1
|
Domagalska MA, Barrett MP, Dujardin JC. Drug resistance in Leishmania: does it really matter? Trends Parasitol 2023; 39:251-259. [PMID: 36803859 DOI: 10.1016/j.pt.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023]
Abstract
Treatment failure (TF) jeopardizes the management of parasitic diseases, including leishmaniasis. From the parasite's point of view, drug resistance (DR) is generally considered as central to TF. However, the link between TF and DR, as measured by in vitro drug susceptibility assays, is unclear, some studies revealing an association between treatment outcome and drug susceptibility, others not. Here we address three fundamental questions aiming to shed light on these ambiguities. First, are the right assays being used to measure DR? Second, are the parasites studied, which are generally those that adapt to in vitro culture, actually appropriate? Finally, are other parasite factors - such as the development of quiescent forms that are recalcitrant to drugs - responsible for TF without DR?
Collapse
Affiliation(s)
| | - Michael P Barrett
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
2
|
Design, synthesis and evaluation of novel phenanthridine triazole analogs as potential antileishmanial agents. Future Med Chem 2022; 14:867-880. [PMID: 35642458 DOI: 10.4155/fmc-2021-0354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To synthesize and screen phenanthridine and 1,2,3-triazole derivatives for antileishmanial activity. Methodology: Synthesized analogs were tested for antileishmanial activity against transgenic strain of Leishmania infantum promastigotes and ex vivo infections. Results: Compounds T01, T08 and T11 revealed significant activity with EC50 <30 μm and lacked toxicity in mouse spleen and HepG2 cells. T01 with EC50 3.07 μm is four-fold more potent than the drug miltefosine (EC50 12.6 μM) against L. infantum promastigotes. In silico studies indicate that the analogs are nontoxic. A molecular docking analysis was also carried out on the T01 and T08 to investigate the binding pattern at the active site of the chosen target trypanothione reductase. Conclusion: The results of this study reveal that phenanthridine triazoles exhibit antileishmanial activity.
Collapse
|
3
|
Monte-Neto RL, Fernandez-Prada C, Moretti NS. Recent research brings hope for reshaping the co-evolutionary arms race against parasitic infectious diseases. Drug Dev Res 2022; 83:219-221. [PMID: 35106826 DOI: 10.1002/ddr.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Rubens L Monte-Neto
- Biotecnologia Aplicada ao Estudo de Patógenos (BAP), Instituto René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715, Belo Horizonte, Minas Gerais, 30190-009, Brazil
| | - Christopher Fernandez-Prada
- Faculté de Médecine Vétérinaire, Département de Pathologie et Microbiologie, Université de Montréal, 3200, rue Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Nilmar S Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Rua Botucatu 862 - 6º andar, São Paulo, São Paulo, 04023-062, Brazil
| |
Collapse
|
4
|
Potvin JE, Leprohon P, Queffeulou M, Sundar S, Ouellette M. Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clin Infect Dis 2021; 72:e526-e532. [PMID: 32827255 DOI: 10.1093/cid/ciaa1236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Antimonial drugs have long been the mainstay to treat visceral leishmaniasis. Their use has been discontinued in the Indian subcontinent because of drug resistance, but they are still clinically useful elsewhere. The goal of this study was to find markers of antimony resistance in Leishmania donovani clinical isolates and validate experimentally their role in resistance. METHODS The genomes of sensitive and antimony-resistant clinical isolates were sequenced. The role of a specific gene in contributing to resistance was studied by CRISPR-Cas9-mediated gene editing and intracellular drug sensitivity assays. RESULTS Both gene copy number variations and single nucleotide variants were associated with antimony resistance. A homozygous insertion of 2 nucleotides was found in the gene coding for the aquaglyceroporin AQP1 in both resistant isolates. Restoring the wild-type AQP1 open reading frame re-sensitized the 2 independent resistant isolates to antimonials. Alternatively, editing the genome of a sensitive isolate by incorporating the 2-nucleotide insertion in its AQP1 gene led to antimony-resistant parasites. CONCLUSIONS Through genomic analysis and CRISPR-Cas9-mediated genome editing we have proven the role of the AQP1 mutations in antimony clinical resistance in L. donovani.
