in breast cancer development and progression is mired in controversy with evidence suggesting it can either inhibit or promote breast tumorigenesis. Studies have shown it to antagonize estrogen receptor alpha (ERα) DNA binding, thereby preventing pro-proliferative gene transcription; whilst others have demonstrated AR to take on the mantle of a pseudo ERα particularly in the setting of triple negative breast cancer. Evidence for a potentiating role of AR in the development of endocrine resistant breast cancer has also been mounting with reports associating high AR expression with poor response to endocrine treatment. The resurgence of interest into the function of AR in breast cancer has resulted in various emergent clinical trials evaluating anti-AR therapy and selective androgen receptor modulators in the treatment of advanced breast cancer. Trials have reported varied response rates dependent upon subtype with overall clinical benefit rates of ~19-29% for anti-androgen monotherapy, suggesting that with enhanced patient stratification AR could prove efficacious as a breast cancer therapy. Androgens and AR have been reported to facilitate tumor stemness in some cancers; a process which may be mediated through genomic or non-genomic actions of the AR, with the latter mechanism being relatively unexplored in breast cancer. Steroidogenic ligands of the AR are produced in females by the gonads and as sex-steroid precursors secreted from the adrenal glands. These androgens provide an abundant reservoir from which all estrogens are subsequently synthesized and their levels are undiminished in the event of standard hormonal therapeutic intervention in breast cancer. Steroid levels are known to be altered by lifestyle factors such as diet and exercise; understanding their potential role in dictating the function of AR in breast cancer development could therefore have wide-ranging effects in prevention and treatment of this disease. This review will outline the endogenous biochemical drivers of both genomic and non-genomic AR activation and how these may be modulated by current hormonal therapies.
Collapse
Affiliation(s)
| | - Marie McIlroy
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
25
|
Steffensen LL, Ernst EH, Amoushahi M, Ernst E, Lykke-Hartmann K. Transcripts Encoding the Androgen Receptor and IGF-Related Molecules Are Differently Expressed in Human Granulosa Cells From Primordial and Primary Follicles. Front Cell Dev Biol 2018; 6:85. [PMID: 30148131 PMCID: PMC6095988 DOI: 10.3389/fcell.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/18/2018] [Indexed: 11/13/2022] Open
Abstract
Bidirectional cross talk between granulosa cells and oocytes is known to be important in all stages of mammalian follicular development. Insulin-like growth factor (IGF) signaling is a prominent candidate to be involved in the activation of primordial follicles, and may be be connected to androgen-signaling. In this study, we interrogated transcriptome dynamics in granulosa cells isolated from human primordial and primary follicles to reveal information of growth factors and androgens involved in the physiology of ovarian follicular activation. Toward this, a transcriptome comparison study on primordial follicles (n = 539 follicles) and primary follicles (n = 261 follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy was performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modeling of complex biological systems was performed using IPA® software. We found the granulosa cell compartment of the human primordial and primary follicles to be extensively enriched in genes encoding IGF-related factors, and the Androgen Receptor (AR) enriched in granulosa cells of primordial follicles. Our study hints the possibility that primordial follicles may indeed be androgen responsive, and that the action of androgens represents a connection to the expression of key players in the IGF-signaling pathway including IGF1R, IGF2, and IGFBP3, and that this interaction could be important for early follicular activation. In line with this, several androgen-responsive genes were noted to be expressed in both oocytes and granulosa cells from human primordial and primary follicle. We present a detailed description of AR and IGF gene activities in the human granulosa cell compartment of primordial and primary follicles, suggesting that these cells may be or prepare to be responsive toward androgens and IGFs.
