1
|
Yi YJ, Lee YJ, Adikari AADI, Yun BS. Control of sperm penetration using stereumamide A derived from Trichaptum fuscoviolaceum in the in vitro fertilization of pig oocytes. ZYGOTE 2024:1-6. [PMID: 39450601 DOI: 10.1017/s0967199424000327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Fungal metabolites are known to have potent and diverse properties such as antiviral, antidiabetic, antitumour, antioxidant, free radical scavenging, and antibacterial effects which can be utilized to treat diseases. In this study, we investigated the functional activity of stereumamide A (StA) derived from a culture broth of Trichaptum fuscoviolaceum during the in vitro fertilization (IVF) of pig oocytes, to determine its effects on sperm penetration. Oocytes matured in vitro were fertilized in the absence or presence of varying concentrations of StA (0-50 μg/ml StA). When StA was directly added into the IVF medium, significantly lower fertilization rates were seen with the 20 or 50 μg/ml StA (2.0-17.5%) treatments compared with those of 10 μg/ml StA or the controls (60.9-62.3%), whereas StA had no influence on the survival of oocytes and spermatozoa throughout the IVF process. For evaluating the control of sperm entry, mature oocytes were pre-incubated in a medium containing 20 μg/ml StA for 1 h, and then IVF was subsequently performed. The incidence of polyspermy was significantly reduced when oocytes were pre-incubated with StA (15.0% vs. 50.4-57.5% in controls). In conclusion, sperm penetration was inhibited in the medium in the presence of StA during IVF, while StA did not affect sperm motility and fertility competence. Fertilization was controlled when mature oocytes were incubated with StA prior to IVF, suggesting the possible use of the fungal metabolite in assisted reproductive technology for humans and animals.
Collapse
Affiliation(s)
- Young-Joo Yi
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon57922, Korea
| | - Yoon-Ju Lee
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan54596, Korea
| | | | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan54596, Korea
| |
Collapse
|
2
|
Fonseka WTL, Do SQ, Van PN, Nguyen HT, Wakai T, Funahashi H. The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes. Theriogenology 2024; 226:158-166. [PMID: 38901215 DOI: 10.1016/j.theriogenology.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3-6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
Collapse
Affiliation(s)
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Phong Ngoc Van
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
3
|
Haug LM, Wilson RC, Alm-Kristiansen AH. Epigenetic-related transcriptional reprogramming elucidated by identification and validation of a novel reference gene combination for RT-qPCR studies in porcine oocytes of contrasting quality. Mol Biol Rep 2024; 51:368. [PMID: 38411699 PMCID: PMC10899281 DOI: 10.1007/s11033-024-09319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Reliable RT-qPCR results are dependent on appropriate normalisation. Oocyte maturation studies can be challenging in this respect, as the stage of development can distinctively affect reference gene transcript abundance. The aim of this study was to validate the use of reference genes in oocyte in vitro maturation RT-qPCR studies, and thereafter, examine the abundance of transcripts supporting histone modification during oocyte and early embryo development in oocytes of contrasting quality. METHODS AND RESULTS Total RNA from oocytes from prepubertal gilts and sows was extracted either directly succeeding follicle aspiration or after 44 h in vitro maturation, followed by RT-qPCR. The stability of YWHAG, HPRT1, ACTB, GAPDH, HMBS and PFKP, was analysed by NormFinder and further cross-validated by assessing results generated following application of different combinations of potential reference genes for normalisation of the RT-qPCR data. Combining ACTB and PFKP generated high stability according to NormFinder and concordant results. Applying this normalisation, gilt derived oocytes displayed significantly higher abundance than oocytes from sows of almost all the epigenetic-related transcripts studied (HDAC2, SIRT1, SALL4, KDM1A, KDM1B, KDM5A), both before and after maturation. CONCLUSIONS This study identified the combined use of ACTB and PFKP as the optimal normalisation for porcine oocyte RT-qPCR data. In oocytes collected from prepubertal gilts, transcription did not appear to be silenced at the time of aspiration, and accumulation of transcripts supporting histone modification facilitating proper fertilization and further embryo development seemed delayed. The results imply the epigenetic-related transcripts may have potential as markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Robert C Wilson
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Anne Hege Alm-Kristiansen
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| |
Collapse
|
4
|
Haug LM, Wilson RC, Gaustad AH, Jochems R, Kommisrud E, Grindflek E, Alm-Kristiansen AH. Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality. BIOLOGY 2023; 12:1484. [PMID: 38132310 PMCID: PMC10740982 DOI: 10.3390/biology12121484] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus-oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | - Robert C. Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Reina Jochems
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
- Norsvin SA, 2317 Hamar, Norway; (A.H.G.); (E.G.)
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Anne Hege Alm-Kristiansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| |
Collapse
|
5
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
6
|
Alfradique VAP, Alves SVP, Netto DLS, Machado AF, Penitente-Filho JM, da Silva W, Brandão FZ, Lopes MS, Guimarães SEF. The effect of age and FSH stimulation on the ovarian follicular response, nuclear maturation, and gene expression of cumulus-oocyte complexes in prepubertal gilts. Theriogenology 2023; 199:57-68. [PMID: 36696770 DOI: 10.1016/j.theriogenology.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study investigated the effects of age and FSH treatment on the ovarian response, follicular fluid (FF) biochemical composition, nuclear maturation, and molecular profile of cumulus-oocytes complexes (COCs) recovered from prepubertal gilts. Thirty-five prepubertal gilts were separated according to age [140 (n = 20) or 160 (n = 15) days], and within each age, the gilts were allotted to receive either 100 mg of FSH [treated; G140+FSH (n = 10) and G160+FSH (n = 7)] or saline solution [control; G140+control (n = 10) and G160+control (n = 8)]. Thus, four experimental groups were included in this study. In the FSH-treated gilts, the percentage of medium follicles increased (P < 0.0001) in the same proportion with which the percentage of small follicles decreased (P < 0.0001). In addition, the glucose concentration in the FF obtained from medium follicles increased (P < 0.05), while that of triglycerides decreased (P < 0.05) in the FSH-treated gilts. The FSH stimulation also improved (P < 0.05) the number of grade I COCs obtained from medium follicles and the meiotic maturation and BCB + rates. FSH treatment only upregulated (P < 0.05) HMGCR expression in immature COCs from prepubertal gilts. The metaphase II and BCB + rates, FF glucose and plasma IGF-1 levels were greater (P < 0.05) in prepubertal gilts at 160 than at 140 days of age. Age had no effect (P > 0.05) on the transcript abundance of the target genes in immature COCs. Hence, oocytes obtained from 140-day-old prepubertal gilts appeared less meiotically competent than those of 160-day-old prepubertal gilts. Our study suggests a possible strategy of using FSH treatment to improve oocyte quantity, quality, and nuclear maturation in 140 and 160-day-old prepubertal gilts.
Collapse
Affiliation(s)
- Vivian Angélico Pereira Alfradique
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| | - Saullo Vinícius Pereira Alves
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Domingos Lollobrigida Souza Netto
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Andréia Ferreira Machado
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Jurandy Mauro Penitente-Filho
- Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Walmir da Silva
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil
| | - Felipe Zandonadi Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil, 64, CEP 24230-340, Niterói, RJ, Brazil
| | - Marcos Soares Lopes
- Topigs Norsvin Brasil, Rua Visconde do Rio Branco, 1310, CEP 80420-210, Curitiba, PR, Brazil
| | - Simone Eliza Facioni Guimarães
- Departamento de Zootecnia, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, Campus Universitário, CEP 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
7
|
Supplementation of porcine in vitro maturation medium with FGF2, LIF, and IGF1 enhances cytoplasmic maturation in prepubertal gilts oocytes and improves embryo quality. ZYGOTE 2022; 30:801-808. [PMID: 36047469 DOI: 10.1017/s0967199422000284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In porcine in vitro production (IVP) systems, the use of oocytes derived from prepubertal gilts, whilst being commercially attractive, remains challenging due to their poor developmental competence following in vitro maturation (IVM). Follicular fluid contains important growth factors and plays a key role during oocyte maturation; therefore, it is a common supplementation for porcine IVM medium. However, follicular fluid contains many poorly characterized components, is batch variable, and its use raises biosecurity concerns. In an effort to design a defined IVM system, growth factors such as cytokines have been previously tested. These include leukaemia inhibitory factor (LIF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF1), the combination of which is termed 'FLI'. Here, using abattoir-derived oocytes in a well established porcine IVP system, we compared follicular fluid and FLI supplementation during both IVM and embryo culture to test the hypothesis that FLI can substitute for follicular fluid without compromising oocyte nuclear and cytoplasmic maturation. We demonstrate that in oocytes derived from prepubertal gilts, FLI supplementation enhances oocyte meiotic maturation and has a positive effect on the quality and developmental competence of embryos. Moreover, for the first time, we studied the effects of follicular fluid and FLI combined showing no synergistic effects.
