1
|
Tsai YL, Wang CY, Chuang FH, Pan YH, Lin YR, Dhingra K, Liao PS, Huang FS, Chang MC, Jeng JH. Stimulation phosphatidylinositol 3-kinase/protein kinase B signaling by Porphyromonas gingivalis lipopolysacch aride mediates interleukin-6 and interleukin-8 mRNA/protein expression in pulpal inflammation. J Formos Med Assoc 2023; 122:47-57. [PMID: 36031486 DOI: 10.1016/j.jfma.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND/PURPOSE The signaling mechanisms for Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammation in human dental pulp cells are not fully clarified. This in vitro study aimed to evaluate the involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in PgLPS-induced pulpal inflammation. METHODS Human dental pulp cells (HDPCs) were challenged with PgLPS with or without pretreatment and coincubation with a PI3K/Akt inhibitor (LY294002). The gene or protein levels of PI3K, Akt, interleukin (IL)-6, IL-8, alkaline phosphatase (ALP), osteocalcin and osteonectin were analyzed by reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and immunofluorescent staining. In addition, an enzyme-linked immunosorbent assay was used to analyze IL-6 and IL-8 levels in culture medium. RESULTS In response to 5 μg/ml PgLPS, IL-6, IL-8, and PI3K, but not Akt mRNA expression of HDPCs, was upregulated. IL-6, IL-8, PI3K, and p-Akt protein levels were stimulated by 10-50 μg/ml of PgLPS in HDPCs. PgLPS also induced IL-6 and IL-8 secretion at concentrations higher than 5 μg/ml. Pretreatment and co-incubation by LY294002 attenuated PgLPS-induced IL-6 and IL-8 mRNA expression in HDPCs. The mRNA expression of ALP, but not osteocalcin and osteonectin, was inhibited by higher concentrations of PgLPS in HDPCs. CONCLUSION P. gingivalis contributes to pulpal inflammation in HDPCs by dysregulating PI3K/Akt signaling pathway to stimulate IL-6 and IL-8 mRNA/protein expression and secretion. These results are useful for understanding the pulpal inflammation and possible biomarkers of inflamed pulp diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Ling Tsai
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ying Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsiung Chuang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Hwa Pan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Yan-Ru Lin
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kunaal Dhingra
- Periodontics Division, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Pai-Shien Liao
- Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Fong-Shung Huang
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan; Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Jiiang-Huei Jeng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
da Rocha EA, Alvarez MMP, Pelosine AM, Carrilho MRO, Tersariol ILS, Nascimento FD. Laser Photobiomodulation 808 nm: Effects on Gene Expression in Inflammatory and Osteogenic Biomarkers in Human Dental Pulp Stem Cells. Front Pharmacol 2022; 12:782095. [PMID: 35111053 PMCID: PMC8802107 DOI: 10.3389/fphar.2021.782095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
The tissue engineering of dental oral tissue is tackling significant advances and the use of stem cells promises to boost the therapeutical approaches of regenerative dentistry. Despite advances in this field, the literature is still scarce regarding the modulatory effect of laser photobiomodulation (PBM) on genes related to inflammation and osteogenesis in Postnatal Human Dental Pulp Stem cells (DPSCs). This study pointedly investigated the effect of PBM treatment in proliferation, growth and differentiation factors, mineralization, and extracellular matrix remodeling genes in DPSCs. Freshly extracted human third molars were used as a source for DPSCs isolation. The isolated DPSCs were stimulated to an inflammatory state, using a lipopolysaccharide (LPS) model, and then subjected or not to laser PBM. Each experiment was statistically evaluated according to the sample distribution. A total of 85 genes related to inflammation and osteogenesis were evaluated regarding their expression by RT-PCR. Laser PBM therapy has shown to modulate several genes expression in DPSCs. PBM suppressed the expression of inflammatory gene TNF and RANKL and downregulated the gene expression for VDR and proteolytic enzymes cathepsin K, MMP-8 and MMP-9. Modulation of gene expression for proteinase-activated receptors (PARs) following PBM varied among different PARs. As expected, PBM blocked the odontoblastic differentiation of DPSCs when subjected to LPS model. Conversely, PBM has preserved the odontogenic potential of DPSCs by increasing the expression of TWIST-1/RUNEX-2/ALP signaling axis. PBM therapy notably played a role in the DPSCs genes expression that mediate inflammation process and tissue mineralization. The present data opens a new perspective for PBM therapy in mineralized dental tissue physiology.