Collapse
Affiliation(s)
| | - Emil H Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Erik Ernst
- The Fertility Clinic, Horsens Hospital, Horsens, Denmark.,The Fertility Clinic, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Lu M, Zhao XH. The Growth Proliferation, Apoptotic Prevention, and Differentiation Induction of the Gelatin Hydrolysates from Three Sources to Human Fetal Osteoblasts (hFOB 1.19 Cells). Molecules 2018; 23:molecules23061287. [PMID: 29843361 PMCID: PMC6100253 DOI: 10.3390/molecules23061287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 01/07/2023] Open
Abstract
Gelatins from the skin of bovine, porcine, and tilapia were hydrolyzed to three degrees of hydrolysis (DH) by alcalase, neutrase, and papain, respectively. These hydrolysates at 0.02⁻0.1 g/L promoted the growth of human fetal osteoblasts by 101.4⁻135.7%, while higher DH or using papain and tilapia gelatins resulted in higher proliferation. The hydrolysates from porcine and tilapia gelatins at 0.05 g/L prevented induced apoptosis (decreasing total apoptotic proportions from 28.4% or 35.2% to 10.3⁻17.5% or 16.0⁻23.6%), and had differentiation induction (increasing alkaline phosphatase activity by 126.9⁻246.7% in early differentiation stage, or enhancing osteocalcin production by 4.1⁻22.5% in later differentiation stage). These hydrolysates had a similar amino acid profile; however, tilapia gelatin hydrolysates by papain with DH 15.4% mostly displayed higher activity than others. Tilapia gelatin hydrolysate could up-regulate β-catenin, Wnt 3a, Wnt 10b, cyclin D1, and c-Myc expression at mRNA levels by 1.11⁻3.60 folds, but down-regulate GSK 3β expression by 0.98 fold. Of note, β-catenin in total cellular and nuclear protein was up-regulated by 1.14⁻1.16 folds but unchanged in cytoplasmic protein, Wnt 10b, cyclin D1, and c-Myc expression were up-regulated by 1.27⁻1.95 folds, whilst GSK 3β expression was down-regulated by 0.87 fold. Activation of Wnt/β-catenin pathway is suggested to mediate cell proliferation and differentiation.
Collapse
Affiliation(s)
- Ming Lu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China.
- Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Ho MX, Poon CCW, Wong KC, Qiu ZC, Wong MS. Icariin, but Not Genistein, Exerts Osteogenic and Anti-apoptotic Effects in Osteoblastic Cells by Selective Activation of Non-genomic ERα Signaling. Front Pharmacol 2018; 9:474. [PMID: 29867480 PMCID: PMC5958194 DOI: 10.3389/fphar.2018.00474] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
Genistein and icariin are flavonoid compounds that exhibit estrogen-like properties in inducing bone formation and reducing bone loss associated with estrogen deficiency in both preclinical and clinical studies. However, the mechanisms that are involved in mediating their estrogenic actions in bone cells are far from clear. The present study aimed to study the signaling pathways that mediate the estrogenic actions of genistein and icariin in osteoblastic cells. The effects of genistein and icariin on the activation of estrogen receptor (ER) and the downstream mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in murine osteoblastic MC3T3-E1 cells and rat osteoblastic UMR-106 cells were studied. As expected, genistein displayed higher binding affinity toward ERβ than ERα and significantly induced estrogen response element (ERE)-dependent transcription in UMR-106 cells in a dose-dependent manner. In contrast, icariin failed to bind to ERα or ERβ and did not induce ERE-dependent transcription in UMR-106 cells at 10-10 to 10-7 M. The effects of genistein (10 nM) and icariin (0.1 μM) on cell proliferation and differentiation in osteoblastic UMR-106 cells were abolished in the presence of ER antagonist ICI 182,780 (1 μM), MAPK inhibitor U0126 (10 μM), and PI3K inhibitor LY294002 (10 μM). Genistein at 10 nM rapidly induced ERK1/2 phosphorylation at 5–10 min in UMR-106 cells and the phosphorylation of ERα at both Ser118 and Ser167 in both MC3T3-E1 and transfected UMR-106 cells whereas icariin at 0.1 μM rapidly activated both ERK1/2 and Akt phosphorylation in UMR-106 cells and subsequent ERα phosphorylation at both Ser118 and Ser167 in MC3T3-E1 and transfected UMR-106 cells. Confocal imaging studies confirmed that the phosphorylation of ERα at Ser 118 and Ser 167 by genistein and icariin in MC3T3-E1 cells was mediated via MAPK- and PI3K-dependent pathway, respectively. Furthermore, our studies showed that icariin exerted stronger anti-apoptotic effects than genistein and 17β-estradiol (E2) and inhibited the cleavage of downstream caspase-3 in MC3T3-E1 cells induced by a potent PI3K inhibitor, PI828 (at 2 μM). These results indicated that the mechanisms that mediate the estrogenic actions of icariin in osteoblastic cells are different from those of genistein.