Collapse
|
8
|
Rim CS, Kim YS, Rim CH, Ri YJ, Choe JS, Kim DS, Kim GS, Il Ri J, Kim RC, Chen H, Xiao L, Fu Z, Pak YJ, Jong UM. Effect of roscovitine pretreatment for increased utilization of small follicle-derived oocytes on developmental competence of somatic cell nuclear transfer embryos in pigs. Anim Reprod Sci 2022; 241:106987. [DOI: 10.1016/j.anireprosci.2022.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/23/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
|
9
|
The Molecular Quality and Mitochondrial Activity of Porcine Cumulus-Oocyte Complexes Are Affected by Their Exposure to Three Endocrine-Active Compounds under 3D In Vitro Maturation Conditions. Int J Mol Sci 2022; 23:ijms23094572. [PMID: 35562963 PMCID: PMC9100547 DOI: 10.3390/ijms23094572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Thus far, the potential short- and long-term detrimental effects of a variety of environmental chemicals designated as endocrine-active compounds (EACs) have been found to interfere with histo- and anatomo-physiological functions of the reproductive system in humans and wildlife species. For those reasons, this study sought to examine whether selected EACs, which encompass the fungicide vinclozolin (Vnz), the androgenic anabolic steroid nandrolone (Ndn) and the immunosuppressant cyclosporin A (CsA), affect the developmental competence and molecular quality (MQ) of porcine cumulus–oocyte complexes (COCs) subjected to in vitro maturation (IVM) under 3D culture conditions. The COCs underwent 3D-IVM in the presence of Vnz, Ndn or CsA for 48 h. To explore whether the selected EACs induce internucleosomal DNA fragmentation in cumulus cells (CCs), TUNEL-assisted detection of late apoptotic cells was performed. Additionally, for the detailed evaluation of pro- and antiapoptotic pathways in COCs, apoptosis proteome profiler arrays were used. To determine changes in intracellular metabolism in COCs, comprehensive assessments of mitochondrial ultrastructure and activity were carried out. Moreover, the relative abundances (RAs) of mRNAs transcribed from genes that are involved in scavenging reactive oxygen species (ROS), such as SIRT3 and FOXO3, and intramitochondrial bioenergetic balance, such as ATP synthase subunit (ATP5A1), were ascertained. Finally, to investigate the extent of progression of oocyte maturation, the intraooplasmic levels of cAMP and the RAs of mRNA transcripts encoding regulatory and biocatalytic subunits of a heterodimeric meiosis-promoting factor, termed cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDC2), were also estimated. The obtained results provide, for the first time, strong evidence that both Vnz and Ndn decrease the developmental competence of oocytes and stimulate apoptosis processes in CCs. The present study is also the first to highlight that Vnz accelerates the maturation process in immature oocytes due to both increased ROS production and the augmented RA of the CCNB1 gene. Furthermore, Vnz was proven to trigger proapoptotic events in CCs by prompting the activity of the FOXO3 transcription factor, which regulates the mitochondrial apoptosis pathway. In turn, Ndn was shown to inhibit oocyte maturation by inducing molecular events that ultimately lead to an increase in the intraooplasmic cAMP concentration. However, due to the simultaneous enhancement of the expression of TNF-β and HSP27 proteins in CCs, Ndn might be responsible for the onset of their neoplastic transformation. Finally, our current investigation is the first to clearly demonstrate that although CsA did not interfere with the nuclear and cytoplasmic maturation of oocytes, by inducing mitophagy in CCs, it disrupted oocyte metabolism, consequently attenuating the parameters related to the MQ of COCs. Summing up, Vnz, Ndn and CsA reduced not only the processes of growth and IVM but also the MQ of porcine COCs, which might make them unsuitable for assisted reproductive technologies (ARTs) such as in vitro fertilization by either gamete co-incubation or intracytoplasmic sperm injection (ICSI) and cloning by somatic cell nuclear transfer (SCNT).
Collapse
|
10
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
11
|
Isa T, Somfai T, Oyadomari M, Fusho K, Touma S, Suzuki N, Kaneko H, Katagiri Y, Kikuchi K. Production of Agu piglets after transfer of embryos produced in vitro. Anim Sci J 2022; 93:e13685. [PMID: 35083820 DOI: 10.1111/asj.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The present study was conducted to examine the feasibility of in vitro embryo production and transfer technologies for producing piglets of Agu, an Okinawan indigenous pig breed. After collection of oocytes from surgically dissected ovaries, they were subjected to in vitro maturation. After in vitro maturation/fertilization, a total of 616 putative embryos were transferred into four commercial Western pig recipients, one of which became pregnant and farrowed a total of eight Agu piglets. These results demonstrate that in vitro embryo production using ovaries from Agu females is useful for breeding management and conservation of indigenous breeds.
Collapse
Affiliation(s)
- Tsunemitsu Isa
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Tamas Somfai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Motoharu Oyadomari
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan.,Okinawa Prefectural Government, Naha, Japan
| | - Kyota Fusho
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Shihei Touma
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan.,Okinawa Prefectural Government, Naha, Japan
| | - Naoto Suzuki
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshito Katagiri
- Okinawa Prefectural Livestock and Grassland Research Center, Nakijin, Japan
| | - Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
12
|
Chen PR, Redel BK, Kerns KC, Spate LD, Prather RS. Challenges and Considerations during In Vitro Production of Porcine Embryos. Cells 2021; 10:cells10102770. [PMID: 34685749 PMCID: PMC8535139 DOI: 10.3390/cells10102770] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023] Open
Abstract
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, we progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made.
Collapse
Affiliation(s)
- Paula R. Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Karl C. Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lee D. Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Randall S. Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
13
|
Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel) 2021; 11:2275. [PMID: 34438733 PMCID: PMC8388507 DOI: 10.3390/ani11082275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however, low blastocyst development rates has constrained its widespread implementation. Here, we present an overview of the current state of the technology, limitations that persist and suggest possible solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and limiting oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.C.); (H.B.)
| |
Collapse
|
14
|
Mastrorocco A, Cacopardo L, Lamanna D, Temerario L, Brunetti G, Carluccio A, Robbe D, Dell’Aquila ME. Bioengineering Approaches to Improve In Vitro Performance of Prepubertal Lamb Oocytes. Cells 2021; 10:cells10061458. [PMID: 34200771 PMCID: PMC8230371 DOI: 10.3390/cells10061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus–oocyte complex (COC), by constructing—via bioprinting technologies—alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Daniela Lamanna
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| |
Collapse
|
15
|
Current JZ, Whitaker BD. Effects of glucuronic acid and N-acetyl-D-glucosamine supplementation on the perivitelline space during the IVM of pig oocytes. Reprod Fertil Dev 2021; 32:941-947. [PMID: 32586424 DOI: 10.1071/rd20109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to minimise polyspermic penetration by increasing the perivitelline space (PVS) thickness through supplementation of the hyaluronic acid components glucuronic acid and N-acetyl-d-glucosamine (GlcNAc). Oocytes (n=4690) were supplemented during the first 24h and/or the remainder of maturation (final 16-18h) with 0.01mM glucuronic acid and 0.01mM GlcNAc and then evaluated for PVS thickness, hyaluronic acid, glutathione and glutathione peroxidase concentrations. Fertilised oocytes were evaluated for polyspermic penetration and embryo development. The PVS thickness and amount of hyaluronic acid was significantly (P<0.05) greater in oocytes supplemented with 0.01mM glucuronic acid and 0.01mM GlcNAc during the second part or all of maturation compared with the other treatments. In addition, polyspermic penetration was significantly (P<0.05) less in oocytes supplemented with 0.01mM glucuronic acid and 0.01mM GlcNAc during the second part or all of maturation compared with the other treatments. Supplementing 0.01mM glucuronic acid and GlcNAc during maturation significantly (P<0.05) increased the percentage of cleaved embryos by 48h after IVF and blastocysts formed by 144h after IVF compared those not supplemented. These results indicate that supplementing PVS components during maturation decreases polyspermic penetration by increasing PVS thickness.