Collapse
Affiliation(s)
- Elaine A da Rocha
- Technology Research Center, Mogi das Cruzes University, Mogi das Cruzes, Brazil
| | - Marcela M P Alvarez
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Agatha M Pelosine
- Interdisciplinary Center of Biochemical Investigation, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | | | | | - Fábio D Nascimento
- Technology Research Center, Mogi das Cruzes University, Mogi das Cruzes, Brazil.,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil.,Interdisciplinary Center of Biochemical Investigation, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| |
Collapse
|
3
|
Role of Lipopolysaccharide, Derived from Various Bacterial Species, in Pulpitis—A Systematic Review. Biomolecules 2022; 12:biom12010138. [PMID: 35053286 PMCID: PMC8774278 DOI: 10.3390/biom12010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lipopolysaccharide (LPS) is widely used for induction of inflammation in various human tissues, including dental pulp. The purpose of this study was to summarize current medical literature focusing on (1) cell types used by researchers to simulate dental pulp inflammation, (2) LPS variants utilized in experimental settings and how these choices affect the findings. Our study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched for studies reporting outcomes of lipopolysaccharide application on dental pulp cells in vitro using electronic databases: MEDLINE, Web of Science and Scopus. Having gathered data from 115 papers, we aimed to present all known effects LPS has on different cell types present in dental pulp. We focused on specific receptors and particles that are involved in molecular pathways. Our review provides an essential foundation for further research using in vitro models of pulpitis.
Collapse
|
4
|
Feng Z, Zhan M, Meng R, Wang X, Xu Q. 5-Aza-2'-deoxycytidine enhances lipopolysaccharide-induced inflammatory cytokine expression in human dental pulp cells by regulating TRAF6 methylation. Bioengineered 2019; 10:197-206. [PMID: 31117883 PMCID: PMC6550546 DOI: 10.1080/21655979.2019.1621135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dental pulp inflammation is a common bacterially driven inflammation characterized by the local accumulation of inflammatory mediators in human dental pulp. DNA methylation is a crucial epigenetic modification that that plays a fundamental role in gene transcription, and its role in inflammation-related diseases has recently attracted attention. However, its role in dental pulp inflammation is poorly understood. This study is aimed to elucidate the role of DNA methylation in lipopolysaccharide (LPS)-induced inflammatory reaction in human dental pulp cells (hDPCs). hDPCs were pretreated with DNA methylation inhibitor 5-aza-2ʹ-deoxycytidine (5-Aza-CdR) and a cytokine antibody array was used to detect LPS-induced cytokine expression. The results indicated that 5-Aza-CdR significantly increased the expression of several pro-inflammatory cytokines in LPS-treated cells, including IL-6, IL-8, GM-CSF, MCP-2 and RANTES. The increased expression levels of IL-6 and IL-8 were further verified by qRT-PCR and ELISA. Furthermore, pretreatment with 5-Aza-CdR resulted in upregulation of p-IKKα/β, p-IκBα, p-p65 and p-ERK in the NK-κB and MAPK pathways. In addition, the 5mC level of the TRAF6 promoter was significantly decreased following 5-Aza-CdR pretreatment in the LPS-stimulated hDPCs. The findings indicate that 5-Aza-CdR significantly enhances the expression of proinflammatory cytokines and activates the NF-κB and MAPK signaling pathways by eliciting a decline in the 5mc level in the TRAF6 promoter in hDPCs, suggesting that DNA methylation may play an important role in dental pulp inflammation. This study highlights the important role of DNA methylation in the immunity defense of dental pulp infection.