Collapse
Affiliation(s)
- Ming-Xian Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christina C-W Poon
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ka-Chun Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zuo-Cheng Qiu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
28
|
Barcia JM, Portolés S, Portolés L, Urdaneta AC, Ausina V, Pérez-Pastor GMA, Romero FJ, Villar VM. Does Oxidative Stress Induced by Alcohol Consumption Affect Orthodontic Treatment Outcome? Front Physiol 2017; 8:22. [PMID: 28179886 PMCID: PMC5263147 DOI: 10.3389/fphys.2017.00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
HIGHLIGHTS Ethanol, Periodontal ligament, Extracellular matrix, Orthodontic movement. Alcohol is a legal drug present in several drinks commonly used worldwide (chemically known as ethyl alcohol or ethanol). Alcohol consumption is associated with several disease conditions, ranging from mental disorders to organic alterations. One of the most deleterious effects of ethanol metabolism is related to oxidative stress. This promotes cellular alterations associated with inflammatory processes that eventually lead to cell death or cell cycle arrest, among others. Alcohol intake leads to bone destruction and modifies the expression of interleukins, metalloproteinases and other pro-inflammatory signals involving GSKβ, Rho, and ERK pathways. Orthodontic treatment implicates mechanical forces on teeth. Interestingly, the extra- and intra-cellular responses of periodontal cells to mechanical movement show a suggestive similarity with the effects induced by ethanol metabolism on bone and other cell types. Several clinical traits such as age, presence of systemic diseases or pharmacological treatments, are taken into account when planning orthodontic treatments. However, little is known about the potential role of the oxidative conditions induced by ethanol intake as a possible setback for orthodontic treatment in adults.
Collapse
Affiliation(s)
- Jorge M. Barcia
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Sandra Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Laura Portolés
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Alba C. Urdaneta
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Verónica Ausina
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Gema M. A. Pérez-Pastor
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
| | - Francisco J. Romero
- School of Medicine and Dentistry, Universidad Católica de Valencia San Vicente MártirValencia, Spain
- Facultad de Ciencias de la Salud, Universidad Europea de ValenciaValencia, Spain
| | - Vincent M. Villar
- Department of Biomedical Sciences, Universidad Cardenal Herrera, CEUMoncada, Spain
| |
Collapse
|
29
|
Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. Int J Mol Sci 2016; 17:ijms17122045. [PMID: 27929439 PMCID: PMC5187845 DOI: 10.3390/ijms17122045] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/04/2022] Open
Abstract
Cell death in skeletal component cells, including chondrocytes, osteoblasts, and osteocytes, plays roles in skeletal development, maintenance, and repair as well as in the pathogenesis of osteoarthritis and osteoporosis. Chondrocyte proliferation, differentiation, and apoptosis are important steps for endochondral ossification. Although the inactivation of P53 and RB is involved in the pathogenesis of osteosarcomas, the deletion of p53 and inactivation of Rb are insufficient to enhance chondrocyte proliferation, indicating the presence of multiple inhibitory mechanisms against sarcomagenesis in chondrocytes. The inflammatory processes induced by mechanical injury and chondrocyte death through the release of danger-associated molecular patterns (DAMPs) are involved in the pathogenesis of posttraumatic osteoarthritis. The overexpression of BCLXL increases bone volume with a normal structure and maintains bone during aging by inhibiting osteoblast apoptosis. p53 inhibits osteoblast proliferation and enhances osteoblast apoptosis, thereby reducing bone formation, but also exerts positive effects on osteoblast differentiation through the Akt–FoxOs pathway. Apoptotic osteocytes release ATP, which induces the receptor activator of nuclear factor κ-B ligand (Rankl) expression and osteoclastogenesis, from pannexin 1 channels. Osteocyte death ultimately results in necrosis; DAMPs are released to the bone surface and promote the production of proinflammatory cytokines, which induce Rankl expression, and osteoclastogenesis is further enhanced.
Collapse
|
30
|
Ward WE, Kaludjerovic J, Dinsdale EC. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E488. [PMID: 27187422 PMCID: PMC4881113 DOI: 10.3390/ijerph13050488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.