Collapse
Affiliation(s)
- J Z Current
- Department of Animal and Pre-veterinary Studies, University of Findlay, 1000 N. Main Street, Findlay, OH 45840, USA
| | - B D Whitaker
- Department of Animal and Pre-veterinary Studies, University of Findlay, 1000 N. Main Street, Findlay, OH 45840, USA; and Corresponding author.
| |
Collapse
|
16
|
Schoevers EJ, Santos RR, Roelen BAJ. Susceptibility of Oocytes from Gilts and Sows to Beauvericin and Deoxynivalenol and Its Relationship with Oxidative Stress. Toxins (Basel) 2021; 13:toxins13040260. [PMID: 33917490 PMCID: PMC8067504 DOI: 10.3390/toxins13040260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/18/2023] Open
Abstract
Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes' environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 μmol/L DON. Oocytes from sows were able to mature even in the presence of 5 μmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 μmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins.
Collapse
Affiliation(s)
- Eric J. Schoevers
- Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands;
| | - Regiane R. Santos
- Schothorst Feed Research, P.O. Box 533, 8200 AM Lelystad, The Netherlands
- Correspondence:
| | - Bernard A. J. Roelen
- Embryology, Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CT Utrecht, The Netherlands;
| |
Collapse
|
17
|
Cheng H, Sun X, Chen F, Pan LZ, Wang GL, Yuan HJ, Chang ZL, Tan JH. Meiotic arrest with roscovitine and sexual maturity improve competence of mouse oocytes by regulating expression of competence-related genes. J Reprod Dev 2021; 67:115-122. [PMID: 33597332 PMCID: PMC8075721 DOI: 10.1262/jrd.2020-142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin
configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleoli (NSN) and SN
oocytes from prepubertal and adult mice following maturation with or without MAM. The results demonstrated that MAM with roscovitine significantly improved the
developmental potential of adult SN and prepubertal NSN oocytes, but had no effect on that of prepubertal SN oocytes. Without MAM, while 40% of the 2-cell
embryos derived from prepubertal SN oocytes developed into 4-cell embryos, none of the 2-cell embryos derived from prepubertal NSN oocytes did, and while 42% of
the 4-cell embryos derived from adult SN oocytes developed into blastocysts, only 1% of the 4-cell embryos derived from prepubertal SN oocytes developed into
blastocysts. Furthermore, MAM with roscovitine, SN configuration, and female sexual maturity significantly increased the mRNA levels of competence-beneficial
genes and decreased those of competence-detrimental genes. In conclusion, our results suggest that MAM with roscovitine, SN chromatin configuration, and female
sexual maturity improve oocyte competence by regulating the expression of competence-related genes, suggesting that Oct4,
Stella, Mater, Zar1, Mapk8, and Bcl2 are oocyte competence-beneficial
genes, whereas Foxj2, Ship1, and Bax are competence-detrimental genes.
Collapse
Affiliation(s)
- Hao Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Xue Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Fei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Liu-Zhu Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Guo-Liang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Hong-Jie Yuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Zhong-Le Chang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China
| |
Collapse
|
18
|
Kurowska P, Mlyczyńska E, Estienne A, Barbe A, Rajska I, Soból K, Poniedziałek-Kempny K, Dupont J, Rak A. Expression and Impact of Vaspin on In Vitro Oocyte Maturation through MAP3/1 and PRKAA1 Signalling Pathways. Int J Mol Sci 2020; 21:E9342. [PMID: 33302416 PMCID: PMC7762560 DOI: 10.3390/ijms21249342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
Oocyte maturation is a critical stage in embryo production and female reproduction. The aims of this study were to determine: (i) the mRNA and protein expression of vaspin and its receptor 78-kDa glucose-regulated (GRP78) in porcine cumulus-oocyte complexes (COCs) by real-time PCR and Western blot analysis, respectively, and their localisation by immunofluorescence; and (ii) the effects of vaspin on in vitro oocyte maturation (IVM) and the involvement of mitogen ERK1/2 (MAP3/1)- and AMPKα (PRKAA1)-activated kinases in the studied processes. Porcine COCs were matured in vitro for 22 h or 44 h with vaspin at a dose of 1 ng/mL and nuclear maturation assessed by Hoechst 33342 or DAPI staining and the measurement of progesterone (P4) level in the maturation medium. We showed that vaspin and GRP78 protein expression increased in oocytes and cumulus cells after IVM. Moreover, vaspin enhanced significantly porcine oocyte IVM and P4 concentration, as well as MAP3/1 phosphorylation, while decreasing PRKAA1. Using pharmacological inhibitors of MAP3/1 (PD98059) and PRKAA1 (Compound C), we observed that the effect of vaspin was reversed to the control level by all studied parameters. In conclusion, vaspin, by improving in vitro oocyte maturation via MAP3/1 and PRKAA1 kinase pathways, can be a new factor to improve in vitro fertilisation protocols.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Alix Barbe
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Iwona Rajska
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Katarzyna Soból
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Katarzyna Poniedziałek-Kempny
- Department of Reproductive Biotechnology and Cryopreservation, National Research Institute of Animal Production, 32-083 Balice, Poland; (I.R.); (K.S.); (K.P.-K.)
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France; (A.E.); (A.B.); (J.D.)
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| |
Collapse
|
19
|
Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Res Vet Sci 2020; 132:342-350. [PMID: 32738731 DOI: 10.1016/j.rvsc.2020.07.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
Producing high-competent oocytes during the in vitro maturation (IVM) is considered a key step for the success of the in vitro production (IVP) of embryos. One of the known disruptors of oocyte developmental competence on IVP is oxidative stress (OS), which appears due to the imbalance between the production and neutralization of reactive oxygen species (ROS). The in vitro conditions induce supraphysiological ROS levels due to the exposure to an oxidative environment and the isolation of the oocyte from the follicle protective antioxidant milieu. In juvenile in vitro embryo transfer (JIVET), which aims to produce embryos from prepubertal females, the oocytes are more sensitive to OS as they have inherent lower quality. Therefore, the IVM strategies that aim to prevent OS have great interest for both IVP and JIVET programs. The focus of this review is on the effects of ROS on oocyte IVM and the main antioxidants that have been tested for protecting the oocyte from OS. Considering the importance that OS has on oocyte competence, it is crucial to create standardized antioxidant IVM systems for improving the overall IVP success.
Collapse
|
20
|
Kulus M, Kranc W, Jeseta M, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Celichowski P, Moncrieff L, Kocherova I, Józkowiak M, Kulus J, Wieczorkiewicz M, Piotrowska-Kempisty H, Skowroński MT, Bukowska D, Machatkova M, Hanulakova S, Mozdziak P, Jaśkowski JM, Kempisty B, Antosik P. Cortical Granule Distribution and Expression Pattern of Genes Regulating Cellular Component Size, Morphogenesis, and Potential to Differentiation are Related to Oocyte Developmental Competence and Maturational Capacity In Vivo and In Vitro. Genes (Basel) 2020; 11:genes11070815. [PMID: 32708880 PMCID: PMC7397037 DOI: 10.3390/genes11070815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Polyspermia is an adverse phenomenon during mammalian fertilization when more than one sperm fuses with a single oocyte. The egg cell is prepared to prevent polyspermia by, among other ways, producing cortical granules (CGs), which are specialized intracellular structures containing enzymes that aim to harden the zona pellucida and block the fusion of subsequent sperm. This work focused on exploring the expression profile of genes that may be associated with cortical reactions, and evaluated the distribution of CGs in immature oocytes and the peripheral density of CGs in mature oocytes. Oocytes were isolated and then processed for in vitro maturation (IVM). Transcriptomic analysis of genes belonging to five ontological groups has been conducted. Six genes showed increased expression after IVM (ARHGEF2, MAP1B, CXCL12, FN1, DAB2, and SOX9), while the majority of genes decreased expression after IVM. Using CG distribution analysis in immature oocytes, movement towards the cortical zone of the oocyte during meiotic competence acquisition was observed. CGs peripheral density decreased with the rise in meiotic competence during the IVM process. The current results reveal important new insights into the in vitro maturation of oocytes. Our results may serve as a basis for further studies to investigate the cortical reaction of oocytes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, 165 00 Prague, Czech Republic
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
| | - Lisa Moncrieff
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Ievgeniia Kocherova
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Marie Machatkova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Sarka Hanulakova
- Veterinary Research Institute, 621 00 Brno, Czech Republic; (M.M.); (S.H.)