Collapse
Affiliation(s)
- Zhihui Feng
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Minkang Zhan
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Runsha Meng
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Xinxuan Wang
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| | - Qiong Xu
- a Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
5
|
Sugiuchi A, Sano Y, Furusawa M, Abe S, Muramatsu T. Human Dental Pulp Cells Express Cellular Markers for Inflammation and Hard Tissue Formation in Response to Bacterial Information. J Endod 2018; 44:992-996. [PMID: 29680724 DOI: 10.1016/j.joen.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 02/23/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Lipopolysaccharide (LPS) is a major component of the outer membranes of gram-negative bacteria associated with deep dental caries and pulpitis. When bacteria invade dentinal tubes and dentin is continually destroyed, tertiary dentin is formed by preexisting odontoblasts. However, the relationship between LPS and tertiary dentin formation remains unclear. We investigated whether LPS stimulation induces the formation of hard tissue in human dental pulp cells (hDPCs). METHODS Immortalized hDPCs were cultured, and Escherichia coli-derived LPS (1 μg/mL) was incorporated into the culture medium. Samples were obtained after 0, 1, 3, 7, 14, and 21 days, and messenger RNA expression of IL-1β, IL-6, Wnt5a, Runx2, ALP, and alkaline phosphatase (ALP) activity was investigated. RESULTS Quantitative real-time polymerase chain reaction revealed higher messenger RNA expression levels of IL-1β and IL-6 in the LPS group on 1 day (P < .05). The expression levels of dentinogenesis-related markers including Wnt5a, Runx2, and ALP were higher in the LPS group (2.0-, 4.7- and 10.0-fold, respectively) than that in the control group at 14 days (P < .01). ALP activity was significantly stronger in the LPS group than in the control group at 21 days (P < .01). Treatment of Box5, an antagonist of Wnt5a, showed a decreased expression of Runx2 and ALP (P < .05). CONCLUSIONS These results indicate that LPS stimulation induces the gene expression of inflammatory cytokines and hard tissue formation through Wnt5a signaling pathways in hDPCs.
Collapse
Affiliation(s)
- Akina Sugiuchi
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | - Yousuke Sano
- Department of Endodontics, Tokyo Dental College, Tokyo, Japan
| | | | - Shu Abe
- Heiwa Dental Clinic, Tokyo, Japan
| | - Takashi Muramatsu
- Department of Operative Dentistry, Cariology and Pulp Biology, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
6
|
Boyle M, Chun C, Strojny C, Narayanan R, Bartholomew A, Sundivakkam P, Alapati S. Chronic inflammation and angiogenic signaling axis impairs differentiation of dental-pulp stem cells. PLoS One 2014; 9:e113419. [PMID: 25427002 PMCID: PMC4245135 DOI: 10.1371/journal.pone.0113419] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/28/2014] [Indexed: 01/01/2023] Open
Abstract
Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.
Collapse
Affiliation(s)
- Michael Boyle
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Crystal Chun
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chelsee Strojny
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Raghuvaran Narayanan
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amelia Bartholomew
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Premanand Sundivakkam
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PS); (SA)
| | - Satish Alapati
- Department of Endodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PS); (SA)
| |
Collapse
|
7
|
Paudel U, Lee YH, Kwon TH, Park NH, Yun BS, Hwang PH, Yi HK. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition. Oral Dis 2014; 20:827-32. [PMID: 24924779 DOI: 10.1111/odi.12266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/31/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this study was to elucidate the role of 6-6 bieckol (EB1) and pholorofucofuroeckol-A (EB5) from brown seaweed marine algae (Eisenia bicyclis) on lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (HDPCs). METHODS The cytotoxicity of EB1 and EB5 was examined by MTT assay on LPS-induced human dental pulp cells. Their role on expression of inflammatory, odontogenic, and osteogenic molecules was determined by Western blot analysis. The dentin mineralization was checked by alkaline phosphatase activity. RESULTS The five compounds from E. bicyclis have different structure with non-cytotoxic in HDPCs. EB1 and EB5 showed anti-inflammatory properties and inhibited phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) without any cytotoxicity. In particular, EB1 inhibited cyclooxygenase-2 (COX-2) and p-ERK1/2 signaling, and EB5 inhibited only p-ERK1/2 signaling but not COX-2. Both compounds inhibited nuclear factor kappa-B (NF-κB) translocation. Furthermore, EB1 and EB5 increased dentinogenic and osteogenic molecules, and dentin mineralized via alkaline phosphatase activity (ALP) in LPS-induced HDPCs. CONCLUSIONS This study elucidates that EB1 and EB5 have different types of anti-inflammatory property and help in dentin formation. Therefore, these compounds derived from marine algae of E. bicyclis may be used as selective therapeutic strategies for pulpitis and oral diseases.