Collapse
Affiliation(s)
- Wendy E Ward
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Jovana Kaludjerovic
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Elsa C Dinsdale
- Department of Kinesiology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
31
|
Gui Y, Duan Z, Qiu X, Tang W, Gober HJ, Li D, Wang L. Multifarious effects of 17-β-estradiol on apolipoprotein E receptors gene expression during osteoblast differentiation in vitro . Biosci Trends 2016; 10:54-66. [DOI: 10.5582/bst.2016.01006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuyan Gui
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Zhongliang Duan
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Wei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | - Hans-Jürgen Gober
- Department of Pharmacy, Wagner Jauregg Hospital and Children's Hospital
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|
32
|
Yoshida S, Ikeda Y, Aihara KI. Roles of the Androgen – Androgen Receptor System in Vascular Angiogenesis. J Atheroscler Thromb 2016; 23:257-65. [DOI: 10.5551/jat.31047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Ken-ichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
33
|
Sukocheva OA, Li B, Due SL, Hussey DJ, Watson DI. Androgens and esophageal cancer: What do we know? World J Gastroenterol 2015; 21:6146-6156. [PMID: 26034350 PMCID: PMC4445092 DOI: 10.3748/wjg.v21.i20.6146] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/27/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Significant disparities exist between genders for the development and progression of several gastro-intestinal (GI) diseases including cancer. Differences in incidence between men vs women for colon, gastric and hepatocellular cancers suggest a role for steroid sex hormones in regulation of GI carcinogenesis. Involvement of intrinsic gender-linked mechanisms is also possible for esophageal adenocarcinoma as its incidence is disproportionally high among men. However, the cause of the observed gender differences and the potential role of androgens in esophageal carcinogenesis remains unclear, even though the cancer-promoting role of androgen receptors (AR) shown in other cancers such as prostate and bladder suggests this aspect warrants exploration. Several studies have demonstrated expression of ARs in esophageal cancer. However, only one study has suggested a potential link between AR signaling and outcome - poorer prognosis. Two groups have analyzed data from cohorts with prostate cancer and one of these found a decreased incidence of esophageal squamous and adenocarcinoma after androgen deprivation therapy. However, very limited information is available about the effects of androgen and AR-initiated signaling on esophageal cancer cell growth in vitro and in vivo. Possible mechanisms for androgens/AR involvement in the regulation of esophageal cancer growth are considered, and the potential use of AR as a prognostic factor and clinical target is highlighted, although insufficient evidence is available to support clinical trials of novel therapies. As esophageal adenocarcinoma is a gender linked cancer with a large male predominance further studies are warranted to clarify the role of androgens and ARs in shaping intracellular signaling and genomic responses in esophageal cancer.
Collapse
|
34
|
Nagy V, Penninger JM. The RANKL-RANK Story. Gerontology 2015; 61:534-42. [PMID: 25720990 DOI: 10.1159/000371845] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022] Open
Abstract
Receptor activator of nuclear factor x03BA;B (RANK) and its ligand (RANKL) have originally been described for their key roles in bone metabolism and the immune system. Subsequently, it has been shown that the RANKL-RANK system is critical in the formation of mammary epithelia in lactating females and the thermoregulation of the central nervous system. RANKL and RANK are under the tight control of the female sex hormones estradiol and progesterone. A reduction of the circulating female sex hormones leading to an increase in RANKL-RANK signaling is the leading cause of osteoporosis in postmenopausal women. Denosumab, a human monoclonal anti-RANKL antibody, has been approved for the treatment of postmenopausal osteoporosis, where it is showing great promise. In addition, RANKL-RANK signaling also plays a critical role in other bone pathologies, bone metastasis or hormone-driven breast cancer. This review will highlight some of the functions of RANKL-RANK in bone turnover, the immune system and brain with a focus on the regulatory role of the female sex hormones.
Collapse
Affiliation(s)
- Vanja Nagy
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | | |
Collapse
|
35
|
De Marco P, Cirillo F, Vivacqua A, Malaguarnera R, Belfiore A, Maggiolini M. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells. Front Endocrinol (Lausanne) 2015; 6:30. [PMID: 25798130 PMCID: PMC4351617 DOI: 10.3389/fendo.2015.00030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression.
