1
|
Gao D, Feng X, Cao Y, Yi Z, Han X, Yang H, Geng Z, Zhou L. MRI Reference Ranges for Fetal Cardiothoracic Ratio of Diameter, Area, and Circumference from 21 to 38 Weeks Gestational Age. J Magn Reson Imaging 2025; 61:715-723. [PMID: 38847618 DOI: 10.1002/jmri.29482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Whether fetal cardiothoracic ratio (CTR) is constant or increasing with gestational age (GA) is controversial. The majority of the fetal CTR data has been obtained through ultrasound. PURPOSE To retrospectively analyze CTR of diameter, area, and circumference on prenatal MR images in a low-risk population of singleton pregnancies, and to clarify its diagnostic value. STUDY TYPE Retrospective. SUBJECTS 1024 low-risk singleton pregnancies undergoing MRI. FIELD STRENGTH Balanced steady state free precession sequence and single shot-fast spin echo sequence at 1.5 Tesla. ASSESSMENT Pregnancy clinical data were recorded and diameter, area, and circumference of the fetal heart and thorax were measured by two researchers with 6 and 7 years of radiology experience, respectively, and their variation with GA was investigated. The relationship between CTRs with GA was also investigated. Finally, the value of CTR in the diagnosis of fetuses with abnormal development was explored by using receiver operating characteristic (ROC) curves. STATISTICAL TESTS Linear regression and ROC curves. A P value <0.05 was considered significant. RESULTS There were significant positive linear correlations (R2 > 0.7, P < 0.0001) between the diameter, area, and circumference of the heart and thorax with GA. The CTRs remain constant values and do not change with GA. The 5th, 50th, and 95th percentiles of the CTR in 21-38 weeks GA were 0.32, 0.39, and 0.48 respectively. The corresponding percentiles for the area ratio were 0.15, 0.21 and 0.27, respectively, and for the circumference ratio were 0.40, 0.46, and 0.52, respectively. Based on ROC curves of CTR with three methods, the area under curves (AUCs) were up to 0.95, the sensitivity and the specificity were more than 88%. DATA CONCLUSION Reference ranges of fetal CTR were established using MRI, which remain constant. These may be helpful in making a definitive diagnosis in fetuses with abnormal development. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Duo Gao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xuran Feng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yimin Cao
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zexi Yi
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Xuefang Han
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Haiqing Yang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Lixia Zhou
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
2
|
Tompkins RM, Fujiwara T, Schrauben EM, Browne LP, van Schuppen J, Clur SA, Friesen RM, Englund EK, Barker AJ, van Ooij P. Third trimester fetal 4D flow MRI with motion correction. Magn Reson Med 2025. [PMID: 39789817 DOI: 10.1002/mrm.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI. METHODS A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work. Pre- and post-motion correction comparison included qualitative visibility of vasculature on phase-contrast MR angiograms (five-point Likert scale), conservation of mass of the aortic isthmus, ductus arteriosus, and descending aorta, and coefficient of variation of flow along the descending aorta. RESULTS Twenty-nine third trimester acquisitions were performed for 15 healthy fetuses and two patients with postnatally confirmed aortic coarctation during a single examination for each participant. Only 15/27 (56%) of all volunteers and 1/2 (50%) of all patient precorrection acquisitions were suitable for flow analysis. Motion correction recovered eight "failed" acquisitions, including one patient, with 24/29 (83%) suitable for flow analysis. In the 15 viable uncorrected volunteer acquisitions, motion correction improved phase-contrast MR angiograms visibility significantly in the ductus arteriosus (from 4.0 to 4.3, p = 0.04) and aortic arch (3.7 to 4.0, p = 0.03). Motion correction improved conservation of mass to a median (interquartile range) percent difference of 5% (9%) from 14% (24%) with improvement shown in 14/15 acquisitions (p = 0.002), whereas coefficient of variation changes were not significantly different (uncorrected: 0.15 (0.09), corrected: 0.11 (0.09), p = 0.3). CONCLUSIONS Motion correction compensated for maternal and fetal motion in fetal 4D flow MRI data, improving image quality and conservation of mass.
Collapse
Affiliation(s)
- Reagan M Tompkins
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lorna P Browne
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joost van Schuppen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sally-Ann Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard M Friesen
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erin K Englund
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex J Barker
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Bravo-Valenzuela NJ, Giffoni MC, Nieblas CDO, Werner H, Tonni G, Granese R, Gonçalves LF, Araujo Júnior E. Three-Dimensional Ultrasound for Physical and Virtual Fetal Heart Models: Current Status and Future Perspectives. J Clin Med 2024; 13:7605. [PMID: 39768529 PMCID: PMC11679263 DOI: 10.3390/jcm13247605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Congenital heart defects (CHDs) are the most common congenital defect, occurring in approximately 1 in 100 live births and being a leading cause of perinatal morbidity and mortality. Of note, approximately 25% of these defects are classified as critical, requiring immediate postnatal care by pediatric cardiology and neonatal cardiac surgery teams. Consequently, early and accurate diagnosis of CHD is key to proper prenatal and postnatal monitoring in a tertiary care setting. In this scenario, fetal echocardiography is considered the gold standard imaging ultrasound method for the diagnosis of CHD. However, the availability of this examination in clinical practice remains limited due to the need for a qualified specialist in pediatric cardiology. Moreover, in light of the relatively low prevalence of CHD among at-risk populations (approximately 10%), ultrasound cardiac screening for potential cardiac anomalies during routine second-trimester obstetric ultrasound scans represents a pivotal aspect of diagnosing CHD. In order to maximize the accuracy of CHD diagnoses, the views of the ventricular outflow tract and the superior mediastinum were added to the four-chamber view of the fetal heart for routine ultrasound screening according to international guidelines. In this context, four-dimensional spatio-temporal image correlation software (STIC) was developed in the early 2000s. Some of the advantages of STIC in fetal cardiac evaluation include the enrichment of anatomical details of fetal cardiac images in the absence of the pregnant woman and the ability to send volumes for analysis by an expert in fetal cardiology by an internet link. Sequentially, new technologies have been developed, such as fetal intelligent navigation echocardiography (FINE), also known as "5D heart", in which the nine fetal cardiac views recommended during a fetal echocardiogram are automatically generated from the acquisition of a cardiac volume. Furthermore, artificial intelligence (AI) has recently emerged as a promising technological innovation, offering the potential to warn of possible cardiac anomalies and thus increase the ability of non-cardiology specialists to diagnose CHD. In the early 2010s, the advent of 3D reconstruction software combined with high-definition printers enabled the virtual and 3D physical reconstruction of the fetal heart. The 3D physical models may improve parental counseling of fetal CHD, maternal-fetal interaction in cases of blind pregnant women, and interactive discussions among multidisciplinary health teams. In addition, the 3D physical and virtual models can be an useful tool for teaching cardiovascular anatomy and to optimize surgical planning, enabling simulation rooms for surgical procedures. Therefore, in this review, the authors discuss advanced image technologies that may optimize prenatal diagnoses of CHDs.
Collapse
Affiliation(s)
- Nathalie Jeanne Bravo-Valenzuela
- Department of Pediatrics, Pediatric Cardiology, School of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil;
| | - Marcela Castro Giffoni
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Caroline de Oliveira Nieblas
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
| | - Heron Werner
- Department of Fetal Medicine, Biodesign Laboratory DASA/PUC, Rio de Janeiro 22453-900, RJ, Brazil; (M.C.G.); (H.W.)
| | - Gabriele Tonni
- Department of Obstetrics and Neonatology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Roberta Granese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, “G. Martino” University Hospital, 98100 Messina, Italy
| | - Luis Flávio Gonçalves
- Departments of Radiology and Child Health, University of Arizona College of Medicine, Phoenix, AZ 85016, USA;
| | - Edward Araujo Júnior
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul 09521-160, SP, Brazil; (C.d.O.N.); (E.A.J.)