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (D.B.); (J.M.J.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (W.K.); (I.K.)
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (P.S.-K.); (A.K.); (S.C.); (P.C.); (L.M.)
- Correspondence: ; Tel.: +48-61-854-6418
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (P.A.)
| |
Collapse
|
21
|
Paes VM, de Figueiredo JR, Ryan PL, Willard ST, Feugang JM. Comparative Analysis of Porcine Follicular Fluid Proteomes of Small and Large Ovarian Follicles. BIOLOGY 2020; 9:biology9050101. [PMID: 32429601 PMCID: PMC7285177 DOI: 10.3390/biology9050101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Ovarian follicular fluid is widely used for in vitro oocyte maturation, but its in-depth characterization to extract full beneficial effects remains unclear. Here, we performed both shotgun (nanoscale liquid chromatography coupled to tandem mass spectrometry or nanoLC-MS/MS) and gel-based (two dimension-differential in-gel electrophoresis or 2D-DIGE) proteomics, followed by functional bioinformatics to compare the proteomes of follicular fluids collected from small (<4 mm) and large (>6-12 mm) follicles of pig ovaries. A total of 2321 unique spots were detected with the 2D-DIGE across small and large follicles, while 2876 proteins with 88% successful annotations were detected with the shotgun approach. The shotgun and 2D-DIGE approaches revealed about 426 and 300 proteins that were respectively common across samples. Six proteins detected with both technical approaches were significantly differently expressed between small and large follicles. Pathways such as estrogen and PI3K-Akt signaling were significantly enriched in small follicles while the complement and coagulation cascades pathways were significantly represented in large follicles. Up-regulated proteins in small follicles were in favor of oocyte maturation, while those in large follicles were involved in the ovulatory process preparation. Few proteins with potential roles during sperm-oocyte interactions were especially detected in FF of large follicles and supporting the potential role of the ovarian FF on the intrafallopian sperm migration and interaction with the oocyte.
Collapse
Affiliation(s)
- Victor M. Paes
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - José R. de Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral follicles, State University of Ceará, CEP, 60740 903 Fortaleza, Brazil;
| | - Peter L. Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Scott T. Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA; (V.M.P.); (P.L.R.); (S.T.W.)
- Correspondence: ; Tel.: +662-325-7567; Fax: +662-325-8873
| |
Collapse
|
22
|
Yoshioka K, Uchikura K, Suda T, Matoba S. Production of piglets from in vitro-produced blastocysts by ultrasound-guided ovum pick-up from live donors. Theriogenology 2019; 141:113-119. [PMID: 31536860 DOI: 10.1016/j.theriogenology.2019.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023]
Abstract
The objective of this research was to develop a system for piglet production by transvaginal ultrasound-guided ovum pick-up (OPU), in vitro production (IVP) of embryos and embryo transfer. First, to establish a culture system for a small number of oocytes or embryos, we evaluated the effect of different incubation volumes and culture densities on fertilizing ability and developmental competence in vitro. Porcine oocytes derived from slaughterhouse ovaries were matured, fertilized and then cultured in vitro in groups as follows: 50 oocytes in 500 μL medium for IVM, 20 oocytes in 100 μL medium for IVF and 20 embryos in 40 μL medium for IVC (Group I); 20 in 100 μL for IVM, 20 in 100 μL for IVF and 20 in 40 μL for IVC (Group II); and 10 in 100 μL for IVM, 10 in 100 μL for IVF and 10 in 40 μL for IVC (Group III). Percentages of sperm penetration, cleavage and blastocyst formation did not differ among the groups. Second, to increase the collection efficiency of porcine oocytes by transvaginal ultrasound-guided OPU, the effects of aspiration pressure on follicular oocyte collection were assessed. Oocytes were aspirated from ovaries of live sows using 80 or 100 mmHg. The recovered oocytes were divided into four categories according to the surrounding cumulus cells and quality of oocytes. The number of oocytes recovered using 100 mmHg pressure was significantly higher than with 80 mmHg pressure. However, there were no significant differences in the population of oocytes grouped by the morphological criteria, number of blastocysts per session and the total cell number in blastocysts between the two vacuum pressures. Finally, 81 oocytes obtained by OPU from five donor sows were subjected to IVP and 47 transferable embryos (9.4 ± 4.0 [mean ± SD] morulae/blastocysts per session) were obtained at 5 days after IVF. When they were transferred into five recipient gilts (5-16 embryos per recipient), three of five recipients became pregnant and farrowed a total of 12 live piglets. The present results demonstrate that porcine blastocysts can be produced by OPU-IVP and develop to full term after embryo transfer.
Collapse
Affiliation(s)
- Koji Yoshioka
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| | - Kenzo Uchikura
- Aichi Agricultural Research Center, 1-1 Yazakosagamine, Nagakute, Aichi, 480-1193, Japan
| | - Tomoko Suda
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Satoko Matoba
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| |
Collapse
|
23
|
Braga TF, Silva TCF, Marques MG, de Souza AP, Albring D, Silva LP, Caetano AR, Dode MAN, Franco MM. The dynamics of gene expression, lipid composition and DNA methylation reprogramming are different during in vitro maturation of pig oocytes obtained from prepubertal gilts and cycling sows. Reprod Domest Anim 2019; 54:1217-1229. [PMID: 31269288 DOI: 10.1111/rda.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 01/21/2023]
Abstract
This study aimed to characterize the gene expression, lipid composition and DNA methylation reprogramming during in vitro maturation (IVM) of pig oocytes with different developmental competencies. We used prepubertal gilts and cycling sows as a model to obtain oocytes with different levels of competency. We found that genes involved in lipid metabolism, SLC27A4, CPT2 and PLIN2, and DNA methylation, DNMT3A, TET1 and TET3, possessed altered transcript expression levels during IVM. Specifically, SLC27A4 mRNA (p = 0.05) increased in oocytes from cycling females, whereas CPT2 (p = 0.05), PLIN2 (p = 0.02) and DNMT3A (p = 0.02) increased in oocytes from prepubertal females during IVM. Additionally, TET3 mRNA increased during IVM in oocytes from prepubertal (p = 0.0005) and cycling females (p = 0.02). The TET1 transcript decreased (p = 0.05) during IVM in oocytes from cycling sows. Regarding lipid composition, mass spectrometry revealed a cluster of ions, with molecular masses higher than m/z 700, which comprises a group of complex phospholipids, was identified in all groups of oocytes, except in those from prepubertal gilts. With respect to DNA methylation reprogramming, it was noted that the less competent oocytes were not able to reprogramme the XIST gene during IVM. We conclude that the maternal mRNA store, lipid composition and epigenetic reprogramming are still being established during maturation and are related to oocyte competence. In addition, we propose that the methylation pattern of the XIST may be used as molecular marker for oocyte competence in pigs.
Collapse
Affiliation(s)
- Thiago Felipe Braga
- Universidade de Brasília - UnB, Brasília, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Thainara Christie Ferreira Silva
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.,Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | | | | - Maurício Machaim Franco
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil.,Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
24
|
Romar R, Cánovas S, Matás C, Gadea J, Coy P. Pig in vitro fertilization: Where are we and where do we go? Theriogenology 2019; 137:113-121. [PMID: 31182223 DOI: 10.1016/j.theriogenology.2019.05.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pig is an important livestock animal. Biotechnological interest in this species has increased due to its use, among others, in the generation of transgenic animals for use in biomedicine based on its greater physiological proximity to the human species than other large domestic animals. This development has paralleled an improvement in Assisted Reproduction Techniques (ART) used for this species. However, the ability to generate animals from embryos produced entirely in vitro is still limited and a wide margin for improvement remains. Here we review the procedures, additives, and devices used during pig in vitro fertilization (IVF), focusing on the main points of each step that have offered the best results in terms of increased efficiency of the system. The lack of standardized protocols and consensus on the parameters to be assessed makes it difficult to compare results across different studies, but some conclusions are drawn from the literature. We anticipate that new physiological protocols will advance the field of swine IVF, including induction of prefertilization ZP hardening with oviductal fluid, sperm preparation by swim-up method, increased viscosity through the addition of inert molecules or reproductive biofluids, and the incorporation of 3D devices. Here we also reflect on the need to expand the variables on which the efficiency of pig IVF is based, providing new parameters that should be considered to supply more objective and quantitative assessment of IVF additives and protocols.