Collapse
Affiliation(s)
- U Paudel
- Department of Oral Biochemistry, Institute of Oral Bioscience, BK21 program, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Yamagishi VTK, Torneck CD, Friedman S, Huang GTJ, Glogauer M. Blockade of TLR2 inhibits Porphyromonas gingivalis suppression of mineralized matrix formation by human dental pulp stem cells. J Endod 2011; 37:812-8. [PMID: 21787495 DOI: 10.1016/j.joen.2011.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Human dental pulp stem/progenitor cells (hDPSC) can differentiate into odontoblast-like cells and express dentin sialophosphoprotein (DSPP) and osteocalcin (OCN); thus, they may be used to regenerate dentin. However, residual bacterial components in the root canal may suppress this activity. PURPOSE This study investigated the effect of a Porphyromonas gingivalis component on the expression of DSPP and OCN by stimulated hDPSCs and the influence of blockade of TLR2-mediated P. gingivalis host recognition. METHODS Stimulated hDPSCs were exposed to varying concentrations of P. gingivalis lipopolysaccharide (LPS), and the expression of DSPP and OCN was measured. Similar groups of stimulated hDPSCs were exposed to TLR2 blocking agents before exposure to LPS. RESULTS hDPSCs exposed to 5, 10, and 20 μg/mL LPS exhibited a dose-dependent reduction in the expression of DSPP (3.19 ± 0.18, 2.60 ± 0.49, and 1.15 ± 0.29, respectively) and OCN (3.51 ± 1.18, 2.60 ± 0.67 and 1.66 ± 0.89, respectively). The expression of DSPP and OCN after exposure to 20 μg/mL of LPS was significantly lower than measured for unexposed stimulated cells (analysis of variance and post hoc Tukey test, P < .05). The blockade of TLR2 using an extra- and intracellular agent affected DSPP (4.67 ± 0.97 and 5.29 ± 1.66, respectively) and OCN (5.25 ± 1.69 and 5.82 ± 2.38, respectively) expression at levels comparable to stimulated cells unexposed to 20 μg/mL LPS (6.32 ± 2.47 and 4.70 ± 1.60 for DSPP and OCN, respectively). CONCLUSIONS The suppressing effect of P. gingivalis on mineralized matrix formation by hDPSCs is confirmed, and this suppression can be moderated by TLR2 blockade.