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| |
Collapse
|
4
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG, Bohbot Y, Cikes M, Dweck M, Donal E, Grapsa J, Keenan N, Petrescu AM, Szabo L, Ricci F, Uusitalo V. Clinical impact of novel cardiovascular magnetic resonance technology on patients with congenital heart disease: a scientific statement of the Association for European Pediatric and Congenital Cardiology and the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e274-e294. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement, the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the Supplementary data online, supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of Clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, Division of Cardiology, and Department of Radiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum, Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, UK
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, The Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Vall Hebrón (VHIR), Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Savis A, Oakley C, Van Poppel MPM, Lloyd DFA, Pushparajah K, Vigneswaran TV, Zidere V. Unusual Vascular Ring in the Fetus. Pediatr Cardiol 2024; 45:1603-1606. [PMID: 37566242 DOI: 10.1007/s00246-023-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
We present the clinical course and echocardiographic and genetic findings of two fetuses with an unusual vascular ring, created by a left aortic arch with a right arterial duct and an aberrant right subclavian artery. One fetus was diagnosed with 22q11.2 microdeletion and the other became symptomatic in infancy. It is important to consider the position of the arterial ductal ligament in patients who present with tracheoesophageal compressive symptoms in the presence of a left aortic arch. These cases also highlight that a vascular ring formed from a left arch may have similar associations to a vascular ring formed by a right aortic arch.
Collapse
Affiliation(s)
- A Savis
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - C Oakley
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - M P M Van Poppel
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - D F A Lloyd
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - K Pushparajah
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - T V Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
- Harris Birthright Centre for Fetal Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - V Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
- Harris Birthright Centre for Fetal Medicine, King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
6
|
Rickart AJ, Sikdar O, Jenkinson A, Greenough A. Diagnosis and Early Management of Robin Sequence. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1094. [PMID: 39334626 PMCID: PMC11430236 DOI: 10.3390/children11091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
The results of a survey of twenty-four neonatal units in the United Kingdom and Ireland are presented. A structured ten-item questionnaire was used, and demonstrated the variation in how infants with RS are diagnosed and managed. Notably, the survey revealed that a minority of infants were diagnosed antenatally. There were significant discrepancies in diagnostic criteria used and 79% of the units referred the patients to tertiary services. A preference for minimally invasive approaches to managing upper airway obstruction, such as a trial of prone positioning before progressing to a nasopharyngeal airway, was reported by 96% of the centers. A narrative review was undertaken which discusses the current practices for diagnosis and early management of Robin sequence (RS). The challenges of antenatal diagnosis, strategies to enhance outcomes through early detection and controversies surrounding the management of neonatal upper airway obstruction associated with RS are included. The results of the survey and our comprehensive review of the literature emphasize that there remains uncertainty regarding the best approach to treating Robin sequence.
Collapse
Affiliation(s)
| | | | | | - Anne Greenough
- Department of Women and Children’s Health, Faculty of Life Sciences and Medicine, King’s College London, London SE5 9RS, UK
| |
Collapse
|
7
|
Zhang CY, Cleri M, Woodgate T, Ramirez Gilliland P, Bansal S, Aviles Verdera J, Uus AU, Kyriakopoulou V, St Clair K, Story L, Hall M, Pushparajah K, Hajnal JV, Lloyd D, Rutherford MA, Hutter J, Payette K. Structural and functional fetal cardiac imaging using low field (0.55 T) MRI. Front Pediatr 2024; 12:1418645. [PMID: 39318614 PMCID: PMC11421172 DOI: 10.3389/fped.2024.1418645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose This study aims to investigate the feasibility of using a commercially available clinical 0.55 T MRI scanner for comprehensive structural and functional fetal cardiac imaging. Methods Balanced steady-state free precession (bSSFP) and phase contrast (PC) sequences were optimized by in utero studies consisting of 14 subjects for bSSFP optimization and 9 subjects for PC optimization. The signal-to-noise ratio (SNR) of the optimized sequences were investigated. Flow measurements were performed in three vessels, umbilical vein (UV), descending aorta (DAo), and superior vena cava (SVC) using the PC sequences and retrospective gating. The optimized bSSFP, PC and half-Fourier single shot turbo spin-echo (HASTE) sequences were acquired in a cohort of 21 late gestation-age fetuses (>36 weeks) to demonstrate the feasibility of a fetal cardiac exam at 0.55 T. The HASTE stacks were reconstructed to create an isotropic reconstruction of the fetal thorax, followed by automatic great vessel segmentations. The intra-abdominal UV blood flow measurements acquired with MRI were compared to ultrasound UV free-loop flow measurements. Results Using the parameters from 1.5 T as a starting point, the bSSFP sequences were optimized at 0.55 T, resulting in a 1.6-fold SNR increase and improved image contrast compared to starting parameters, as well as good visibility of most cardiac structures as rated by two experienced fetal cardiologists. The PC sequence resulted in increased SNR and reduced scan time, subsequent retrospective gating enabled successful blood flow measurements. The reconstructions and automatic great vessel segmentations showed good quality, with 18/21 segmentations requiring no or minor refinements. Blood flow measurements were within the expected range. A comparison of the UV measurements performed with ultrasound and MRI showed agreement between the two sets of measurements, with better correlation observed at lower flows. Conclusion We demonstrated the feasibility of low-field (0.55 T) MRI for fetal cardiac imaging. The reduced SNR at low field strength can be effectively compensated for by strategically optimizing sequence parameters. Major fetal cardiac structures and vessels were consistently visualized, and flow measurements were successfully obtained. The late gestation study demonstrated the robustness and reproducibility at low field strength. MRI performed at 0.55 T is a viable option for fetal cardiac examination.
Collapse
Affiliation(s)
- Charlie Yuli Zhang
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Michela Cleri
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- London Collaborative Ultra High Field Systems (LoCUS), King’s College London, London, United Kingdom
| | - Tomas Woodgate
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Paula Ramirez Gilliland
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Simi Bansal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alena U. Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Vanessa Kyriakopoulou
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Kamilah St Clair
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Kuberan Pushparajah
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - David Lloyd
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
van Poppel MPM, Lloyd DFA, Steinweg JK, Mathur S, Wong J, Zidere V, Speggiorin S, Jogeesvaran H, Razavi R, Simpson JM, Pushparajah K, Vigneswaran TV. Double aortic arch: a comparison of fetal cardiovascular magnetic resonance, postnatal computed tomography and surgical findings. J Cardiovasc Magn Reson 2024; 26:101053. [PMID: 38960285 PMCID: PMC11417329 DOI: 10.1016/j.jocmr.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND In double aortic arch (DAA), one of the arches can demonstrate atretic portions postnatally, leading to diagnostic uncertainty due to overlap with isolated right aortic arch (RAA) variants. The main objective of this study is to demonstrate the morphological evolution of different DAA phenotypes from prenatal to postnatal life using three-dimensional (3D) fetal cardiac magnetic resonance (CMR) imaging and postnatal computed tomography (CT)/CMR imaging. METHODS Three-dimensional fetal CMR was undertaken in fetuses with suspected DAA over a 6-year period (January 2016-January 2022). All cases with surgical confirmation of DAA were retrospectively studied and morphology on fetal CMR was compared to postnatal CT/CMR and surgical findings. RESULTS Thirty-four fetuses with surgically confirmed DAA underwent fetal CMR. The RAA was dominant in 32/34 (94%). Postnatal CT/CMR was undertaken at a median age of 3.3 months (interquartile range 2.0-3.9) demonstrating DAA with patency of both arches in 10/34 (29%), with 7 showing signs of coarctation of the left aortic arch (LAA). The LAA isthmus was not present on CT/CMR in 22/34 (65%), and the transverse arch between left carotid and left subclavian artery was not present in 2 cases. CONCLUSION Fetal CMR provides novel insights into perinatal evolution of DAA. The smaller LAA can develop coarctation or atresia related to postnatal constriction of the arterial duct, making diagnosis of DAA challenging with contrast-enhanced CT/CMR. This highlights the potentially important role for prenatal 3D vascular imaging and might improve the interpretation of postnatal imaging.