Collapse
Affiliation(s)
- Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain.
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
25
|
Krisher RL. Maternal age affects oocyte developmental potential at both ends of the age spectrum. Reprod Fertil Dev 2019; 31:1-9. [PMID: 32188537 DOI: 10.1071/rd18340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maternal age has a significant effect on oocyte developmental competence. Overall, evidence suggests that oocytes from both prepubertal females and reproductively aged females are inherently less competent. Reduced oocyte quality in both age groups is problematic for human medicine and agriculture. Some of the cellular mechanisms implicated in poor oocyte quality associated with maternal age are mitochondrial function and location, reduction of oxygen radicals, balance of metabolic pathways, regulation of maternal mRNAs and appropriate communication between the oocyte and cumulus cells. However, additional knowledge must be gained about the deficiencies present in prepubertal and reproductively aged oocytes that result in poor developmental potential before significant improvement can be achieved. This review discusses the evidence currently available regarding oocyte quality at both ends of the maternal age spectrum, what we know, or hypothesise, about the mechanisms involved and current thoughts regarding potential treatment for improvement.
Collapse
Affiliation(s)
- Rebecca L Krisher
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA. Email
| |
Collapse
|
26
|
Pawlak P, Warzych E, Cieslak A, Malyszka N, Maciejewska E, Madeja ZE, Lechniak D. The consequences of porcine IVM medium supplementation with follicular fluid become reflected in embryo quality, yield and gene expression patterns. Sci Rep 2018; 8:15306. [PMID: 30333518 PMCID: PMC6193000 DOI: 10.1038/s41598-018-33550-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/01/2018] [Indexed: 11/15/2022] Open
Abstract
Oocyte and embryo developmental competence are shaped by multiple extrinsic and intrinsic factors. One of the most extensive research areas in the last decade is the regulation of lipid metabolism in oocytes and embryos of different species. We hypothesized that differences in developmental competence of oocytes and embryos between prepubertal and cyclic gilts may arise due to distinct fatty acid profiles in follicular fluid. We found that supplementation of oocyte maturation media with follicular fluid from prepubertal pigs affected quality and development of embryos from prepubertal pigs while embryos of cyclic pigs were not affected. PLIN2, SCD and ACACA transcripts involved in lipid metabolism were upregulated in embryos originating from oocytes of prepubertal pigs matured with autologous follicular fluid. The surface occupied by lipid droplets tend to increase in oocytes matured with follicular fluid from prepubertal pigs regardless oocyte origin. The change into follicular fluid of cyclic pigs increased the efficiency of embryo culture and improved quality, while gene expression was similar to embryos obtained from cyclic gilts. We assume that the follicular fluids of prepubertal and cyclic pigs influenced the quality of oocytes and embryos obtained from prepubertal pigs which are more susceptible to suboptimal in vitro culture conditions.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Natalia Malyszka
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Eliza Maciejewska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Zofia Eliza Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| |
Collapse
|
27
|
Gethöffer F, Pfarrer C, Siebert U. Histology confirms that macroscopic evaluation of ovaries is a valid method for the assessment of the reproductive status in wild boar. Theriogenology 2018; 113:192-196. [DOI: 10.1016/j.theriogenology.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
|
28
|
Currin L, Michalovic L, Bellefleur AM, Gutierrez K, Glanzner W, Schuermann Y, Bohrer RC, Dicks N, da Rosa PR, De Cesaro MP, Lopez R, Grand FX, Vigneault C, Blondin P, Gourdon J, Baldassarre H, Bordignon V. The effect of age and length of gonadotropin stimulation on the in vitro embryo development of Holstein calf oocytes. Theriogenology 2017; 104:87-93. [DOI: 10.1016/j.theriogenology.2017.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
29
|
Chen F, Lin J, Sun X, Xiao B, Ning SF, Zhu S, Wang HL, Tan JH. Mechanisms by which in vitro meiotic arrest and sexual maturity improve developmental potential of mouse oocytes. Sci Rep 2017; 7:15763. [PMID: 29150675 PMCID: PMC5693946 DOI: 10.1038/s41598-017-16119-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
Abstract
To study the relationship between chromatin condensation, gene transcription and developmental competence during oocyte maturation and to explore the mechanisms by which meiotic arrest maintenance (MAM) and sexual maturity improve oocyte competence, we examined effects of MAM with roscovitine or db-cAMP on chromatin condensation, gene transcription and developmental potential of NSN or SN oocytes from prepubertal or adult mice. MAM with roscovitine improved the developmental competence and global gene transcription of prepubertal NSN (prep-NSN) and adult-SN oocytes while having no effect on those of prep-SN oocytes. MAM with db-cAMP facilitated neither development nor transcription in any type of oocytes. MAM with either roscovitine or db-cAMP promoted chromatin condensation of prep-NSN oocytes. MAM with roscovitine promoted gene transcription and chromatin condensation simultaneously through inhibiting cyclin-dependent kinase (CDK) 5 and 2, respectively. The results suggested that MAM with roscovitine improved oocyte competence by promoting gene transcription via inhibiting CDK5. Oocyte cytoplasmic maturation is correlated with gene transcription but not with chromatin condensation. The difference in developmental competence between prepubertal NSN and SN oocytes and between prepubertal and adult SN oocytes was because while the former had not, the latter had completed or acquired the ability for transcription of important genes.
Collapse
Affiliation(s)
- Fei Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Juan Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Xue Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Bin Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Shu-Fen Ning
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Shuai Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China
| | - Jing-He Tan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, P. R. China. .,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P. R. China.
| |
Collapse
|
30
|
Nakamura Y, Tajima S, Kikuchi K. The quality after culture in vitro or in vivo of porcine oocytes matured and fertilized in vitro and their ability to develop to term. Anim Sci J 2017; 88:1916-1924. [PMID: 28776828 DOI: 10.1111/asj.12855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/26/2017] [Indexed: 11/29/2022]
Abstract
The quality of porcine blastocysts produced in vitro is poor in comparison with those that develop in vivo. We examined the quality of in vitro-matured and fertilized (IVM/IVF) oocytes, their abilities to develop to blastocysts under in vivo and in vitro conditions, and the potential of the embryos to develop to term after transfer. IVM/IVF oocytes were either transferred and the embryos recovered on Days 5 and 6 (100% and 87.5%, respectively) ('ET-vivo' embryos), or cultured in vitro for 5 or 6 days ('IVC' embryos). The proportion of blastocysts differed significantly between the two groups on Day 5 (20.6% and 8.0%, respectively), but not on Day 6 (23.8% and 21.2%, respectively). The mean number of cells in ET-vivo blastocysts on Days 5 or 6 was significantly higher (72.8 and 78.7, respectively) than that in IVC blastocysts (22.1 and 39.7, respectively). When IVM/IVF oocytes and IVC blastocysts on Day 6 were transferred, all (three and three, respectively) developed to piglets (16 and 16, respectively), without any difference in the rates of development to term (2.1% and 2.6%, respectively). These data suggest that, although blastocyst production differs between the two culture conditions, IVM/IVF oocytes possess the same ability to develop to term.