Collapse
|
9
|
Lee SI, Min KS, Bae WJ, Lee YM, Lee SY, Lee ES, Kim EC. Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells. J Endod 2011; 37:1525-30. [PMID: 22000456 DOI: 10.1016/j.joen.2011.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/11/2011] [Accepted: 07/17/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Although bacterial infection and heat stress are common causes of injury in human dental pulp cells (HDPCs), little is known about the potential defense mechanisms mediating their effects. This study examined the role of SIRT1 in mediating heat stress and lipopolysaccharide (LPS)-induced immune and defense gene expression in HDPCs. METHODS HDPCs were exposed to heat stress (42°C) for 30 minutes after stimulation with LPS (1 μg/mL) for 48 hours. The expression of defense genes was evaluated by reverse-transcriptase polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assay. RESULTS LPS and heat stress synergistically increased the expression of SIRT1 and immune and defense genes such as interleukin (IL)-8, hemeoxygenase-1 (HO-1), and human β-defensin 2 (hBD-2). Resveratrol enhanced LPS- and heat stress-induced expression of HO-1 and hBD-2 but reduced IL-8 messenger RNA levels. The stimulation of HO-1 and hBD-2 messenger RNA expression by LPS and heat stress was inhibited by sirtinol; SIRT1 small interfering RNA; and inhibitors of p38, ERK, JNK, and nuclear factor κB. CONCLUSIONS These results show for the first time that SIRT1 mediates the induction of immune and defense gene expression in HDPCs by LPS and heat stress. SIRT1 may play a pivotal role in host immune defense system in HDPCS.
Collapse
Affiliation(s)
- Sang-Im Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Abe S, Imaizumi M, Mikami Y, Wada Y, Tsuchiya S, Irie S, Suzuki S, Satomura K, Ishihara K, Honda MJ. Oral bacterial extracts facilitate early osteogenic/dentinogenic differentiation in human dental pulp-derived cells. ACTA ACUST UNITED AC 2010; 109:149-54. [PMID: 20123389 DOI: 10.1016/j.tripleo.2009.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Bacterial metabolites demineralize dental hard tissues, and soluble factors lead to tertiary dentinogenesis in the area of the dentin-pulp complex. However, it is unclear whether the oral bacteria are directly involved in the differentiation of dental pulp cells. In this study, we evaluated the effect of oral bacterial extracts on cellular differentiation in human dental pulp-derived cells (hDPC). STUDY DESIGN The hDPC were obtained from third molar teeth, and the cells were subcultured. The sonicated extracts were obtained from Porphyromonas gingivalis (gram-negative) and Streptococcus mutans (gram-positive). The effect of bacterial extracts on cellular growth and differentiation in hDPC were tested. RESULTS Alkaline phosphatase activity and bone sialoprotein (BSP) gene expression were increased in hDPC exposed to low concentrations of both sonicated extracts, whereas the activity was decreased upon exposure to high concentrations of sonicated extracts from P. gingivalis. CONCLUSION This is the first evidence that oral bacteria have a positive effect on cellular differentiation in hPDC.
Collapse
Affiliation(s)
- Shu Abe
- Division of Stem Sell Engineering, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tipton D, Legan Z, Dabbous M. Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1β production by human monocytes. Toxicol In Vitro 2010; 24:921-7. [DOI: 10.1016/j.tiv.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 12/19/2022]
|
12
|
Lee JC, Yu MK, Lee R, Lee YH, Jeon JG, Lee MH, Jhee EC, Yoo ID, Yi HK. Terrein reduces pulpal inflammation in human dental pulp cells. J Endod 2008; 34:433-7. [PMID: 18358890 DOI: 10.1016/j.joen.2008.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/10/2008] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
Terrein is a bioactive fungal metabolite whose anti-inflammatory properties are virtually unknown. The purpose of this study was to determine the effects of terrein on lipopolysaccharide (LPS)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human dental pulp cells and to determine the mechanism of the observed effects. The LPS-induced expression of ICAM-1 and VCAM-1 was inhibited by terrein in both a time- and dose-dependent manner. LPS-stimulated translocation of nuclear factor kappa B (NF-kappaB) into the nucleus, which was blocked by inhibitors of amino kinase terminal (AKT, LY294002), extracellular signal regulated kinase 1/2 (ERK 1/2, PD98059), p38 (SB203580), and c-jun NH2-terminal kinase (JNK, SP600125) or terrein. In addition, these inhibitors and terrein also reduced the level of ICAM-1 and VCAM-1 expression in LPS-induced inflammation of pulp cells. Terrein suppressed NF-kappaB activation by blocking the activation of Akt. These results strongly suggest the potential role of terrein as an anti-inflammatory modulator in pulpal inflammation.