Collapse
Affiliation(s)
- Milou P M van Poppel
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK.
| | - David F A Lloyd
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Johannes K Steinweg
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK
| | - Sujeev Mathur
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - James Wong
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Simone Speggiorin
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Haran Jogeesvaran
- Department of Radiology, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Reza Razavi
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - John M Simpson
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| | - Trisha V Vigneswaran
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
10
|
Lewandowski AJ, Sattwika PD. Holistic MRI Acquisition in Preeclamptic Pregnancies: A New Avenue for Clinical Investigations? Hypertension 2024; 81:848-850. [PMID: 38507512 DOI: 10.1161/hypertensionaha.124.22710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Affiliation(s)
- Adam James Lewandowski
- Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (A.J.L., P.D.S.)
| | - Prenali Dwisthi Sattwika
- Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (A.J.L., P.D.S.)
- Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia (P.D.S.)
- Clinical Epidemiology and Biostatistics Unit, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Indonesia (P.D.S.)
| |
Collapse
|
11
|
Uus AU, Hall M, Grigorescu I, Avena Zampieri C, Egloff Collado A, Payette K, Matthew J, Kyriakopoulou V, Hajnal JV, Hutter J, Rutherford MA, Deprez M, Story L. Automated body organ segmentation, volumetry and population-averaged atlas for 3D motion-corrected T2-weighted fetal body MRI. Sci Rep 2024; 14:6637. [PMID: 38503833 PMCID: PMC10950851 DOI: 10.1038/s41598-024-57087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range.
Collapse
Affiliation(s)
- Alena U Uus
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Megan Hall
- Centre for the Developing Brain, King's College London, London, UK
- Department of Women and Children's Health, King's College London, London, UK
- Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Irina Grigorescu
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Carla Avena Zampieri
- Centre for the Developing Brain, King's College London, London, UK
- Department of Women and Children's Health, King's College London, London, UK
| | | | - Kelly Payette
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Jacqueline Matthew
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | | | - Joseph V Hajnal
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Jana Hutter
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | | | - Maria Deprez
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, London, UK
- Department of Women and Children's Health, King's College London, London, UK
- Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Zhang C, Liu J, Bian L, Xiang S, Liu J, Guan W. FMB: Dual-view fusion and registration of 2D DSA images and 3D MRA images for neurointerventional-based procedures. Comput Biol Med 2024; 171:107987. [PMID: 38350395 DOI: 10.1016/j.compbiomed.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Alignment between preoperative images (high-resolution magnetic resonance imaging, magnetic resonance angiography) and intraoperative medical images (digital subtraction angiography) is currently required in neurointerventional surgery. Treating a lesion is usually guided by a 2D DSA silhouette image. DSA silhouette images increase procedure time and radiation exposure time due to the lack of anatomical information, but information from MRA images can be utilized to compensate for this in order to improve procedure efficiency. In this paper, we abstract this into the problem of relative pose and correspondence between a 3D point and its 2D projection. Multimodal images have a large amount of noise and anomalies that are difficult to resolve using conventional methods. According to our research, there are fewer multimodal fusion methods to perform the full procedure. APPROACH Therefore, the paper introduces a registration pipeline for multimodal images with fused dual views is presented. Deep learning methods are introduced to accomplish feature extraction of multimodal images to automate the process. Besides, the paper proposes a registration method based on the Factor of Maximum Bounds (FMB). The key insights are to relax the constraints on the lower bound, enhance the constraints on the upper bounds, and mine more local consensus information in the point set using a second perspective to generate accurate pose estimation. MAIN RESULTS Compared to existing 2D/3D point set registration methods, this method utilizes a different problem formulation, searches the rotation and translation space more efficiently, and improves registration speed. SIGNIFICANCE Experiments with synthesized and real data show that the proposed method was achieved in accuracy, robustness, and time efficiency.
Collapse
Affiliation(s)
- Chenyu Zhang
- College of Electronic Information Engineering, Beihang University, 100191, Beijing, China.
| | - Jiaxin Liu
- College of Electronic Information Engineering, Beihang University, 100191, Beijing, China.
| | - Lisong Bian
- Neurosurgery Department, Haidian Hospital, 100080, Beijing, China.
| | - Sishi Xiang
- Neurosurgery Department, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| | - Jun Liu
- College of Electronic Information Engineering, Beihang University, 100191, Beijing, China.
| | - Wenxue Guan
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
Desmond A, Nguyen K, Watterson CT, Sklansky M, Satou GM, Prosper AE, Garg M, Van Arsdell GS, Finn JP, Afshar Y. Integration of Prenatal Cardiovascular Magnetic Resonance Imaging in Congenital Heart Disease. J Am Heart Assoc 2023; 12:e030640. [PMID: 37982254 PMCID: PMC10727279 DOI: 10.1161/jaha.123.030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Standard of care echocardiography can have limited diagnostic accuracy in certain cases of fetal congenital heart disease. Prenatal cardiovascular magnetic resonance (CMR) imaging has potential to provide additional anatomic imaging information, including excellent soft tissue images in multiple planes, improving prenatal diagnostics and in utero hemodynamic assessment. We conducted a literature review of fetal CMR, including its development and implementation into clinical practice, and compiled and analyzed the results. Our findings included the fact that technological and innovative approaches are required to overcome some of the challenges in fetal CMR, in part due to the dynamic nature of the fetal heart. A number of reconstruction algorithms and cardiac gating strategies have been developed over time to improve fetal CMR image quality, allowing unique investigations into fetal hemodynamics, oxygenation, and growth. Studies demonstrate that incorporating CMR in the prenatal arena influences postnatal clinical management. With further refinement and experience, fetal CMR in congenital heart disease continues to evolve and demonstrate ongoing potential as a complementary imaging modality to fetal echocardiography in the care of these patients.
Collapse
Affiliation(s)
- Angela Desmond
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Kim‐Lien Nguyen
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | | | - Mark Sklansky
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Gary M. Satou
- Division of Pediatric Cardiology, Department of PediatricsDavid Geffen School of Medicine, UCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Ashley E. Prosper
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Meena Garg
- Division of Neonatology, Department of PediatricsUCLA Mattel Children’s HospitalLos AngelesCAUSA
| | - Glen S. Van Arsdell
- Division of Cardiac Surgery, Department of SurgeryDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - J. Paul Finn
- Diagnostic Cardiovascular Imaging Laboratory, Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Division of CardiologyDavid Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare SystemLos AngelesCAUSA
- Department of Radiological SciencesDavid Geffen School of Medicine, UCLALos AngelesCAUSA
| | - Yalda Afshar
- Division of Maternal Fetal Medicine, Department of Obstetrics and GynecologyDavid Geffen School of Medicine, UCLALos AngelesCAUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
14
|
Aviles Verdera J, Story L, Hall M, Finck T, Egloff A, Seed PT, Malik SJ, Rutherford MA, Hajnal JV, Tomi-Tricot R, Hutter J. Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy. Radiology 2023; 309:e223050. [PMID: 37847139 PMCID: PMC10623193 DOI: 10.1148/radiol.223050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023]
Abstract
Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.