Collapse
Affiliation(s)
- Jade-Eva Potvin
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Philippe Leprohon
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Marine Queffeulou
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Marc Ouellette
- Division of Infectious Disease and Immunity, CHU de Quebec Research Center and Department of Microbiology, Infectious Disease, and Immunology, University Laval, Quebec, Canada
| |
Collapse
|
5
|
Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, Sepúlveda-Crespo D, Carballeira NM, Tekwani BL, Murugesan S, Martinez-Valladares M, García-Estrada C, Reguera RM, Balaña-Fouce R. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar Drugs 2020; 18:E187. [PMID: 32244488 PMCID: PMC7230869 DOI: 10.3390/md18040187] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.
Collapse
Affiliation(s)
- María Álvarez-Bardón
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - César Ordóñez
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Daniel Sepúlveda-Crespo
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Nestor M. Carballeira
- Department of Chemistry, University of Puerto Rico, Río Piedras 00925-2537, San Juan, Puerto Rico;
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research, Birmingham, AL 35205, USA;
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani 333031, India;
| | - Maria Martinez-Valladares
- Department of Animal Health, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346 León, Spain;
| | - Carlos García-Estrada
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1-Parque Científico de León, 24006 León, Spain;
| | - Rosa M. Reguera
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| | - Rafael Balaña-Fouce
- Department of Biomedical Sciences; University of León, 24071 León, Spain; (M.Á.-B.); (Y.P.-P.); (C.O.); (D.S.-C.); (R.M.R.)
| |
Collapse
|
6
|
Domagalska MA, Dujardin JC. Next-Generation Molecular Surveillance of TriTryp Diseases. Trends Parasitol 2020; 36:356-367. [PMID: 32191850 DOI: 10.1016/j.pt.2020.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Elimination programs targeting TriTryp diseases (Leishmaniasis, Chagas' disease, human African trypanosomiasis) significantly reduced the number of cases. Continued surveillance is crucial to sustain this progress, but parasite molecular surveillance by genotyping is currently lacking. We explain here which epidemiological questions of public health and clinical relevance could be answered by means of molecular surveillance. Whole-genome sequencing (WGS) for molecular surveillance will be an important added value, where we advocate that preference should be given to direct sequencing of the parasite's genome in host tissues instead of analysis of cultivated isolates. The main challenges here, and recent technological advances, are discussed. We conclude with a series of recommendations for implementing whole-genome sequencing for molecular surveillance.
Collapse
Affiliation(s)
- Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium.
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, B-2000 Antwerp, Belgium
| |
Collapse
|
7
|
Reguera RM, Elmahallawy EK, García-Estrada C, Carbajo-Andrés R, Balaña-Fouce R. DNA Topoisomerases of Leishmania Parasites; Druggable Targets for Drug Discovery. Curr Med Chem 2019; 26:5900-5923. [DOI: 10.2174/0929867325666180518074959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
DNA topoisomerases (Top) are a group of isomerase enzymes responsible for controlling the topological problems caused by DNA double helix in the cell during the processes of replication, transcription and recombination. Interestingly, these enzymes have been known since long to be key molecular machines in several cellular processes through overwinding or underwinding of DNA in all living organisms. Leishmania, a trypanosomatid parasite responsible for causing fatal diseases mostly in impoverished populations of low-income countries, has a set of six classes of Top enzymes. These are placed in the nucleus and the single mitochondrion and can be deadly targets of suitable drugs. Given the fact that there are clear differences in structure and expression between parasite and host enzymes, numerous studies have reported the therapeutic potential of Top inhibitors as antileishmanial drugs. In this regard, numerous compounds have been described as Top type IB and Top type II inhibitors in Leishmania parasites, such as camptothecin derivatives, indenoisoquinolines, indeno-1,5- naphthyridines, fluoroquinolones, anthracyclines and podophyllotoxins. The aim of this review is to highlight several facts about Top and Top inhibitors as potential antileishmanial drugs, which may represent a promising strategy for the control of this disease of public health importance.