Collapse
Affiliation(s)
- Jung-Chang Lee
- Department of Oral Biochemistry, School of Dentistry, Chonbuk National University, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nomiyama K, Kitamura C, Tsujisawa T, Nagayoshi M, Morotomi T, Terashita M, Nishihara T. Effects of Lipopolysaccharide on Newly Established Rat Dental Pulp–derived Cell Line with Odontoblastic Properties. J Endod 2007; 33:1187-91. [PMID: 17889687 DOI: 10.1016/j.joen.2007.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/18/2007] [Accepted: 05/24/2007] [Indexed: 01/09/2023]
Abstract
To clarify mechanisms of pulp wound healing and regeneration, it is important to establish continuous odontoblast-lineage cell lines. In this study, we established the proliferating pulp progenitor cell lines from dental papilla cells of rat incisor. These cell lines showed high levels of alkaline phosphatase (ALP) activity, expression of Runx2 and dentin sialophosphoprotein (DSPP), and extracellular formation of mineralized nodules. By using the cell line with high expression level of DSPP and the prominent mineral deposition, we examined whether bacterial lipopolysaccharide (LPS) had effects on its odontoblastic properties and found that ALP activity, expression of DSPP and Runx2, and the formation of mineralized nodules were suppressed in LPS dose-dependent manner. These results indicate that our established pulp progenitor cell line exhibits odontoblastic properties, which were suppressed by LPS, suggesting that gram-negative bacterial infection might downregulate the odontoblast function.
Collapse
Affiliation(s)
- Kimiko Nomiyama
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental College, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Kitamura C, Nishihara T, Ueno Y, Chen KK, Morotomi T, Yano J, Nagayoshi M, Terashita M. Effects of sequential exposure to lipopolysaccharide and heat stress on dental pulp cells. J Cell Biochem 2006; 99:797-806. [PMID: 16676349 DOI: 10.1002/jcb.20967] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present study, we examined the effects of sequential exposure to bacterial lipopolysaccharide (LPS) and heat stress on dental pulp cells. LPS induced the proliferation of pulp cells through the activation of p38 MAPK. HSP27 was expressed in cells with or without LPS during the entire period of heat stress, while transiently phosphorylated by short-term heat stress. In LPS-treated cells, short-term heat stress also induced the phosphorylation of HSF1. The immediate phosphorylation of HSF1 and HSP27 in LPS-treated cells by short-term heat stress occurred dependent on the activation of p38 MAPK. However, with long-term heat stress, the activation of HSF1 and induction of HSP27 occurred independent of p38 MAPK. Further, full activation of Akt in LPS-treated cells was immediately induced by short-term heat stress and lasted during the entire period of heat stress. IkappaB alpha was induced and phosphorylated throughout sequential exposure to LPS and heat stress. These results suggest that LPS has the unique effects on the cytoprotection and the cell death of pulp cells during heat stress through the modification and the activation of heat stress responsive molecules, HSF1 and HSP27, and cell survival molecules, Akt and NF-kappaB/IkappaB alpha.
Collapse
Affiliation(s)
- Chiaki Kitamura
- Division of Pulp Biology, Operative Dentistry, and Endodontics, Department of Cariology and Periodontology, Science of Oral Functions, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita, Kitakyushu 803-8580, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chang J, Zhang C, Tani-Ishii N, Shi S, Wang CY. NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res 2005; 84:994-8. [PMID: 16246929 PMCID: PMC1764452 DOI: 10.1177/154405910508401105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-natal human dental pulp stem cells (DPSCs) represent a unique precursor population in the dental pulp, which has multipotential and can regenerate a dentin/pulp-like structure. Because the dental pulp is frequently infected by oral bacteria due to dental decay, in this study, we examined whether lipopolysaccharide (LPS) and tumor necrosis factor (TNF) activated the immunologic transcription factor nuclear factor kappa B (NF-kappaB) in DPSCs. We found that both TNF and LPS activated the I-kappa B kinase complex (IKK) in DPSCs to induce the phosphorylation and degradation of IkappaBalpha, resulting in the nuclear translocation of NF-kappaB. Consistently, both TNF and LPS rapidly induced the expression of the NF-kappaB-dependent gene interleukin-8 (IL-8). However, unlike in monocytes, we found that LPS could not induce the phosphorylation of the NF-kappaB active subunit p65 in DPSCs. In summary, our studies suggest that DPSCs may be involved in immune responses during pulpal infection through activating NF-kappaB.