Collapse
Affiliation(s)
- Jordina Aviles Verdera
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Lisa Story
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Megan Hall
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Tom Finck
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Alexia Egloff
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Paul T. Seed
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Shaihan J. Malik
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Mary A. Rutherford
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Joseph V. Hajnal
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Raphaël Tomi-Tricot
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Jana Hutter
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| |
Collapse
|
15
|
Uus AU, Hall M, Grigorescu I, Zampieri CA, Collado AE, Payette K, Matthew J, Kyriakopoulou V, Hajnal JV, Hutter J, Rutherford MA, Deprez M, Story L. 3D T2w fetal body MRI: automated organ volumetry, growth charts and population-averaged atlas. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290751. [PMID: 37398121 PMCID: PMC10312818 DOI: 10.1101/2023.05.31.23290751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Structural fetal body MRI provides true 3D information required for volumetry of fetal organs. However, current clinical and research practice primarily relies on manual slice-wise segmentation of raw T2-weighted stacks, which is time consuming, subject to inter- and intra-observer bias and affected by motion-corruption. Furthermore, there are no existing standard guidelines defining a universal approach to parcellation of fetal organs. This work produces the first parcellation protocol of the fetal body organs for motion-corrected 3D fetal body MRI. It includes 10 organ ROIs relevant to fetal quantitative volumetry studies. We also introduce the first population-averaged T2w MRI atlas of the fetal body. The protocol was used as a basis for training of a neural network for automated organ segmentation. It showed robust performance for different gestational ages. This solution minimises the need for manual editing and significantly reduces time. The general feasibility of the proposed pipeline was also assessed by analysis of organ growth charts created from automated parcellations of 91 normal control 3T MRI datasets that showed expected increase in volumetry during 22-38 weeks gestational age range. In addition, the results of comparison between 60 normal and 12 fetal growth restriction datasets revealed significant differences in organ volumes.
Collapse
Affiliation(s)
- Alena U. Uus
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Megan Hall
- Centre for the Developing Brain, King’s College London, London, UK
- Department of Women and Children’s Health, King’s College London, London, UK
- Fetal Medicine Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Irina Grigorescu
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Carla Avena Zampieri
- Centre for the Developing Brain, King’s College London, London, UK
- Department of Women and Children’s Health, King’s College London, London, UK
| | | | - Kelly Payette
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Jacqueline Matthew
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | | | - Joseph V. Hajnal
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Jana Hutter
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | | | - Maria Deprez
- School of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Lisa Story
- Centre for the Developing Brain, King’s College London, London, UK
- Department of Women and Children’s Health, King’s College London, London, UK
- Fetal Medicine Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Manganaro L, Capuani S, Gennarini M, Miceli V, Ninkova R, Balba I, Galea N, Cupertino A, Maiuro A, Ercolani G, Catalano C. Fetal MRI: what's new? A short review. Eur Radiol Exp 2023; 7:41. [PMID: 37558926 PMCID: PMC10412514 DOI: 10.1186/s41747-023-00358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 08/11/2023] Open
Abstract
Fetal magnetic resonance imaging (fetal MRI) is usually performed as a second-level examination following routine ultrasound examination, generally exploiting morphological and diffusion MRI sequences. The objective of this review is to describe the novelties and new applications of fetal MRI, focusing on three main aspects: the new sequences with their applications, the transition from 1.5-T to 3-T magnetic field, and the new applications of artificial intelligence software. This review was carried out by consulting the MEDLINE references (PubMed) and including only peer-reviewed articles written in English. Among the most important novelties in fetal MRI, we find the intravoxel incoherent motion model which allow to discriminate the diffusion from the perfusion component in fetal and placenta tissues. The transition from 1.5-T to 3-T magnetic field allowed for higher quality images, thanks to the higher signal-to-noise ratio with a trade-off of more frequent artifacts. The application of motion-correction software makes it possible to overcome movement artifacts by obtaining higher quality images and to generate three-dimensional images useful in preoperative planning.Relevance statementThis review shows the latest developments offered by fetal MRI focusing on new sequences, transition from 1.5-T to 3-T magnetic field and the emerging role of AI software that are paving the way for new diagnostic strategies.Key points• Fetal magnetic resonance imaging (MRI) is a second-line imaging after ultrasound.• Diffusion-weighted imaging and intravoxel incoherent motion sequences provide quantitative biomarkers on fetal microstructure and perfusion.• 3-T MRI improves the detection of cerebral malformations.• 3-T MRI is useful for both body and nervous system indications.• Automatic MRI motion tracking overcomes fetal movement artifacts and improve fetal imaging.
Collapse
Affiliation(s)
- Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy.
| | - Silvia Capuani
- National Research Council (CNR),, Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Valentina Miceli
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Roberta Ninkova
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Angelica Cupertino
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Alessandra Maiuro
- National Research Council (CNR),, Institute for Complex Systems (ISC) c/o Physics Department Sapienza University of Rome, Rome, Italy
| | - Giada Ercolani
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Udine M, Loke YH, Goudar S, Donofrio MT, Truong U, Krishnan A. The current state and potential innovation of fetal cardiac MRI. Front Pediatr 2023; 11:1219091. [PMID: 37520049 PMCID: PMC10375913 DOI: 10.3389/fped.2023.1219091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Fetal cardiac MRI is a rapidly evolving form of diagnostic testing with utility as a complementary imaging modality for the diagnosis of congenital heart disease and assessment of the fetal cardiovascular system. Previous technical limitations without cardiac gating for the fetal heart rate has been overcome with recent technology. There is potential utility of fetal electrocardiography for direct cardiac gating. In addition to anatomic assessment, innovative technology has allowed for assessment of blood flow, 3D datasets, and 4D flow, providing important insight into fetal cardiovascular physiology. Despite remaining technical barriers, with increased use of fCMR worldwide, it will become an important clinical tool to improve the prenatal care of fetuses with CHD.
Collapse
Affiliation(s)
- Michelle Udine
- Division of Cardiology, Children’s National Hospital, Washington, DC, United States
| | | | | | | | | | | |
Collapse
|
18
|
Uus AU, Egloff Collado A, Roberts TA, Hajnal JV, Rutherford MA, Deprez M. Retrospective motion correction in foetal MRI for clinical applications: existing methods, applications and integration into clinical practice. Br J Radiol 2023; 96:20220071. [PMID: 35834425 PMCID: PMC7614695 DOI: 10.1259/bjr.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023] Open
Abstract
Foetal MRI is a complementary imaging method to antenatal ultrasound. It provides advanced information for detection and characterisation of foetal brain and body anomalies. Even though modern single shot sequences allow fast acquisition of 2D slices with high in-plane image quality, foetal MRI is intrinsically corrupted by motion. Foetal motion leads to loss of structural continuity and corrupted 3D volumetric information in stacks of slices. Furthermore, the arbitrary and constantly changing position of the foetus requires dynamic readjustment of acquisition planes during scanning.