Collapse
Affiliation(s)
- Rosa M. Reguera
- Department of Biomedical Sciences, University of Leon (ULE), Leon, Spain
| | | | | | | | | |
Collapse
|
8
|
Singh U, Colosi LM. Water-energy sustainability synergies and health benefits as means to motivate potable reuse of coalbed methane-produced waters. AMBIO 2019; 48:752-768. [PMID: 30218269 PMCID: PMC6509300 DOI: 10.1007/s13280-018-1098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Management of coalbed methane (CBM)-produced water is a crucial part of the water-energy nexus, especially as CBM is projected to play a key role as a bridge fuel in major economies. In this paper, we consider one management technique, i.e., desalination of CBM-produced water to generate potable water. We discuss a confluence of geographic, sociotechnical, regulatory, and other circumstances that could make this concept viable for select coal-bearing regions. Having said that, for maximizing benefits, it is prudent to take a synergistic view targeting multiple objectives (water access, health, environmental impacts, and ease of waste management). Thus, we make design recommendations and suggest a system-evaluation framework for making sustainable decisions related to produced-to-potable water systems. For instance, a key question is whether such systems should be centralized or decentralized-and this paper highlights crucial tradeoffs that are present in both the cases.
Collapse
Affiliation(s)
- Udayan Singh
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, P.O. Box 400742, Charlottesville, VA 22904 USA
| | - Lisa M. Colosi
- Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, P.O. Box 400742, Charlottesville, VA 22904 USA
| |
Collapse
|
9
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
10
|
Ong YC, Roy S, Andrews PC, Gasser G. Metal Compounds against Neglected Tropical Diseases. Chem Rev 2018; 119:730-796. [DOI: 10.1021/acs.chemrev.8b00338] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yih Ching Ong
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| | - Saonli Roy
- Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Philip C. Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Gilles Gasser
- Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
11
|
Tejería A, Pérez-Pertejo Y, Reguera RM, Carbajo-Andrés R, Balaña-Fouce R, Alonso C, Martin-Encinas E, Selas A, Rubiales G, Palacios F. Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. Eur J Med Chem 2018; 162:18-31. [PMID: 30408746 DOI: 10.1016/j.ejmech.2018.10.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Heterocyclic compounds, such as hybrid tetrahydroquinoline and quinoline derivatives with phosphorated groups, have been prepared by multicomponent cycloaddition reaction between phosphorus-substituted anilines, aldehydes and styrenes. The antileishmanial activity of these compounds has been evaluated on both promastigotes and intramacrophagic amastigotes of Leishmania infantum. Good antileishmanial activity of functionalized tetrahydroquinolines 4a, 5a, 6b and quinoline 8b has been observed with similar activity than the standard drug amphotericin B and close selective index (SI between 43 and 57) towards L. infantum amastigotes to amphotericin B. Special interest shows tetrahydroquinolylphosphine sulfide 5a with an EC50 value (0.61 ± 0.18 μM) similar to the standard drug amphotericin B (0.32 ± 0.05 μM) and selective index (SI = 56.87). In addition, compound 4c shows remarkable inhibition on Leishmania topoisomerase IB. Parallel theoretical study of stereoelectronic properties, application of docking-based virtual screening methods, along with molecular electrostatic potential and predictive druggability analyses are also reported.
Collapse
Affiliation(s)
- Ana Tejería
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rubén Carbajo-Andrés
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Endika Martin-Encinas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Asier Selas
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Gloria Rubiales
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I, Facultad de Farmacia and Centro de Investigación Lascaray (Lascaray Research Center), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Keogan DM, Oliveira SSC, Sangenito LS, Branquinha MH, Jagoo RD, Twamley B, Santos ALS, Griffith DM. Novel antimony(iii) hydroxamic acid complexes as potential anti-leishmanial agents. Dalton Trans 2018; 47:7245-7255. [DOI: 10.1039/c8dt00546j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The synthesis, characterisation and anti-leishmanial activity of novel Sb(iii) hydroxamato and Sb(iii) hydroxamato/hydroximato complexes are reported.