Collapse
Affiliation(s)
- Paola De Marco
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Roberta Malaguarnera
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Health, University Magna Graecia of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonino Belfiore, Università degli Studi Magna Graecia di Catanzaro, Viale Europa, Loc. Germaneto, Catanzaro 88100, Italy e-mail: ; Marcello Maggiolini, Università della Calabria, via P. Bucci, Rende 87036, Italy e-mail:
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- *Correspondence: Antonino Belfiore, Università degli Studi Magna Graecia di Catanzaro, Viale Europa, Loc. Germaneto, Catanzaro 88100, Italy e-mail: ; Marcello Maggiolini, Università della Calabria, via P. Bucci, Rende 87036, Italy e-mail:
| |
Collapse
|
36
|
Zhai ZJ, Li HW, Liu GW, Qu XH, Tian B, Yan W, Lin Z, Tang TT, Qin A, Dai KR. Andrographolide suppresses RANKL-induced osteoclastogenesis in vitro and prevents inflammatory bone loss in vivo. Br J Pharmacol 2014; 171:663-75. [PMID: 24125472 DOI: 10.1111/bph.12463] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Osteoclasts play a pivotal role in diseases such as osteoporosis, rheumatoid arthritis and tumour bone metastasis. Thus, searching for natural compounds that may suppress osteoclast formation and/or function is promising for the treatment of osteoclast-related diseases. Here, we examined changes in osteoclastogenesis and LPS-induced osteolysis in response to andrographolide (AP), a diterpenoid lactone isolated from the traditional Chinese and Indian medicinal plant Andrographis paniculata. EXPERIMENTAL APPROACH Effects of AP on osteoclast differentiation and bone resorption were measured in vitro. Western blots and RT-PCR techniques were used to examine the underlying molecular mechanisms. The bone protective activity of AP in vivo was assessed in a mouse model of osteolysis. KEY RESULTS AP concentration-dependently suppressed RANKL-mediated osteoclast differentiation and bone resorption in vitro and reduced the expression of osteoclast-specific markers, including tartrate-resistant acid phosphatase, calcitonin receptors and cathepsin K. Further molecular analysis revealed that AP impaired RANKL-induced NF-κB signalling by inhibiting the phosphorylation of TGF-β-activated kinase 1, suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the nuclear translocation of the NF-κB p65 subunit. AP also inhibited the ERK/MAPK signalling pathway without affecting p38 or JNK signalling. CONCLUSIONS AND IMPLICATIONS AP suppressed RANKL-induced osteoclastogenesis through attenuating NF-κB and ERK/MAPK signalling pathways in vitro, thus preventing bone loss in vivo. These data indicated that AP is a promising natural compound for the treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Z J Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Boonyaratanakornkit V. Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor. Steroids 2011; 76:877-84. [PMID: 21354435 DOI: 10.1016/j.steroids.2011.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/14/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022]
Abstract
Estrogen mediates biological effects on cell proliferation, differentiation, and homeostasis through estrogen receptor (ER). In addition to functioning as a ligand-activated nuclear transcription factor to directly regulate gene transcription, ER also mediates rapid activation of signaling pathways independent of its transcriptional activity. A subpopulation of ER localized to the cell membrane or cytoplasm has been proposed to mediate ER activation of signaling pathways. This review focuses on recent advances in our understanding of mechanisms responsible for ER cytoplasm/membrane localization, where rapid extra-nuclear signaling is initiated. These mechanisms include lipid modification of the receptor (palmitoylation) and interactions with membrane and cytoplasmic adaptor proteins including caveolins, striatin, p130Cas, Shc, HPIP, MTA-1s, and MNAR/PELP1. While it is clear that ER mediates rapid extra-nuclear signaling resulting in activation of signaling pathways such as Src/MAPK and PI-3 kinase/Akt, how ER extra-nuclear signaling influences overall ER/estrogen physiology is still not well understood. Future studies defining physiological roles of ER extra-nuclear actions and crosstalk with its nuclear counterparts will be important to our overall understanding of estrogen and ER biological functions.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, MS-130, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Pinton G, Brunelli E, Murer B, Puntoni R, Puntoni M, Fennell DA, Gaudino G, Mutti L, Moro L. Estrogen receptor-beta affects the prognosis of human malignant mesothelioma. Cancer Res 2009; 69:4598-604. [PMID: 19487281 DOI: 10.1158/0008-5472.can-08-4523] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant pleural mesothelioma is an asbestos-related neoplasm with poor prognosis, refractory to current therapies, the incidence of which is expected to increase in the next decades. Female gender was identified as a positive prognostic factor among other clinical and biological prognostic markers for malignant mesothelioma, yet a role of estrogen receptors (ERs) has not been studied. Our goal was to investigate ERs expression in malignant mesothelioma and to assess whether their expression correlates with prognosis. Immunohistochemical analysis revealed intense nuclear ERbeta staining in normal pleura that was reduced in tumor tissues. Conversely, neither tumors nor normal pleura stained positive for ERalpha. Multivariate analysis of 78 malignant mesothelioma patients with pathologic stage, histologic type, therapy, sex, and age at diagnosis indicated that ERbeta expression is an independent prognostic factor of better survival. Moreover, studies in vitro confirmed that treatment with 17beta-estradiol led to an ERbeta-mediated inhibition of malignant mesothelioma cell proliferation as well as p21(CIP1) and p27(KIP1) up-regulation. Consistently cell growth was suppressed by ERbeta overexpression, causing a G(2)-M-phase cell cycle arrest, paralleled by cyclin B1 and survivin down-regulation. Our data support the notion that ERbeta acting as a tumor suppressor is of high potential relevance to prediction of disease progression and to therapeutic response of malignant mesothelioma patients.