Collapse
Affiliation(s)
- Alena U. Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | - Alexia Egloff Collado
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | | | | | - Mary A. Rutherford
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| | - Maria Deprez
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' Hospital, London, United Kingdom
| |
Collapse
|
19
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
20
|
Hermida U, van Poppel MPM, Lloyd DFA, Steinweg JK, Vigneswaran TV, Simpson JM, Razavi R, De Vecchi A, Pushparajah K, Lamata P. Learning the Hidden Signature of Fetal Arch Anatomy: a Three-Dimensional Shape Analysis in Suspected Coarctation of the Aorta. J Cardiovasc Transl Res 2023; 16:738-747. [PMID: 36301513 PMCID: PMC10299929 DOI: 10.1007/s12265-022-10335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Neonatal coarctation of the aorta (CoA) is a common congenital heart defect. Its antenatal diagnosis remains challenging, and its pathophysiology is poorly understood. We present a novel statistical shape modeling (SSM) pipeline to study the role and predictive value of arch shape in CoA in utero. Cardiac magnetic resonance imaging (CMR) data of 112 fetuses with suspected CoA was acquired and motion-corrected to three-dimensional volumes. Centerlines from fetal arches were extracted and used to build a statistical shape model capturing relevant anatomical variations. A linear discriminant analysis was used to find the optimal axis between CoA and false positive cases. The CoA shape risk score classified cases with an area under the curve of 0.907. We demonstrate the feasibility of applying a SSM pipeline to three-dimensional fetal CMR data while providing novel insights into the anatomical determinants of CoA and the relevance of in utero arch anatomy for antenatal diagnosis of CoA.
Collapse
Affiliation(s)
- Uxio Hermida
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 5Th Floor Becket House, 1 Lambeth Palace Road, London, SE1 7EH, UK
| | - Milou P M van Poppel
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - David F A Lloyd
- Department of Perinatal Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Johannes K Steinweg
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Trisha V Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
- Harris Birthright Centre, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - John M Simpson
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
- Harris Birthright Centre, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - Reza Razavi
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Adelaide De Vecchi
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 5Th Floor Becket House, 1 Lambeth Palace Road, London, SE1 7EH, UK
| | - Kuberan Pushparajah
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 5Th Floor Becket House, 1 Lambeth Palace Road, London, SE1 7EH, UK.
| |
Collapse
|
21
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
22
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
24
|
Faruk Topaloğlu Ö, Koplay M, Kılınçer A, Örgül G, Sedat Durmaz M. Quantitative measurements and morphological evaluation of fetal cardiovascular structures with fetal cardiac MRI. Eur J Radiol 2023; 163:110828. [PMID: 37059007 DOI: 10.1016/j.ejrad.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Fetal cardiac magnetic resonance imaging (FCMR) can be used as an imaging modality in fetal cardiovascular evaluation as studied in recent years. We aimed to evaluate cardiovascular morphology using FCMR and to observe the development of cardiovascular structures according to gestational age (GA) in pregnant women. METHOD In our prospective study, 120 pregnant women between 19 and 37 weeks of gestation in whom absence of cardiac anomaly could not be excluded by ultrasonography (US) or, who were referred to us for magnetic resonance imaging (MRI) for suspected non-cardiovascular system pathology, were included. According to the axis of the fetal heart, axial, coronal, and sagittal multiplanar steady-state free precession (SSFP) and 'real time' untriggered SSFP sequence, respectively, were obtained. The morphology of the cardiovascular structures and their relationships with each other were evaluated, and their sizes were measured. RESULTS Seven cases (6.3%) contained motion artefacts that did not allow the assessment and measurement of cardiovascular morphology, and three (2.9%) cases with cardiac pathology in the analysed images were excluded from the study. The study included a total of 100 cases. Cardiac chamber diameter, heart diameter, heart length, heart area, thoracic diameter, and thoracic area were measured in all fetuses. The diameters of the aorta ascendens (Aa), aortic isthmus (Ai), aorta descendens (Ad), main pulmonary artery (MPA), ductus arteriosus (DA, superior vena cava (SVC), and inferior vena cava (IVC) were measured in all fetuses. The left pulmonary artery (LPA) was visualised in 89 patients (89%). The right PA (RPA) was visualised in 99 (99%) cases. Four pulmonary veins (PVs) were seen in 49 (49%) cases, three in 33 (33%), and two in 18 (18%). High correlation values were found for all diameter measurements performed with GW. CONCLUSION In cases where US cannot achieve adequate image quality, FCMR can contribute to diagnosis. The very short acquisition time and parallel imaging technique with the SSFP sequence allow for adequate image quality without maternal or fetal sedation.
Collapse
Affiliation(s)
| | - Mustafa Koplay
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Abidin Kılınçer
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Gökçen Örgül
- Department of Obstetrics and Gynecology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Mehmet Sedat Durmaz
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
25
|
Dütemeyer V, Cannie MM, Badr DA, Kadji C, Carlin A, Jani JC. Prevalence of and risk factors for failure of fetal magnetic resonance imaging due to maternal claustrophobia or malaise. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:392-398. [PMID: 36773302 DOI: 10.1002/uog.26045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE To evaluate the prevalence of and risk factors for failure of fetal magnetic resonance imaging (MRI) due to maternal claustrophobia or malaise. METHODS This retrospective cohort study included pregnant women who underwent fetal MRI for clinical indications or research purposes between January 2012 and December 2019 at a single center. One group included patients who completed the entire examination and the other group inlcuded patients who interrupted their MRI examination due to claustrophobia/malaise. We estimated the rate of MRI failure due to maternal claustrophobia/malaise and compared maternal and clinical variables between the two groups. Multiple logistic regression analysis was performed to identify independent risk factors for claustrophobia/malaise during MRI examination in pregnancy. RESULTS Among 3413 patients who agreed to undergo fetal MRI, the prevalence of failure because of claustrophobia or malaise was 2.1%. The rate of claustrophobia/malaise in patients who underwent MRI for a clinical indication was lower compared to that in patients who underwent MRI for research purposes only (0.6% (4/696) vs 2.4% (65/2678); P = 0.003). Fetal MRI performed for research purposes only (adjusted odds ratio (aOR), 0.05 (95% CI, 0.01-0.48); P = 0.003), higher maternal age (aOR, 1.07 (95% CI, 1.02-1.12); P = 0.003) and later gestational age at the time of fetal MRI (aOR, 1.46 (95% CI, 1.16-2.04); P = 0.008) were independent risk factors for claustrophobia/malaise. Shorter fetal MRI duration (aOR, 0.77 (95% CI, 0.63-0.88); P = 0.001) was also associated with claustrophobia/malaise during the procedure. Body mass index, ethnic origin, multiple pregnancy, being parous and size of the magnetic bore were not associated with MRI failure due to claustrophobia/malaise. CONCLUSION The rate of fetal MRI failure due to claustrophobia or malaise was found to be low, particularly when the examination was performed for a clinical indication, and should not be considered a common problem in the pregnant population. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- V Dütemeyer
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - M M Cannie
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - D A Badr
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Kadji
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Carlin
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | - J C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
26
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Isaak A, Pieper CC, Kuetting D, Faridi B, Strizek B, Attenberger U, Kipfmueller F, Herberg U, Geipel A, Luetkens JA. Fetal Cardiac Cine MRI with Doppler US Gating in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220129. [PMID: 36860838 PMCID: PMC9969216 DOI: 10.1148/ryct.220129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023]
Abstract
Purpose To apply Doppler US (DUS)-gated fetal cardiac cine MRI in clinical routine and investigate diagnostic performance in complex congenital heart disease (CHD) compared with that of fetal echocardiography. Materials and Methods In this prospective study (May 2021 to March 2022), women with fetuses with CHD underwent fetal echocardiography and DUS-gated fetal cardiac MRI on the same day. For MRI, balanced steady-state free precession cine images were acquired in the axial and optional sagittal and/or coronal orientations. Overall image quality was assessed on a four-point Likert scale (from 1 = nondiagnostic to 4 = good image quality). The presence of abnormalities in 20 fetal cardiovascular features was independently assessed by using both modalities. The reference standard was postnatal examination results. Differences in sensitivities and specificities were determined by using a random-effects model. Results The study included 23 participants (mean age, 32 years ± 5 [SD]; mean gestational age, 36 weeks ± 1). Fetal cardiac MRI was completed in all participants. The median overall image quality of DUS-gated cine images was 3 (IQR, 2.5-4). In 21 of 23 participants (91%), underlying CHD was correctly assessed by using fetal cardiac MRI. In one case, the correct diagnosis was made by using MRI only (situs inversus and congenitally corrected transposition of the great arteries). Sensitivities (91.8% [95% CI: 85.7, 95.1] vs 93.6% [95% CI: 88.8, 96.2]; P = .53) and specificities (99.9% [95% CI: 99.2, 100] vs 99.9% [95% CI: 99.5, 100]; P > .99) for the detection of abnormal cardiovascular features were comparable between MRI and echocardiography, respectively. Conclusion Using DUS-gated fetal cine cardiac MRI resulted in performance comparable with that of using fetal echocardiography for diagnosing complex fetal CHD.Keywords: Pediatrics, MR-Fetal (Fetal MRI), Cardiac, Heart, Congenital, Fetal Imaging, Cardiac MRI, Prenatal, Congenital Heart DiseaseClinical trial registration no. NCT05066399 Supplemental material is available for this article. © RSNA, 2023See also the commentary by Biko and Fogel in this issue.