Collapse
Affiliation(s)
- J. Chang
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
| | - C. Zhang
- School of Stomatology, Peking University Health Science Center, Beijing, China
| | - N. Tani-Ishii
- Division of Operative Dentistry and Endodontics, Department of Oral Medicine, Kanagawa Dental College, Kanagawa, Japan; and
| | - S. Shi
- Section of Oral Biology, Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - C.-Y. Wang
- Laboratory of Molecular Signaling and Apoptosis, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI 48109-1078, USA
- *corresponding author,
| |
Collapse
|
16
|
Botero TM, Mantellini MG, Song W, Hanks CT, Nör JE. Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages. Eur J Oral Sci 2003; 111:228-34. [PMID: 12786954 DOI: 10.1034/j.1600-0722.2003.00041.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial growth factor (VEGF), a potent pro-angiogenic factor, might regulate the neovascularization observed in the pulp of teeth with deep caries. The purpose of this in vitro study was to evaluate the effect of bacterial lipopolysaccharides (LPS) on VEGF expression in dental pulp cells. Mouse odontoblast-like cells (MDPC-23) or undifferentiated pulp cells (OD-21) were exposed to 0-20 microg ml-1Escherichia coli LPS or 0-80 microg ml-1Prevotella intermedia LPS. As controls, mouse macrophages or gingival fibroblasts were exposed to LPS, since these cells are known to secrete VEGF. The VEGF expression was evaluated by reverse transcriptase polymerase chain reaction or enzyme-linked immunosorbent assay. The baseline expression levels of VEGF protein were higher in MDPC-23 and OD-21 than in fibroblasts or macrophages. Vascular endothelial growth factor protein expression was upregulated in MDPC-23 and macrophages exposed to E. coli LPS, but not in OD-21 cells or fibroblasts. Higher concentrations of P. intermedia LPS were required to induce VEGF expression in MDPC-23 cells. Treatment with LPS did not affect VEGF expression at the mRNA level in any of the cells evaluated. These results demonstrate that bacterial LPS upregulates VEGF expression in odontoblast-like cells and macrophages, and suggest that the regulation of VEGF expression occurs primarily at a post-transcriptional level.
Collapse
Affiliation(s)
- Tatiana M Botero
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | |
Collapse
|
17
|
Khabbaz MG, Anastasiadis PL, Sykaras SN. Determination of endotoxins in the vital pulp of human carious teeth: association with pulpal pain. ORAL SURGERY, ORAL MEDICINE, ORAL PATHOLOGY, ORAL RADIOLOGY, AND ENDODONTICS 2001; 91:587-93. [PMID: 11346740 DOI: 10.1067/moe.2001.113831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aims of this investigation were to determine the presence or absence of endotoxins in the pulp of symptomatic and symptom-free human carious teeth, to quantify the amount of endotoxins present, and to associate the presence of endotoxins with the acute pulpal pain. MATERIAL AND METHODS Pulpal tissue was sampled from 28 single-rooted carious teeth (15 symptomatic, 13 symptom-free) derived from 28 patients. Samples were also taken from the pulp of 5 noncarious control teeth. During sampling an effort was made to collect an equal weight of pulpal tissue in all cases (approximately 8 mg). The extraction of endotoxins was performed with the use of phenol-water. The assay and quantitative determination of endotoxins was performed with the use of a limulus lysate test. The data were analyzed statistically by using the independent t test. RESULTS Endotoxins were detected in pulpal tissues of all carious teeth in the symptomatic (mean average, 0.15773 ng/mL; SD = 0.045811) and symptom-free group (mean average, 0.10723 ng/mL; SD = 0.010925). In noncarious control teeth, endotoxins were not detected. The presence of endotoxins was significantly higher in the group of symptomatic teeth than in the group of symptom-free teeth (P <.001). CONCLUSIONS The presence of endotoxins in the pulpal tissue of all the carious teeth indicates that they may play a major role in the pathogenesis of human pulpal diseases. Since a significantly higher level of endotoxins was detected in the pulp of symptomatic carious teeth than in that of symptom-free carious teeth, an association of endotoxins levels with severity of pulpal pain is probable.