Collapse
Affiliation(s)
| | - S. S. C. Oliveira
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | - L. S. Sangenito
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | - M. H. Branquinha
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | | | - B. Twamley
- School of Chemistry
- Chemistry Building
- Trinity College Dublin
- Ireland
| | - A. L. S. Santos
- Department of General Microbiology
- Microbiology Institute Paulo de Góes
- Federal University of Rio de Janeiro (UFRJ)
- Rio de Janeiro
- Brazil
| | | |
Collapse
|
13
|
|
14
|
Khatoon N, Pandey RK, Prajapati VK. Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Sci Rep 2017; 7:8285. [PMID: 28811600 PMCID: PMC5557753 DOI: 10.1038/s41598-017-08842-w] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is a fatal form of leishmaniasis which affects 70 countries, worldwide. Increasing drug resistance, HIV co-infection, and poor health system require operative vaccination strategy to control the VL transmission dynamics. Therefore, a holistic approach is needed to generate T and B memory cells to mediate long-term immunity against VL infection. Consequently, immunoinformatics approach was applied to design Leishmania secretory protein based multi-epitope subunit vaccine construct consisting of B and T cell epitopes. Further, the physiochemical characterization was performed to check the aliphatic index, theoretical PI, molecular weight, and thermostable nature of vaccine construct. The allergenicity and antigenicity were also predicted to ensure the safety and immunogenic behavior of final vaccine construct. Moreover, homology modeling, followed by molecular docking and molecular dynamics simulation study was also performed to evaluate the binding affinity and stability of receptor (TLR-4) and ligand (vaccine protein) complex. This study warrants the experimental validation to ensure the immunogenicity and safety profile of presented vaccine construct which may be further helpful to control VL infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Codon
- Computational Biology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Humans
- Immunogenicity, Vaccine
- Leishmania/immunology
- Leishmaniasis/immunology
- Leishmaniasis/metabolism
- Leishmaniasis/prevention & control
- Leishmaniasis Vaccines/chemistry
- Leishmaniasis Vaccines/immunology
- Models, Molecular
- Protein Binding
- Protein Conformation
- Quantitative Structure-Activity Relationship
- T-Lymphocytes/immunology
- Toll-Like Receptor 4/chemistry
- Toll-Like Receptor 4/metabolism
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Nazia Khatoon
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
15
|
Salih MAM, Fakiola M, Lyons PA, Younis BM, Musa AM, Elhassan AM, Anderson D, Syn G, Ibrahim ME, Blackwell JM, Mohamed HS. Expression profiling of Sudanese visceral leishmaniasis patients pre- and post-treatment with sodium stibogluconate. Parasite Immunol 2017; 39. [PMID: 28370072 DOI: 10.1111/pim.12431] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis (VL) in Sudan caused by Leishmania donovani is fatal in susceptible individuals if untreated. Treatment with sodium stibogluconate (SSG) leads to post-kala-azar dermal leishmaniasis (PKDL) in 58% of patients. Here, Affymetrix microarrays were used to identify genes differentially expressed in lymph nodes (N=9 paired samples) pre- and post-treatment with SSG. Using the Bioconductor package limma, 438 genes from 28 869 post-quality-control probe sets were differentially expressed (Pnominal ≤.02) post- vs pretreatment. Canonical pathway analysis using Ingenuity Pathway Analysis™ identified "role of nuclear factor of activated T-cell in regulation of immune response" (Pnominal =1.35×10-5 ; PBH-adjusted =4.79×10-3 ), "B-cell development" (Pnominal =2.04×10-4 ; PBH-adjusted =.024), "Fcγ receptor-mediated phagocytosis in macrophages and monocytes" (Pnominal =2.04×10-4 ; PBH-adjusted =.024) and "OX40 signalling" (Pnominal =2.82×10-4 ; PBH-adjusted =.025) as pathways differentially regulated post- vs pretreatment. Major network hub genes included TP53, FN1, MYC, BCL2, JUN, SYK, RUNX2, MMP1 and ACTA2. Top endogenous upstream regulators included IL-7 (P=2.28×10-6 ), TNF (P=4.26×10-6 ), Amyloid Precursor Protein (P=4.23×10-5 ) and SPI1/PI.1 (P=1.17×10-7 ). Top predicted chemical drug regulators included the flavonoid genistein (P=4.56×10-7 ) and the quinoline alkaloid camptothecin (P=5.14×10-5 ). These results contribute to our understanding of immunopathology associated with VL and response to SSG treatment. Further replication could identify novel therapeutic strategies that improve on SSG treatment and reduce the likelihood of progression to PKDL.