Collapse
Affiliation(s)
- Giulia Pinton
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche and Drug and Food Biotechnology Center, University of Piemonte Orientale A. Avogadro, Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Azuma K, Urano T, Horie-Inoue K, Hayashi SI, Sakai R, Ouchi Y, Inoue S. Association of estrogen receptor alpha and histone deacetylase 6 causes rapid deacetylation of tubulin in breast cancer cells. Cancer Res 2009; 69:2935-40. [PMID: 19318565 DOI: 10.1158/0008-5472.can-08-3458] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor alpha (ERalpha) is a nuclear receptor that functions as a ligand-activated transcription factor. Besides its genomic action in nuclei, ERalpha could exert nongenomic actions at the plasma membrane. To investigate the mechanism underlying the nongenomic action of ERalpha in breast cancer cells, we generated a construct of membrane-targeted ERalpha (memER), an expression vector of ERalpha without the nuclear localizing signal and including instead the membrane-targeting sequence of Src kinase. MemER was stably expressed in human breast cancer MCF-7 cells. Cell migration test and tumorigenic assay in nude mice revealed that the in vitro motility and the in vivo proliferation activity of MCF-7 cells expressing memER were significantly enhanced compared with those of vector-transfected cells. Interestingly, the acetylation level of tubulin in memER-overexpressing cells was lower than that in control cells. We found that histone deacetylase (HDAC) 6 translocated to the plasma membrane shortly after estrogen stimulation, and rapid tubulin deacetylation subsequently occurred. We also showed that memER associated with HDAC6 in a ligand-dependent manner. Although tamoxifen is known for its antagonistic role in the ERalpha genomic action in MCF-7 cells, the agent showed an agonistic function in the memER-HDAC6 association and tubulin deacetylation. These findings suggest that ERalpha ligand dependently forms a complex with HDAC6 and tubulin at the plasma membrane. Estrogen-dependent tubulin deacetylation could provide new evidence for the nongenomic action of estrogen, which potentially contributes to the aggressiveness of ERalpha-positive breast cancer cells.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Mohler ML, Bohl CE, Narayanan R, He Y, Hwang DJ, Dalton JT, Miller DD. Nonsteroidal Tissue‐Selective Androgen Receptor Modulators. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Weatherman RV. Untangling the Estrogen Receptor Web: Tools to Selectively Study Estrogen‐Binding Receptors. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/9783527623297.ch3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Camacho PM, Dayal AS, Diaz JL, Nabhan FA, Agarwal M, Norton JG, Robinson PA, Albain KS. Prevalence of Secondary Causes of Bone Loss Among Breast Cancer Patients With Osteopenia and Osteoporosis. J Clin Oncol 2008; 26:5380-5. [DOI: 10.1200/jco.2008.17.7451] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeTo determine the prevalence of secondary causes of bone loss among patients with breast cancer with osteopenia and osteoporosis.Patients and MethodsAll women referred to a bone health clinic over a 6-year period for bone evaluation were included in this retrospective study and stratified based on presence or absence of a breast cancer history. The prevalence of secondary causes of bone loss in the two groups was compared.ResultsOf the 238 women identified, 64 women had breast cancer. The non–breast cancer group (n = 174) was significantly older (P = .015), had a lower mean weight (P = .019), lower 25 hydroxy-vitamin D level (P = .019), and greater degree of bone loss in both the spine and hip (P < .001 and 0.004, respectively). The presence of at least one secondary cause of bone loss, excluding cancer-related therapies, was seen in 78% of the breast cancer patient group and in 77% of the non–breast cancer group (P = not significant). Newly diagnosed metabolic bone disorders were seen in 58% of the breast cancer population. The most common was vitamin D deficiency, seen in 38% of patients in the breast cancer group and 51% of patients in the non–breast cancer group. Idiopathic hypercalciuria was diagnosed in 15.6%, primary hyperparathyroidism in 1.6%, and normocalcemic hyperparathyroidism in 3.1% of the breast cancer population.ConclusionA high prevalence of secondary causes of bone loss among patients with breast cancer supports a comprehensive evaluation in these patients, particularly those considering therapy with an aromatase inhibitor.