Collapse
Affiliation(s)
- M G Khabbaz
- Department of Endodontics, Dental School, University of Athens, 2 Thivon Street, 11527 Goudi, Athens, Greece.
| | | | | |
Collapse
|
18
|
Yamasaki M, Nakata K, Imaizumi I, Iwama A, Nakane A, Nakamura H. Cytotoxic effect of endodontic bacteria on periapical fibroblasts. J Endod 1998; 24:534-9. [PMID: 9759015 DOI: 10.1016/s0099-2399(98)80072-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was conducted to investigate the effects of sonicated bacterial extracts (SBEs) from anaerobic Gram-negative bacteria on periapical fibroblast obtained from the apical portion of human periodontal ligaments. Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella intermedia, and Fusobacterium nucleatum were chosen from among the endodontic bacteria isolated from root canals having a periapical lesion and compared in terms of their cytotoxicity. The purpose of this study was to examine which bacteria are involved in the development of periapical inflammation. The anaerobes were cultured under strict anaerobic conditions, and the bacterial cells were then harvested by centrifugation after incubation. The concentrated cell suspensions were sonicated and subsequently centrifuged. An SBE was made of each of the filtered supernatants. Each SBE was added to cultures of periapical fibroblasts. The cell growth and proliferation were measured by the MTT method after 3, 5, and 7 days. The SBEs from P. endodontalis, P. gingivalis, and F. nucleatum inhibited the growth of the fibroblasts, whereas the SBE from P. intermedia did not inhibit it. The SBEs from P. gingivalis and F. nucleatum inhibited the fibroblast growth more strongly than did the P. endodontalis, P. gingivalis, and F. nucleatum may participate in the development of periapical lesions.
Collapse
Affiliation(s)
- M Yamasaki
- Department of Endodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Panagakos FS, O'Boskey JF, Rodriguez E. Regulation of pulp cell matrix metalloproteinase production by cytokines and lipopolysaccharides. J Endod 1996; 22:358-61. [PMID: 8935061 DOI: 10.1016/s0099-2399(96)80218-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little information is currently known regarding the effects of cytokines and lipopolysaccharides (LPS's) on matrix metalloproteinase (MMP) production by pulp cells in vitro. In this study, human pulp cells (HPC's) and clonal rat pulp cells RPC-C2A were treated with interleukin (IL)-1 alpha, IL-1 beta, tumor necrosis factor (TNF)-alpha, and LPS for 24 h. Conditioned medium and cell lysates were collected and analyzed by gelatin zymography. RPC-C2A cells treated with IL-1 beta and TNF-alpha displayed elevated levels of MMP's in conditioned medium fractions. LPS's at increasing concentrations had a similar effect. HPC's treated with either cytokines or LPS's had no change in the pattern of MMP's produced or secreted in either cellular or conditioned medium fractions. These studies indicate that the effects of cytokines and LPS's on pulp cells are not identical for cells from different species and requires further investigation to clarify these variations.
Collapse
Affiliation(s)
- F S Panagakos
- Department of Prosthodontics and Biomaterials, New Jersey Dental School, Newark 07103, USA
| | | | | |
Collapse
|