Collapse
Affiliation(s)
- M A M Salih
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan.,Central Laboratory, Ministry of Higher Education and Scientific Research, Khartoum, Sudan
| | - M Fakiola
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - P A Lyons
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - B M Younis
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - A M Musa
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - A M Elhassan
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - D Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - G Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - M E Ibrahim
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan
| | - J M Blackwell
- Department of Pathology, University of Cambridge, Cambridge, UK.,Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia
| | - H S Mohamed
- Institute of Endemic Disease, University of Khartoum, Khartoum, Sudan.,Department of Biology, Taibah University, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Ghosh AK, Saini S, Das S, Mandal A, Sardar AH, Ansari MY, Abhishek K, Kumar A, Singh R, Verma S, Equbal A, Ali V, Das P. Glucose-6-phosphate dehydrogenase and Trypanothione reductase interaction protects Leishmania donovani from metalloid mediated oxidative stress. Free Radic Biol Med 2017; 106:10-23. [PMID: 28179112 DOI: 10.1016/j.freeradbiomed.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Exploration of metabolons as viable drug target is rare in kinetoplastid biology. Here we present a novel protein-protein interaction among Glucose-6-phosphate dehydrogenase (LdG6PDH) and Trypanothione reductase (LdTryR) of Leishmania donovani displaying interconnection between central glucose metabolism and thiol metabolism of this parasite. Digitonin fractionation patterns observed through immunoblotting indicated localisation of both LdG6PDH and LdTryR in cytosol. In-silico and in-vitro interaction observed by size exclusion chromatography, co-purification, pull-down assay and spectrofluorimetric analysis revealed LdG6PDH and LdTryR physically interact with each other in a NADPH dependent manner. Coupled enzymatic assay displayed that NADPH generation was severely impaired by addition of SbIII, AsIII and TeIV extraneously, which hint towards metalloid driven structural changes of the interacting proteins. Co-purification patterns and pull-down assays also depicted that metalloids (SbIII, AsIII and TeIV) hinder the in-vitro interaction of these two enzymes. Surprisingly, metalloids at sub-lethal concentrations induced the in-vivo interaction of LdG6PDH and LdTryR, as analyzed by pull-down assays and fluorescence microscopy signifying protection against metalloid mediated ROS. Inhibition of LdTryR by thioridazine in LdG6PDH-/- parasites resulted in metalloid induced apoptotic death of the parasites due to abrupt fall in reduced thiol content, disrupted NADPH/NADP+ homeostasis and lethal oxidative stress. Interestingly, clinical isolates of L.donovani resistant to SAG exhibited enhanced interaction between LdG6PDH and LdTryR and showed cross resistivity towards AsIII and TeIV. Thus, our findings propose the metabolon of LdG6PDH and LdTryR as an alternate therapeutic target and provide mechanistic insight about metalloid resistance in Visceral Leishmaniasis.
Collapse
Affiliation(s)
- Ayan Kumar Ghosh
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Savita Saini
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park, Hajipur, Vaishali 844101, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna 801505, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Abul Hasan Sardar
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Md Yousuf Ansari
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Kumar Abhishek
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Ruby Singh
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Asif Equbal
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Vahab Ali
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Bioinformatics and Molecular Biochemistry & Cell Biology, Rajendra Memorial Research Institute of Medical Sciences (I.C.M.R.), Agamkuan, Patna 800007, Bihar, India.
| |
Collapse
|
17
|
Abstract
Cutaneous and visceral leishmaniasis are amongst the most devastating infectious diseases of our time, affecting millions of people worldwide. The treatment of these serious diseases rely on a few chemotherapeutic agents, most of which are of parenteral use and induce severe side-effects. Furthermore, rates of treatment failure are high and have been linked to drug resistance in some areas. Here, we reviewed data on current chemotherapy practice in leishmaniasis. Drug resistance and mechanisms of resistance are described as well as the prospects for applying drug combinations for leishmaniasis chemotherapy. It is clear that efforts for discovering new drugs applicable to leishmaniasis chemotherapy are essential. The main aspects on the various steps of drug discovery in the field are discussed.