Collapse
Affiliation(s)
- Pauline M. Camacho
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Amit S. Dayal
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Josefina L. Diaz
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Fadi A. Nabhan
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Monica Agarwal
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - John G. Norton
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Patricia A. Robinson
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| | - Kathy S. Albain
- From the Divisions of Endocrinology and Metabolism, Hematology/Oncology Institute, and Department of Medicine, Loyola University Medical Center, Maywood, IL
| |
Collapse
|
43
|
Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 2008; 13:3786-96. [PMID: 18774957 PMCID: PMC2832077 DOI: 10.1111/j.1582-4934.2008.00493.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive neurodegenerative disorder caused by the abnormal function of NPC1 or NPC2 proteins, leading to an accumulation of unesterified cholesterol and glycosphingolipids (GSLs) in the lysosomes. The mechanisms underlying the pathophysiology in NPC disease are not clear. Oxidative damage is implicated in the pathophysiology of different neurological disorders and the effect of GSL accumulation on the intracellular redox state has been documented. Therefore, we determined whether the intracellular redox state might contribute to the NPC disease pathophysiology. Because the treatment of NPC mice with allopregnanolone (ALLO) increases their lifespan and delays the onset of neurological impairment, we analysed the effect of ALLO on the oxidative damage in human NPC fibroblasts. Concentrations of reactive oxygen species (ROS) and lipid peroxidation were higher in fibroblasts from NPC patients than in fibroblasts from normal subjects. Fibroblasts from NPC patients were more susceptible to cell death through apoptosis after an acute oxidative insult. This process is mediated by activation of the NF-κB signalling pathway. Knockdown of NPC1 mRNA both in normal fibroblasts and in human SH-SY5Y neuroblastoma cells caused increased ROS concentrations. ALLO treatment of fibroblasts from NPC patients or NPC1 knockdown cells reduced the levels of ROS and lipid peroxidation and prevented peroxide-induced apoptosis and NF-kB activation. Thus, these findings suggest that oxidative stress might contribute to the NPC disease and ALLO might be beneficial in the treatment of the disease, at least in part, due to its ability to restore the intracellular redox state.
Collapse
|
44
|
Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA. The Spy1/RINGO Family Represents a Novel Mechanism Regulating Mammary Growth and Tumorigenesis. Cancer Res 2008; 68:3591-600. [DOI: 10.1158/0008-5472.can-07-6453] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Pozo Devoto VM, Giusti S, Chavez JC, de Plazas SF. Hypoxia-induced apoptotic cell death is prevented by oestradiol via oestrogen receptors in the developing central nervous system. J Neuroendocrinol 2008; 20:375-80. [PMID: 18208555 DOI: 10.1111/j.1365-2826.2008.01652.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuroprotective effects of oestrogens have been demonstrated against a variety of insults, including excitotoxicity, oxidative stress and cerebral ischemia under certain conditions. However, the molecular mechanisms underlying oestrogen neuroprotection are still unclear. We aimed to determine whether 17beta-oestradiol (E(2)) administration post-hypoxia (p-hx) was neuroprotective and whether these actions were mediated through oestrogen receptors (ER). For this purpose, 12-embyonic day-old chickens were subjected to acute hypoxia [8% (O(2)), 60 min], followed by different reoxygenation periods. To test the neuroprotective effect of E(2) and its mechanism, embryos were injected 30 min after the end of hypoxia with E(2) alone or with ICI 182 780, a competitive antagonist of ER. Cytochrome c (cyt c) release, an indicator of mitochondrial apoptotic pathway, was measured by western blot in optic lobe cytosolic extracts. DNA fragmentation by TUNEL fluorescence and caspase-3 fragmentation by immunofluorescence were detected on optic lobe sections. Acute hypoxia produces a significant increase in cyt c release from mitochondria at 4 h p-hx, followed by an increase in TUNEL positive cells 2 h later (6 h p-hx). Administration of E(2) (0.5 mg/egg) produced a significant decrease in cytosolic cyt c levels at 4 h p-hx, in caspase-3 activation and in TUNEL positive cells at 6 h p-hx compared to vehicle treated embryos. In the E(2)-ICI 182 780 treated embryos, cyt c release, caspase-3 fragmentation and TUNEL positive cells were similar to the hypoxic embryos, thus suggesting the requirement of an E(2)-ER interaction for E(2) mediated neuroprotective effects. In conclusion, E(2) prevents hypoxia-induced cyt c release and posterior cell death and these effects are mediated by oestrogen receptors.