Collapse
|
27
|
Piek M, Ryd D, Töger J, Testud F, Hedström E, Aletras AH. Fetal 3D cardiovascular cine image acquisition using radial sampling and compressed sensing. Magn Reson Med 2023; 89:594-604. [PMID: 36156292 PMCID: PMC10087603 DOI: 10.1002/mrm.29467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.
Collapse
Affiliation(s)
- Marjolein Piek
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
28
|
Liu K, Zhu M, Zhang YQ, Chen LJ, Dong SZ. Utility of fetal cardiac magnetic resonance imaging in assessing the cardiac axis in fetuses with congenital heart disease. Pediatr Radiol 2023; 53:910-919. [PMID: 36602571 DOI: 10.1007/s00247-022-05582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fetal dedicated echocardiography is the standard to measure the fetal cardiac axis. However, fetal screening ultrasound (US) or fetal dedicated echocardiography may be technically limited. OBJECTIVE The purpose of this study was to explore the accuracy of fetal cardiac magnetic resonance imaging (MRI) to measure the cardiac axis in fetuses with congenital heart disease as an adjunct to fetal dedicated echocardiography and to assess the predictive value of fetal cardiac MRI measurements in distinguishing healthy fetuses from fetuses with congenital heart disease. MATERIALS AND METHODS This is a retrospective study of fetuses referred to our hospital for a fetal cardiac MRI from November 2019 to December 2021. Cardiac axes were measured in the 4-chamber view of the fetal heart using fetal cardiac MRI and dedicated echocardiography, or only using fetal cardiac MRI when screening US was technically limited. The fetuses were divided into a congenital heart disease group and a healthy control group. We used Bland-Altman analysis and the intraclass correlation coefficient (ICC) to assess the agreement of cardiac axis measurements in fetuses with congenital heart disease obtained by cardiac MRI and by fetal dedicated echocardiography. Receiver operating characteristic (ROC) curve analysis of the fetal cardiac axes in the congenital heart disease and healthy fetus groups assessed the predictive value of the cardiac axis measurements. RESULTS This retrospective study included 431 women (162 carrying fetuses with congenital heart disease, 269 carrying healthy fetuses). Cardiac axes were measured in the 162 fetuses with congenital heart disease using fetal cardiac MRI and dedicated echocardiography. Cardiac axes were measured in the 269 healthy control fetuses using fetal cardiac MRI when fetal screening US was technically limited. The interobserver analysis and intraobserver analysis showed that the cardiac axis measured by fetal cardiac MRI and fetal dedicated echocardiography was repeatable (ICC>0.90). In 162 fetuses with congenital heart disease, Bland-Altman analysis showed a strong agreement between cardiac MRI and fetal dedicated echocardiography measurements for the cardiac axis. The ICC for the cardiac axis values between cardiac MRI and fetal dedicated echocardiography measurements was 0.99. In fetuses with congenital heart disease, 64.2% (104/162) had an abnormal cardiac axis. For the fetal cardiac axis in both the 162 fetuses with congenital heart disease and the 269 healthy fetuses, the area under the ROC curve reached 0.85 (95% confidence interval: 0.80-0.89; P<0.0001). CONCLUSION The cardiac axis can be accurately measured using fetal cardiac MRI when fetal dedicated echocardiography/fetal screening US is technically limited. The cardiac axis measurements by fetal cardiac MRI are consistent with known cardiac axis measurements by fetal dedicated echocardiography. The frequency of abnormal cardiac axis depends on the type of congenital heart disease.
Collapse
Affiliation(s)
- Ke Liu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yu-Qi Zhang
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Jun Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
29
|
Moerdijk AS, Claessens NH, van Ooijen IM, van Ooij P, Alderliesten T, Grotenhuis HB, Benders MJNL, Bohte AE, Breur JMPJ, Charisopoulou D, Clur SA, Cornette JMJ, Fejzic Z, Franssen MTM, Frerich S, Geerdink LM, Go ATJI, Gommers S, Helbing WA, Hirsch A, Holtackers RJ, Klein WM, Krings GJ, Lamb HJ, Nijman M, Pajkrt E, Planken RN, Schrauben EM, Steenhuis TJ, ter Heide H, Vanagt WYR, van Beynum IM, van Gaalen MD, van Iperen GG, van Schuppen J, Willems TP, Witters I. Fetal MRI of the heart and brain in congenital heart disease. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:59-68. [PMID: 36343660 DOI: 10.1016/s2352-4642(22)00249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
Antenatal assessment of congenital heart disease and associated anomalies by ultrasound has improved perinatal care. Fetal cardiovascular MRI and fetal brain MRI are rapidly evolving for fetal diagnostic testing of congenital heart disease. We give an overview on the use of fetal cardiovascular MRI and fetal brain MRI in congenital heart disease, focusing on the current applications and diagnostic yield of structural and functional imaging during pregnancy. Fetal cardiovascular MRI in congenital heart disease is a promising supplementary imaging method to echocardiography for the diagnosis of antenatal congenital heart disease in weeks 30-40 of pregnancy. Concomitant fetal brain MRI is superior to brain ultrasound to show the complex relationship between fetal haemodynamics in congenital heart disease and brain development.