Collapse
Affiliation(s)
- Yoshiyuki Nakamura
- Saitama Prefectural Agricultural Technology Research Center, Kumagaya, Japan.,Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamguchi, Japan
| | - Sigeyuki Tajima
- Aichi Prefectural Agriculture and Forestry Research Center, Nagakute, Japan
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamguchi, Japan
| |
Collapse
|
31
|
Pedersen HS, Callesen H, Løvendahl P, Chen F, Nyengaard JR, Nikolaisen NK, Holm P, Hyttel P. Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes. Reprod Fertil Dev 2017; 28:586-98. [PMID: 25482576 DOI: 10.1071/rd14220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
Prepubertal pig oocytes are associated with lower developmental competence. The aim of this experiment was to conduct an exhaustive survey of oocyte ultrastructure and to use a design-unbiased stereological approach to quantify the numerical density and total number of mitochondria in oocytes with different diameters from pre- and postpubertal pigs. The ultrastructure of smaller prepubertal immature oocytes indicated active cells in close contact with cumulus cells. The postpubertal oocytes were more quiescent cell types. The small prepubertal oocytes had a lower total mitochondrial number, but no differences were observed in mitochondrial densities between groups. Mature postpubertal oocytes adhered to the following characteristics: presence of metaphase II, lack of contact between cumulus cells and oocyte, absence of rough endoplasmic reticulum and Golgi complexes, peripheral location of cortical granules and central localisation of mitochondria, vesicles and lipid droplets. Prepubertal oocytes displayed more variation. The ultrastructure of large pre- and postpubertal oocytes was compatible with higher developmental competence, whereas that of smaller prepubertal oocytes could explain their reduced capacity. The higher number of mitochondria in large pre- and postpubertal oocytes could have an influence on oocyte competence, by increasing the pool of mitochondria available for early embryonic development.
Collapse
Affiliation(s)
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Peter Løvendahl
- Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| | - Fenghua Chen
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Jens Randel Nyengaard
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Nanett Kvist Nikolaisen
- Department of Veterinary Clinical and Animal Science, University of Copenhagen, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark
| | - Peter Holm
- Department of Veterinary Clinical and Animal Science, University of Copenhagen, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Science, University of Copenhagen, Dyrlægevej 16, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
32
|
Kikuchi K, Kaneko H, Nakai M, Somfai T, Kashiwazaki N, Nagai T. Contribution of in vitro systems to preservation and utilization of porcine genetic resources. Theriogenology 2016; 86:170-5. [PMID: 27142488 DOI: 10.1016/j.theriogenology.2016.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/15/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
Historically, the conservation or preservation of mammalian genetic resources, especially farm animals, has been conducted under in situ conditions by maintaining living individuals as "livestock." However, systems for laboratory in vitro embryo production using gametes such as spermatozoa and oocytes are now available, in addition to ex situ preservation methods for mammalian genetic resources. One of these methods is the cryopreservation of gametes, embryos, and gonadal tissues. In pigs, freezing of sperm is the most reliable and well-established method for this purpose. On the other hand, cryopreservation of female gametes (oocytes) and gonadal tissues-usually by vitrification-has been associated with very low efficacies. Recently, in our laboratory, some research themes related to this issue have been pursued. We have been focusing on advances in porcine in vitro embryo production systems, and here, we introduce recent data on the vitrification of porcine immature oocytes and gonadal tissues followed by their xenografting into host mice to produce gametes.
Collapse
Affiliation(s)
- Kazuhiro Kikuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi, Japan.
| | - Hiroyuki Kaneko
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Michiko Nakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Tamas Somfai
- Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | - Naomi Kashiwazaki
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takashi Nagai
- National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Funahashi H. Methods for Improving In Vitro and In Vivo Boar Sperm Fertility. Reprod Domest Anim 2016; 50 Suppl 2:40-7. [PMID: 26174918 DOI: 10.1111/rda.12568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Fertility of boar spermatozoa is changed after ejaculation in vivo and in vitro. During processing for in vitro fertilization (IVF), although spermatozoa are induced capacitation, resulting in a high penetration rate, persistent obstacle of polyspermic penetration is still observed with a high incidence. For artificial insemination (AI), we still need a large number of spermatozoa and lose a majority of those in the female reproductive tract. Fertility of cryopreserved boar spermatozoa is still injured through freezing and thawing process. In the present brief review, factors affecting fertility of boar sperm during IVF, AI and cryopreservation are discussed in the context of discovering methodologies to improve it.
Collapse
Affiliation(s)
- H Funahashi
- Department of Animal Science, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Pawlak P, Chabowska A, Malyszka N, Lechniak D. Mitochondria and mitochondrial DNA in porcine oocytes and cumulus cells — A search for developmental competence marker. Mitochondrion 2016; 27:48-55. [DOI: 10.1016/j.mito.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
|
35
|
Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes. ZYGOTE 2015; 24:465-76. [PMID: 26350562 DOI: 10.1017/s0967199415000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality.
Collapse
|
36
|
Paramio MT, Izquierdo D. Current status of in vitro embryo production in sheep and goats. Reprod Domest Anim 2015; 49 Suppl 4:37-48. [PMID: 25277431 DOI: 10.1111/rda.12334] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/17/2014] [Indexed: 11/26/2022]
Abstract
Sheep and goat production is an important economic activity in Spain with an increasing interest in milk production. Multiovulation and Embryo Transfer (MOET) and In vitro Embryo Production (IVEP) are assisted reproductive technologies aimed at increasing the genetic diffusion of females. In vitro embryo production is a multi-step methodology comprising the following procedures: (i) In vitro Maturation (IVM) of oocytes recovered directly from the follicles, (ii) In vitro Fertilization (IVF) or co-incubation of capacitated spermatozoa with in vitro matured oocytes and (iii) In vitro culture (IVC) of zygotes up to the blastocyst stage. In vitro embryo production from oocytes recovered from prepubertal females is called JIVET (Juvenile in vitro Embryo Transfer) and allows shortened generation intervals and increased genetic gain. Embryo production together with embryo cryoconservation would allow large-scale embryo marketing, a pathogen-free genetic movement and easier and cheaper germplasm commercial transactions. Commercial Embryo activity in small ruminants is low compared to cows in the European Union (data from the European Embryo Transfer Association) and in the world (data from the International Embryo Transfer Association). There is less IVEP research in small ruminants compared to other livestock species. The aim of this review was to provide an overview of the current status of IVEP of small ruminant with an emphasis on (i) description of the main methodologies currently used for IVM, IVF and IVC of embryos (ii) comparing procedures and outputs from JIVET and IVEP of adult females and (iii) the future research perspectives of this technology.
Collapse
Affiliation(s)
- M-T Paramio
- Department of Animal and Food Sciences, University Autonomous of Barcelona, Barcelona, Spain
| | | |
Collapse
|
37
|
In vitro fertilization in pigs: New molecules and protocols to consider in the forthcoming years. Theriogenology 2015; 85:125-34. [PMID: 26271164 DOI: 10.1016/j.theriogenology.2015.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/08/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022]
Abstract
Assisted reproduction technology (ART) protocols are used in livestock for the improvement and preservation of their genetics and to enhance reproductive efficiency. In the case of pigs, the potential use of embryos for biomedicine is being followed with great interest by the scientific community. Owing to the physiological similarities with humans, embryos produced in vitro and many of those produced in vivo are used in research laboratories for the procurement of stem cells or the production of transgenic animals, sometimes with the purpose of using their organs for xenotransplantation. Several techniques are required for the production of an in vitro-derived embryo. These include in vitro oocyte maturation, sperm preparation, IVF, and further culture of the putative zygotes. Without doubt, among these technologies, IVF is still a critical limiting factor because of the well-known, but still unsolved, question of polyspermy. Despite the improvements made in the past decade, current IVF systems hardly reach 50% to 60% efficiency and any progression in porcine ARTs requires an unavoidable improvement in the monospermy rate. It is time, then, to learn from what happens under in vivo physiological conditions and to transfer this knowledge into ART. This review describes the latest advances in porcine IVF, from sperm preparation procedures to culture media supplements with special attention paid to molecules with a known or potential role in in vivo fertilization. Oviductal fluid is the natural medium in which fertilization takes place, and, in the near future, could become the definitive supplement for culture media, where it would help to solve many of the problems inherent in ARTs in swine and improve the quality of in vitro-derived porcine embryos.