Collapse
Affiliation(s)
- V M Pozo Devoto
- Institute of Cell Biology and Neuroscience Prof. E. De Robertis, School of Medicine, University of Buenos Aires, Paraguay, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
46
|
Reyes García R, Rozas Moreno P, Muñoz-Torres M. Regulación del proceso de remodelado óseo. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1132-8460(08)71132-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Rahman F, Christian HC. Non-classical actions of testosterone: an update. Trends Endocrinol Metab 2007; 18:371-8. [PMID: 17997105 DOI: 10.1016/j.tem.2007.09.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
Abstract
Androgens are known to exert their effects via genomic signalling, which involves intracellular androgen receptors that modulate gene expression on steroid binding. Whereas non-classical estrogen effects are well established, it is only recently that non-classical, rapid, membrane-initiated testosterone actions have received attention. Non-classical effects of testosterone have now been demonstrated convincingly in several tissues, in particular in the reproductive, cardiovascular, immune and musculoskeletal systems. There is evidence for the participation of the classical intracellular androgen receptor and for involvement of novel, membrane-associated androgen receptors in the non-classical actions of testosterone. Here we discuss evidence for rapid testosterone actions, which have clinical implications in fertility, cardiovascular disease and the treatment of prostate cancer.
Collapse
Affiliation(s)
- Faisal Rahman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | | |
Collapse
|
48
|
Varricchio L, Migliaccio A, Castoria G, Yamaguchi H, de Falco A, Di Domenico M, Giovannelli P, Farrar W, Appella E, Auricchio F. Inhibition of Estradiol Receptor/Src Association and Cell Growth by an Estradiol Receptor α Tyrosine-Phosphorylated Peptide. Mol Cancer Res 2007; 5:1213-21. [DOI: 10.1158/1541-7786.mcr-07-0150] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Yu J, Henske EP. Estrogen-induced activation of mammalian target of rapamycin is mediated via tuberin and the small GTPase Ras homologue enriched in brain. Cancer Res 2007; 66:9461-6. [PMID: 17018601 DOI: 10.1158/0008-5472.can-06-1895] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitors of the mammalian target of rapamycin (mTOR) are currently in clinical trials for the treatment of breast cancer. The mechanisms through which mTOR are activated in breast cancer and the relationship of mTOR activation to steroid hormones, such as estrogen, that are known to influence breast cancer pathogenesis, are not yet understood. Using MCF-7 cells as a model, we found that 17-beta estradiol (E(2)) rapidly increased the phosphorylation of downstream targets of mTOR: p70 ribosomal protein S6 kinase, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 1. The phosphoinositide-3-kinase inhibitor, wortmannin, and the mTOR inhibitor, rapamycin, blocked E(2)-induced activation of p70 ribosomal protein S6 kinase. We hypothesized that tuberin and the small GTPase Ras homologue enriched in brain (Rheb), regulators of the mTOR pathway, mediate E(2)-induced activation of mTOR. Consistent with this hypothesis, E(2) rapidly (within 5 minutes) stimulated tuberin phosphorylation at T1462, a site at which Akt phosphorylates and inactivates tuberin. E(2) also rapidly decreased the inactive, GDP-bound form of Rheb. Finally, we found that small interfering RNA down-regulation of endogenous Rheb blocked the E(2)-stimulated proliferation of MCF-7 cells, demonstrating that Rheb is a key determinant of E(2)-dependent cell growth. Taken together, these data reveal that the TSC/Rheb/mTOR pathway plays a critical role in the regulation of E(2)-induced proliferation, and highlight Rheb as a novel molecular target for breast cancer therapy.
Collapse
Affiliation(s)
- Jane Yu
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
50
|
Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P, Nelson C, Gleave M. Cooperative Interactions between Androgen Receptor (AR) and Heat-Shock Protein 27 Facilitate AR Transcriptional Activity. Cancer Res 2007; 67:10455-65. [DOI: 10.1158/0008-5472.can-07-2057] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|