Collapse
Affiliation(s)
- Anouk S Moerdijk
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nathalie Hp Claessens
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Inge M van Ooijen
- Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim van Ooij
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas Alderliesten
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Department of Neonatology, Division of Woman and Baby, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Szabo A, Sun L, Seed M. Fetal Cardiovascular Magnetic Resonance. MAGNETIC RESONANCE IMAGING OF CONGENITAL HEART DISEASE 2023:361-382. [DOI: 10.1007/978-3-031-29235-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Beer M, Schönnagel B, Herrmann J, Klömpken S, Schaal M, Kaestner M, Apitz C, Brunner H. Non-invasive pediatric cardiac imaging-current status and further perspectives. Mol Cell Pediatr 2022; 9:21. [PMID: 36575291 PMCID: PMC9794482 DOI: 10.1186/s40348-022-00153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Non-invasive cardiac imaging has a growing role in diagnosis, differential diagnosis, therapy planning, and follow-up in children and adolescents with congenital and acquired cardiac diseases. This review is based on a systematic analysis of international peer-reviewed articles and additionally presents own clinical experiences. It provides an overview of technical advances, emerging clinical applications, and the aspect of artificial intelligence. MAIN BODY The main imaging modalities are echocardiography, CT, and MRI. For echocardiography, strain imaging allows a novel non-invasive assessment of tissue integrity, 3D imaging rapid holistic overviews of anatomy. Fast cardiac CT imaging new techniques-especially for coronary assessment as the main clinical indication-have significantly improved spatial and temporal resolution in adjunct with a major reduction in ionizing dose. For cardiac MRI, assessment of tissue integrity even without contrast agent application by mapping sequences is a major technical breakthrough. Fetal cardiac MRI is an emerging technology, which allows structural and functional assessment of fetal hearts including even 4D flow analyses. Last but not least, artificial intelligence will play an important role for improvements of data acquisition and interpretation in the near future. CONCLUSION Non-invasive cardiac imaging plays an integral part in the workup of children with heart disease. In recent years, its main application congenital heart disease has been widened for acquired cardiac diseases.
Collapse
Affiliation(s)
- Meinrad Beer
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Björn Schönnagel
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herrmann
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Steffen Klömpken
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Matthias Schaal
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Michael Kaestner
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Christian Apitz
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Horst Brunner
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
32
|
Uus AU, van Poppel MPM, Steinweg JK, Grigorescu I, Ramirez Gilliland P, Roberts TA, Egloff Collado A, Rutherford MA, Hajnal JV, Lloyd DFA, Pushparajah K, Deprez M. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation. J Cardiovasc Magn Reson 2022; 24:71. [PMID: 36517850 PMCID: PMC9753334 DOI: 10.1186/s12968-022-00902-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images.
Collapse
Affiliation(s)
- Alena U Uus
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Milou P M van Poppel
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Johannes K Steinweg
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Irina Grigorescu
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - Thomas A Roberts
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | - Joseph V Hajnal
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - David F A Lloyd
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Maria Deprez
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
33
|
Groun N, Villalba-Orero M, Lara-Pezzi E, Valero E, Garicano-Mena J, Le Clainche S. A novel data-driven method for the analysis and reconstruction of cardiac cine MRI. Comput Biol Med 2022; 151:106317. [PMID: 36442273 DOI: 10.1016/j.compbiomed.2022.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Cardiac cine magnetic resonance imaging (MRI) can be considered the optimal criterion for measuring cardiac function. This imaging technique can provide us with detailed information about cardiac structure, tissue composition and even blood flow, which makes it highly used in medical science. But due to the image time acquisition and several other factors the MRI sequences can easily get corrupted, causing radiologists to misdiagnose 40 million people worldwide each and every single year. Hence, the urge to decrease these numbers, researchers from different fields have been introducing novel tools and methods in the medical field. Aiming to the same target, we consider in this work the application of the higher order dynamic mode decomposition (HODMD) technique. The HODMD algorithm is a linear method, which was originally introduced in the fluid dynamics domain, for the analysis of complex systems. Nevertheless, the proposed method has extended its applicability to numerous domains, including medicine. In this work, HODMD in used to analyze sets of MR images of a heart, with the ultimate goal of identifying the main patterns and frequencies driving the heart dynamics. Furthermore, a novel interpolation algorithm based on singular value decomposition combined with HODMD is introduced, providing a three-dimensional reconstruction of the heart. This algorithm is applied (i) to reconstruct corrupted or missing images, and (ii) to build a reduced order model of the heart dynamics.
Collapse
Affiliation(s)
- Nourelhouda Groun
- ETSI Aeronáutica y del Espacio and ETSI Telecomunicación - Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Eusebio Valero
- ETSI Aeronáutica y del Espacio - Universidad Politécnica de Madrid, 28040 Madrid, Spain; Center for Computational Simulation (CCS), 28660 Boadilla del Monte, Spain
| | - Jesús Garicano-Mena
- ETSI Aeronáutica y del Espacio - Universidad Politécnica de Madrid, 28040 Madrid, Spain; Center for Computational Simulation (CCS), 28660 Boadilla del Monte, Spain
| | - Soledad Le Clainche
- ETSI Aeronáutica y del Espacio - Universidad Politécnica de Madrid, 28040 Madrid, Spain; Center for Computational Simulation (CCS), 28660 Boadilla del Monte, Spain.
| |
Collapse
|
34
|
The Evolution and Developing Importance of Fetal Magnetic Resonance Imaging in the Diagnosis of Congenital Cardiac Anomalies: A Systematic Review. J Clin Med 2022; 11:jcm11237027. [PMID: 36498602 PMCID: PMC9738414 DOI: 10.3390/jcm11237027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Magnetic Resonance Imaging (MRI) is a reliable method, with a complementary role to Ultrasound (US) Echocardiography, that can be used to fully comprehend and precisely diagnose congenital cardiac malformations. Besides the anatomical study of the fetal cardiovascular system, it allows us to study the function of the fetal heart, remaining, at the same time, a safe adjunct to the classic fetal echocardiography. MRI also allows for the investigation of cardiac and placental diseases by providing information about hematocrit, oxygen saturation, and blood flow in fetal vessels. It is crucial for fetal medicine specialists and pediatric cardiologists to closely follow the advances of fetal cardiac MRI in order to provide the best possible care. In this review, we summarize the advance in techniques and their practical utility to date.
Collapse
|
35
|
Ruiz-Solano E, Mitchell M. Rings and Slings: Not Such Simple Things. Curr Cardiol Rep 2022; 24:1495-1503. [PMID: 36190599 PMCID: PMC9556351 DOI: 10.1007/s11886-022-01764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Vascular rings are congenital malformations resulting from abnormal development of the great vessels, with the consequent encircling and compression of the trachea, esophagus, or both. We conducted a review of the current literature to identify the different management strategies that can be implemented based on the prognosis of each of these anomalies. RECENT FINDINGS Although most vascular rings occur in isolation, they can also be associated with other congenital cardiac and/or respiratory diseases; therefore, thorough investigation is necessary before definitive surgical repair. Clinical presentation varies from asymptomatic to severe, with both respiratory and digestive symptoms. Although early surgical results are acceptable, the long-term outcome is variable; therefore, there is still controversy regarding the appropriate timing of treatment. This is especially true with regard to the Kommerell diverticulum (KD) and in patients without symptoms at the time of initial surgical evaluation. As more sophisticated diagnostic tools have become available and more studies on adults affected by this condition have been published, understanding of this condition and its additional clinical implications has grown and appears to be tilting management toward earlier intervention.
Collapse
Affiliation(s)
- Elyan Ruiz-Solano
- Department of Surgery, Children’s Hospital Colorado, University of Colorado, Aurora, CO USA
| | - Michael Mitchell
- Herma Heart Institute, Children’s Wisconsin and Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
36
|
Sun J, Starc J, Stevens RM. Challenges of prenatal diagnosis of fetal hypoplastic aortic arch and predication of the need for intervention. J Card Surg 2022; 37:3711-3712. [PMID: 36047368 DOI: 10.1111/jocs.16837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Prenatal diagnosis of hypoplastic aortic arch and coarctation of aorta is still challenging and remains one of the most difficult cardiac defects to diagnose. The results reveal a significant improvement of prenatal diagnosis of hypoplastic arch and coarctation of aorta. The data also shows the significant overlapping of fetal aortic isthmus z score between the infants who need the arch procedure and those who do not.