Collapse
|
38
|
Transcript abundance, glutathione and apoptosis levels differ between porcine oocytes collected from prepubertal and cyclic gilts. Theriogenology 2015; 84:86-93. [DOI: 10.1016/j.theriogenology.2015.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
|
39
|
Lee K, Davis A, Zhang L, Ryu J, Spate LD, Park KW, Samuel MS, Walters EM, Murphy CN, Machaty Z, Prather RS. Pig oocyte activation using a Zn²⁺ chelator, TPEN. Theriogenology 2015; 84:1024-32. [PMID: 26143360 DOI: 10.1016/j.theriogenology.2015.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 02/03/2023]
Abstract
Artificial oocyte activation is a critical step during SCNT. Most current activation protocols focus on inducing an increase in the intracellular free Ca(2+) concentration of the oocyte. Here, we have used a zinc chelator, TPEN, to enhance the efficiency of oocyte activation during SCNT. TPEN treatment of matured pig oocytes resulted in the reduction of available Zn(2+) in pig oocytes; however, the cytosolic Ca(2+) concentration in the oocytes was not affected by the TPEN treatment. When various concentrations (100-250 μM) and incubation durations (45 minutes-2.5 hours) of TPEN were used to activate oocytes, the efficiency of oocyte activation was not different from conventional activation methods. When oocytes that were activated by conventional activation methods were incubated with a lower concentration of TPEN (5-10 μM), a significant increase in embryos developing to the blastocyst stage was observed. In addition, when oocytes receiving a small Ca(2+) stimulus were further activated by higher concentration of TPEN (100-200 μM), a significant increase in the frequency of blastocyst formation was observed, compared to a conventional activation method. This result indicated that TPEN can be a main reagent in oocyte activation. No increase in the cytosolic Ca(2+) level was detected when oocytes were exposed to various concentrations of TPEN, indicating the ability of TPEN to induce oocyte activation is independent of an intracellular Ca(2+) increase. We were able to produce clones through SCNT by using the TPEN-assisted activation procedure, and the piglets produced through the process did not show any signs of abnormality. In this study, we have developed an efficient way to use TPEN to increase the developmental potential of cloned embryos.
Collapse
Affiliation(s)
- Kiho Lee
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA.
| | - Alyssa Davis
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Lu Zhang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Junghyun Ryu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, USA
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA
| | - Kwang-Wook Park
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; Department of Animal Science and Technology, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Melissa S Samuel
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Clifton N Murphy
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, Missouri, USA; National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
40
|
Sakurai M, Suzuki C, Yoshioka K. Effect of knockout serum replacement supplementation to culture medium on porcine blastocyst development and piglet production. Theriogenology 2015; 83:679-686.e1. [DOI: 10.1016/j.theriogenology.2014.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/17/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
|
41
|
Pedersen HS, Liu Y, Li R, Purup S, Løvendahl P, Holm P, Hyttel P, Callesen H. Selection of pre- versus postpubertal pig oocytes for parthenogenetic activation and somatic cell nuclear transfer. Reprod Fertil Dev 2015; 27:544-50. [DOI: 10.1071/rd13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 01/10/2014] [Indexed: 11/23/2022] Open
Abstract
Pig oocytes have been used increasingly for in vitro production techniques in recent years. The slaughterhouse-derived oocytes that are often used are mostly of prepubertal origin. The aims of the present study were to compare the developmental competence between pre- and postpubertal pig oocytes, and to develop a simple and practical method for the selection of prepubertal pig oocytes for parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) based on oocyte morphology after IVM and oocyte inside zona pellucida (ZP) diameter (‘small’ ≤110 µm; ‘medium’ >110 µm; ‘large’ ≥120 µm). Meiotic competence and blastocyst rates after PA and SCNT of prepubertal oocytes increased with oocyte size, with the large prepubertal oocytes reaching a level similar to postpubertal oocytes after SCNT. Blastocyst cell number was not related to oocyte inside ZP diameter and oocyte donor to the same extent as blastocyst rate. Very low blastocyst rates were obtained after PA of morphologically bad pre- and postpubertal oocytes. In conclusion, measurement of inside ZP diameter combined with morphological selection is useful to remove incompetent oocytes. Further studies are needed to clarify the relative importance of cytoplasmic volume and stage in oocyte growth phase.
Collapse
|
42
|
The effects of season and moderate nutritional restriction on ovarian function and oocyte nuclear maturation in cycling gilts. Theriogenology 2014; 82:1303-9. [DOI: 10.1016/j.theriogenology.2014.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 11/23/2022]
|
43
|
Grupen CG. The evolution of porcine embryo in vitro production. Theriogenology 2014; 81:24-37. [PMID: 24274407 DOI: 10.1016/j.theriogenology.2013.09.022] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/14/2013] [Accepted: 09/14/2013] [Indexed: 12/23/2022]
Abstract
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.
Collapse
Affiliation(s)
- Christopher G Grupen
- Faculty of Veterinary Science, The University of Sydney, Camden, New South Wales, Australia.
| |
Collapse
|
44
|
Misumi K, Hirayama Y, Suzuki M, Nakai M, Kaneko H, Noguchi J, Kikuchi K. Production of Middle White piglets after transfer of embryos produced in vitro. J Reprod Dev 2014; 60:246-9. [PMID: 24614249 PMCID: PMC4085390 DOI: 10.1262/jrd.2013-088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to examine the feasibility of in vitro embryo production and transfer
technologies for producing Middle White piglets. After collection from three retired Middle White sows, a total of 222
oocytes were matured, fertilized and cultured in vitro, and a total of 50 embryos from the 4-cell to
blastocyst stage were produced by the 4th or 5th day. These embryos were transferred individually into three recipients along
with 5 in vivo-derived Duroc blastocysts. All of the recipients became pregnant, and they farrowed a total
of 9 Middle White and 9 Duroc piglets. These results suggest that in vitro embryo production using ovaries
from retired sows is useful for reproduction of pigs of pure breeds including the Middle White for breeding activities and
conservation/utilization of genetic resources.
Collapse
Affiliation(s)
- Koji Misumi
- Department of Technology, National Livestock Breeding Center, Fukushima 961-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
de Souza-Fabjan JMG, Panneau B, Duffard N, Locatelli Y, de Figueiredo JR, Freitas VJDF, Mermillod P. In vitro production of small ruminant embryos: late improvements and further research. Theriogenology 2014; 81:1149-62. [PMID: 24650929 DOI: 10.1016/j.theriogenology.2014.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/28/2014] [Accepted: 02/01/2014] [Indexed: 10/25/2022]
Abstract
Beyond the potential use of in vitro production of embryos (IVP) in breeding schemes, embryos are also required for the establishment of new biotechnologies such as cloning and transgenesis. Additionally, the knowledge of oocyte and embryo physiology acquired through IVP techniques may stimulate the further development of other techniques such as marker assisted and genomic selection of preimplantation embryos, and also benefit assisted procreation in human beings. Efficient in vitro embryo production is currently a major objective for livestock industries, including small ruminants. The heterogeneity of oocytes collected from growing follicles by laparoscopic ovum pick up or in ovaries of slaughtered females, remains an enormous challenge for IVM success, and still limits the rate of embryo development. In addition, the lower quality of the IVP embryos, compared with their in vivo-derived counterparts, translates into poor cryosurvival, which restricts the wider use of this promising technology. Therefore, many studies have been reported in an attempt to determine the most suitable conditions for IVM, IVF, and in vitro development to maximize embryo production rate and quality. This review aims to present the current panorama of IVP production in small ruminants, describing important steps for its success, reporting the recent advances and also the main obstacles identified for its improvement and dissemination.
Collapse
Affiliation(s)
- Joanna Maria Gonçalves de Souza-Fabjan
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Faculty of Veterinary, Laboratory of Physiology and Control of Reproduction (LFCR), State University of Ceará, Fortaleza, Ceara, Brazil.
| | - Barbara Panneau
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Nicolas Duffard
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve de la Haute Touche, Obterre, France
| | - Yann Locatelli
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France; Museum National d'Histoire Naturelle, Réserve de la Haute Touche, Obterre, France
| | - José Ricardo de Figueiredo
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, Ceara, Brazil
| | | | - Pascal Mermillod
- INRA, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
46
|
In vitro developmental competence of prepubertal goat oocytes cultured with recombinant activin-A. Animal 2013; 8:94-101. [PMID: 24176127 DOI: 10.1017/s1751731113001936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The present study was designed to evaluate the effect of activin-A during the in vitro oocyte maturation (IVM) and in vitro embryo culture (IVC) on nuclear maturation, blastocyst yield and blastocyst quality of prepubertal goat oocytes. In Experiment 1, three groups of oocytes were used during the IVM of prepubertal goat oocytes to determine the optimal concentration of recombinant human activin-A added to the maturation medium. Cumulus-oocyte complexes were matured in an IVM medium containing 0, 10 and 100 ng/ml (groups A0, A10 and A100), fertilized and in vitro cultured using standard procedures. In Experiment 2, the addition of 10 ng/ml activin-A at IVM (A10A0), IVC (A0A10) or IVM+IVC (A10A10) was studied and compared with the control group (A0A0). Results of the first experiment demonstrated that the addition of activin-A yielded similar percentages of maturation (⩽71.0%) and blastocyst formation rates (⩽24.9%) than the control group (A0). Experiment 2 showed that exposure of prepubertal goat oocytes to an IVC medium containing 10 ng/ml activin-A (A0A10) significantly increased the rates of development to the blastocyst stage, as compared with the control group (A0A0) (19.5±2.21% v. 13.1±2.37%, respectively; P<0.05). With regard to the blastocyst quality, total number of cells, inner cell mass (ICM) and trophectoderm of prepubertal goat embryos produced in the presence of activin-A did not differ significantly among experimental groups. In summary, these results indicate that supplementation of the IVC medium with activin-A enhances embryo development of prepubertal goat oocytes.