Collapse
|
18
|
Khanra S, Sarraf NR, Das S, Das AK, Roy S, Manna M. Genetic markers for antimony resistant clinical isolates differentiation from Indian Kala-azar. Acta Trop 2016; 164:177-184. [PMID: 27629023 DOI: 10.1016/j.actatropica.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/09/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Visceral Leishmaniasis or Kala-azar is caused by the protozoan parasites belonging to the Genus Leishmania. Once thought eradicated from the Indian subcontinent, the disease came back with drug resistance to almost all prevalent drugs. Molecular epidemiological studies revealed the polymorphic nature of the population of the main player of the disease, Leishmania donovani and involvement of other species (L. tropica) and other genus (Leptomonas) with the disease. This makes control measures almost futile. It also strongly demands the characterization of each and every isolate mandatory which is not done. In this background, the present study has been carried out to assess the genetic attributes of each clinical isolates (n=26) of KA and PKDL patients from India and Bangladesh. All the isolates were characterized through Restriction Fragment Length Polymorphism (RFLP) analysis to ascertain their species identity. 46.2% of the isolates were found to be Sodium Stibogluconate (SSG) resistant by amastigote-macrophage model. When the clinical isolates were subjected to Single Stranded Conformation Polymorphism (SSCP) of Internal Transcribed Spacer 1 (ITS1), Internal Transcribed Spacer 2 (ITS2) and some anonymous markers, the drug resistant Leishmania isolates of SSG can be distinguished from the sensitive isolates distinctly. This study showed for the first time, the genetic markers for SSG drug resistance of Indian Kala-azar clinical isolates.
Collapse
Affiliation(s)
- Supriya Khanra
- Department of Zoology, Barasat Govt. College, 10, K.N.C Road, Kolkata 700124, India
| | | | - Shantanabha Das
- Department of Infectious Diseases & Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anjan Kumar Das
- Department of Medicine, Calcutta National Medical College, 32, Gorachand Road, Kolkata 700014, India
| | - Syamal Roy
- Department of Infectious Diseases & Immunology, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Madhumita Manna
- Department of Zoology, Barasat Govt. College, 10, K.N.C Road, Kolkata 700124, India.
| |
Collapse
|
19
|
Bezerra-Souza A, Yamamoto ES, Laurenti MD, Ribeiro SP, Passero LFD. The antifungal compound butenafine eliminates promastigote and amastigote forms of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. Parasitol Int 2016; 65:702-707. [PMID: 27546158 DOI: 10.1016/j.parint.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/09/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
The production of ergosterol lipid, important for the Leishmania membrane homeostasis, involves different enzymes. This pathway can be blocked to azoles and allylamines drugs, such as Butenafine. The aim of the present work was to evaluate the anti-leishmanicidal activity of this drug in 2 major species of Leishmania responsible for causing the American tegumentar leishmaniasis (L. (L.) amazonensis and L. (V.) braziliensis). Butenafine eliminated promastigote forms of L. amazonensis and L. braziliensis with efficacy similar to miltefosine, a standard anti-leishmania drug. In addition, butenafine induced alterations in promastigote forms of L. amazonensis that resemble programmed cell death. Butenafine as well as miltefosine presented mild toxicity in peritoneal macrophages, however, butenafine was more effective to eliminate intracellular amastigotes of both L. amazonensis and L. braziliensis, and this effect was not associated with elevated levels of nitric oxide or hydrogen peroxide. Taken together, data presented herein suggests that butenafine can be considered as a prototype drug able to eliminate L. amazonensis and L. braziliensis, etiological agents of anergic diffuse and mucocutaneous leishmaniasis, respectively.
Collapse
Affiliation(s)
- Adriana Bezerra-Souza
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Eduardo S Yamamoto
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Márcia D Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM-50), Medical School, University of São Paulo, Avenida Dr. Arnaldo 455, 01246903 Cerqueira César, SP, Brazil
| | - Susan P Ribeiro
- Case Western Reserve University, Pathology Department, Cleveland, USA; Division of Clinical Immunology and Allergy, LIM60, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Luiz Felipe D Passero
- São Vicente Unit, Paulista Coastal Campus, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, SP, Brazil.
| |
Collapse
|