Collapse
|
47
|
Kohata C, Izquierdo-Rico MJ, Romar R, Funahashi H. Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts. Theriogenology 2013; 80:970-8. [PMID: 23987988 DOI: 10.1016/j.theriogenology.2013.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 11/29/2022]
Abstract
The objective of this study was to examine the competence of mature oocytes aspirated from small follicles (SF, <2 mm in diameter) and medium follicles (MF, 3-6 mm) of abattoir-derived prepubertal gilt ovaries. Oocytes were selected by the presence of the first polar body (1pb) after IVM in a chemically defined medium, for sperm penetration, pronuclear formation, cleavage rate, and development to the blastocyst stage. Relative transcript abundance of genes associated with regulation of oocyte maturation (AURKA, AURKB, and MOS), fertilization (ZP3 and ZP4), maternal effect (NALP9 and HSF1), and anti-apoptosis (BCL2) were also examined in oocytes at germinal vesicle (GV) and metaphase-II (MII) stages. In SF, compared with MF, the maturation rate post-IVM was lower (P < 0.05), but there were no differences in sperm penetration rate (78.2% and 68.5% at 6 hours after insemination and 90.8% and 91.9% at 9 hours after insemination, P = 0.51 and P = 0.67, respectively), the percentage of oocytes that formed both female and male pronuclei (27.9% and 25.8% at 6 hours after insemination and 79.4% and 76.1% at 9 hours after insemination), or cleavage rate at 48 hours after insemination (85.9% and 89.7%, respectively, P = 0.46), whereas blastocyst formation rate was lower (P < 0.05) in oocytes from SF versus MF (14.7% and 31.0%). Transcript abundances decreased (P < 0.05) in all genes examined between the GV and MII stages, although only transcript abundance for MOS was lower (P < 0.05) in GV oocytes from SF versus MF. In conclusion, mature oocytes from SF and MF of prepubertal gilts with a visible 1pb had similar fertilizability in vitro and relative transcript abundance of nine genes. However, follicle size affected meiotic competence, early embryonic development to the blastocyst stage, and transcript abundance of the MOS gene.
Collapse
Affiliation(s)
- Chiyuki Kohata
- Department of Animal Science, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka, Kita-Ku, Okayama, Japan
| | | | | | | |
Collapse
|
48
|
Misumi K, Hirayama Y, Suzuki M, Nakai M, Noguchi J, Kaneko H, Kikuchi K. Effects of the estrous cycle on the efficacy of oocyte collection and in vitro embryo production in Duroc-breed. Anim Sci J 2013; 85:112-7. [PMID: 23865774 DOI: 10.1111/asj.12097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Abstract
Collection efficacy and in vitro embryo developmental ability of oocytes obtained from Duroc-breed ovary donors at different stages of the estrous cycle (days 6, 12 and 16 after estrus) were performed. The numbers of collected oocytes did not differ significantly among the different estrous cycle groups (total 72-90 oocytes per gilt). However, the blastocyst rates of oocytes collected on days 12 and 16 (9.2% and 19.4%, respectively) were significantly higher than those on day 6 (1.1%). More oocytes were obtained on day 16 from small follicles (<2 mm in diameter; 85.3 oocytes per gilt) than from medium-sized (≥2-<6 mm) and large (≥6 mm) follicles (17.5 and 12.8 oocytes, respectively). The blastocyst rates in both the medium-sized and large follicle groups (20.0% and 19.2%, respectively) were significantly higher than that in the small follicle group (6.3%). The blastocyst cell numbers in both the medium-sized and large follicle groups (39.4 and 43.3 cells, respectively) were significantly higher than that in the small follicle group (30.6 cells). The results suggest that oocyte collection from cycling Duroc pigs can be carried out efficiently from the late luteal to follicular stage. Those oocytes collected from medium-sized and large follicles show better embryo development.
Collapse
Affiliation(s)
- Koji Misumi
- Department of Technology, National Livestock Breeding Center, Fukushima
| | | | | | | | | | | | | |
Collapse
|
49
|
Jiao GZ, Cao XY, Cui W, Lian HY, Miao YL, Wu XF, Han D, Tan JH. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS One 2013; 8:e58018. [PMID: 23469259 PMCID: PMC3585726 DOI: 10.1371/journal.pone.0058018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 01/30/2013] [Indexed: 11/23/2022] Open
Abstract
Although oocytes from prepubertal animals are found less competent than oocytes from adults, the underlying mechanisms are poorly understood. Using the mouse oocyte model, this paper has tested the hypothesis that the developmental potential of prepubertal oocytes is compromised due mainly to their impaired potential for glutathione synthesis. Oocytes from prepubertal and adult mice, primed with or without eCG, were matured in vitro and assessed for glutathione synthesis potential, oxidative stress, Ca2+ reserves, fertilization and in vitro development potential. In unprimed mice, abilities for glutathione synthesis, activation, male pronuclear formation, blastocyst formation, cortical granule migration and polyspermic block were all compromised significantly in prepubertal compared to adult oocytes. Cysteamine and cystine supplementation to maturation medium significantly promoted oocyte glutathione synthesis and blastocyst development but difference due to maternal age remained. Whereas reactive oxygen species (ROS) levels increased, Ca2+ storage decreased significantly in prepubertal oocytes. Levels of both catalytic and modifier subunits of the γ-glutamylcysteine ligase were significantly lower in prepubertal than in adult oocytes. Maternal eCG priming improved all the parameters and eliminated the age difference. Together, the results have confirmed our hypothesis by showing that prepubertal oocytes have a decreased ability to synthesize glutathione leading to an impaired potential to reduce ROS and to form male pronuclei and blastocysts. The resulting oxidative stress decreases the intracellular Ca2+ store resulting in impaired activation at fertilization, and damages the microfilament network, which affects cortical granule redistribution leading to polyspermy.
Collapse
Affiliation(s)
- Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Xin-Yan Cao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Yi-Long Miao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Xiu-Fen Wu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Dong Han
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Agung B, Otoi T, Fuchimoto DI, Senbon S, Onishi A, Nagai T. In vitro fertilization and development of porcine oocytes matured in follicular fluid. J Reprod Dev 2013; 59:103-6. [PMID: 23428620 PMCID: PMC3934192 DOI: 10.1262/jrd.2011-050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to assess the fertilization and development of porcine oocytes
matured in a solo follicular fluid (pFF) using different in vitro culture
systems and insemination periods. Cumulus-oocyte complexes (COCs), follicular cells (FCs),
and pFF were collected from the follicles of ovaries. The pFF was used as a maturation
medium (MpFF) after supplementation with follicle stimulating hormone (FSH) and
antibiotics. The COCs were matured in a 15 ml test tube containing 3.5 ml of MpFF with FCs
(5.2 × 106 cells/ml; rotating culture system) or 2 ml of MpFF without FCs in a
35-mm petri dish (static culture system) for 44 to 48 h. After maturation culture, oocytes
were co-incubated with frozen-thawed spermatozoa for 5 h and then cultured for 7 days. The
total mean rates of sperm penetration, normal fertilization, male pronucleus (MPN)
formation, cleavage, and development to the blastocyst stage of oocytes after insemination
were significantly higher (P<0.01) in the rotating culture system than in the static
culture system. In conclusion, compared with the static culture system, the rotating
culture system is adequate for the production of developmentally competent porcine oocytes
when MpFF is used as a maturation medium.
Collapse
Affiliation(s)
- Budiyanto Agung
- NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | | | | | | | | | | |
Collapse
|