Collapse
Affiliation(s)
- Jie Sun
- St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - James Starc
- St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Randy M Stevens
- St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
David AL, Spencer RN. Clinical Assessment of Fetal Well-Being and Fetal Safety Indicators. J Clin Pharmacol 2022; 62 Suppl 1:S67-S78. [PMID: 36106777 PMCID: PMC9544851 DOI: 10.1002/jcph.2126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/24/2022] [Indexed: 12/03/2022]
Abstract
Delivering safe clinical trials of novel therapeutics is central to enable pregnant women and their babies to access medicines for better outcomes. This review describes clinical monitoring of fetal well-being and safety. Current pregnancy surveillance includes regular antenatal checks of blood pressure and urine for signs of gestational hypertension. Fetal and placental development is assessed routinely using the first-trimester "dating" and mid-trimester "anomaly" ultrasound scans, but the detection of fetal anomalies can continue throughout pregnancy using targeted sonography or magnetic resonance imaging (MRI). Serial sonography can be used to assess fetal size, well-being, and placental function. Carefully defined reproducible imaging parameters, such as the head circumference (HC), abdominal circumference (AC), and femur length (FL), are combined to calculate an estimate of the fetal weight. Doppler analysis of maternal uterine blood flow predicts placental insufficiency, which is associated with poor fetal growth. Fetal doppler analysis can indicate circulatory decompensation and fetal hypoxia, requiring delivery to be expedited. Novel ways to assess fetal well-being and placental function using MRI, computerized cardiotocography (CTG), serum circulating fetoplacental proteins, and mRNA may improve the assessment of the safety and efficacy of maternal and fetal interventions. Progress has been made in how to define and grade clinical trial safety in pregnant women, the fetus, and neonate. A new system for improved safety monitoring for clinical trials in pregnancy, Maternal and Fetal Adverse Event Terminology (MFAET), describes 12 maternal and 18 fetal adverse event (AE) definitions and severity grading criteria developed through an international modified Delphi consensus process. This fills a vital gap in maternal and fetal translational medicine research.
Collapse
Affiliation(s)
- Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- National Institute for Health and Care Research (NIHR) University College London Hospitals NHS Foundation Trust (UCLH)Biomedical Research CentreLondonUK
| | - Rebecca N. Spencer
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonUK
- School of MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
38
|
The role of ultrasound and MRI in diagnosing of obstetrics cardiac disorders: A systematic review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Spanaki A, Kabir S, Stephenson N, van Poppel MPM, Benetti V, Simpson J. 3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool? J Cardiovasc Dev Dis 2022; 9:269. [PMID: 36005432 PMCID: PMC9410138 DOI: 10.3390/jcdd9080269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Echocardiography, CT and MRI have a crucial role in the management of congenital heart disease (CHD) patients. All of these modalities can be presented in a 2D or a 3D rendered format. The aim of this paper is to review the key advantages and potential limitations, as well as the future challenges of a 3D approach in each imaging modality. The focus of this review is on anatomic rather than functional assessment. Conventional 2D echocardiography presents limitations when imaging complex lesions, whereas 3D imaging depicts the anatomy in all dimensions. CT and MRI can visualise extracardiac vasculature and guide complex biventricular repair. Three-dimensional printed models can be used in depicting complex intracardiac relationships and defining the surgical strategy in specific lesions. Extended reality imaging retained dynamic cardiac motion holds great potential for planning surgical and catheter procedures. Overall, the use of 3D imaging has resulted in a better understanding of anatomy, with a direct impact on the surgical and catheter approach, particularly in more complex cases.
Collapse
Affiliation(s)
- Adriani Spanaki
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London SE1 7EH, UK
| | - Saleha Kabir
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London SE1 7EH, UK
| | - Natasha Stephenson
- School of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Milou P. M. van Poppel
- School of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Valentina Benetti
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London SE1 7EH, UK
| | - John Simpson
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London SE1 7EH, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
40
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
41
|
Uus AU, Grigorescu I, van Poppel MPM, Steinweg JK, Roberts TA, Rutherford MA, Hajnal JV, Lloyd DFA, Pushparajah K, Deprez M. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range. Med Image Anal 2022; 80:102484. [PMID: 35649314 PMCID: PMC7614011 DOI: 10.1016/j.media.2022.102484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 01/21/2023]
Abstract
Slice-to-volume registration (SVR) methods allow reconstruction of high-resolution 3D images from multiple motion-corrupted stacks. SVR-based pipelines have been increasingly used for motion correction for T2-weighted structural fetal MRI since they allow more informed and detailed diagnosis of brain and body anomalies including congenital heart defects (Lloyd et al., 2019). Recently, fully automated rigid SVR reconstruction of the fetal brain in the atlas space was achieved in Salehi et al. (2019) that used convolutional neural networks (CNNs) for segmentation and pose estimation. However, these CNN-based methods have not yet been applied to the fetal trunk region. Meanwhile, the existing rigid and deformable SVR (DSVR) solutions (Uus et al., 2020) for the fetal trunk region are limited by the requirement of manual input as well the narrow capture range of the classical gradient descent based registration methods that cannot resolve severe fetal motion frequently occurring at the early gestational age (GA). Furthermore, in our experience, the conventional 2D slice-wise CNN-based brain masking solutions are reportedly prone to errors that require manual corrections when applied on a wide range of acquisition protocols or abnormal cases in clinical setting. In this work, we propose a fully automated pipeline for reconstruction of the fetal thorax region for 21-36 weeks GA range T2-weighted MRI datasets. It includes 3D CNN-based intra-uterine localisation of the fetal trunk and landmark-guided pose estimation steps that allow automated DSVR reconstruction in the standard radiological space irrespective of the fetal trunk position or the regional stack coverage. The additional step for generation of the common template space and rejection of outliers provides the means for automated exclusion of stacks affected by low image quality or extreme motion. The pipeline was quantitatively evaluated on a series of experiments including fetal MRI datasets and simulated rotation motion. Furthermore, we performed a qualitative assessment of the image reconstruction quality in terms of the definition of vascular structures on 100 early (median 23.14 weeks) and late (median 31.79 weeks) GA group MRI datasets covering 21 to 36 weeks GA range.
Collapse
Affiliation(s)
- Alena U Uus
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Irina Grigorescu
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Milou P M van Poppel
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Johannes K Steinweg
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Thomas A Roberts
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - Joseph V Hajnal
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK; Centre for the Developing Brain, King's College London, London, SE1 7EH, UK
| | - David F A Lloyd
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Kuberan Pushparajah
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK; Department of Congenital Heart Disease, Evelina London Children's Hospital, London, SE1 7EH, UK
| | - Maria Deprez
- School of Imaging Sciences & Biomedical Engineering, King's College London, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
42
|
Van Poppel MPM, Zidere V, Simpson JM, Vigneswaran TV. Fetal echocardiographic markers to differentiate between a right and double aortic arch. Prenat Diagn 2022; 42:419-427. [PMID: 35060138 DOI: 10.1002/pd.6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To describe the fetal echocardiographic features of a double aortic arch (DAA) and secondly, to assess the performance of these features to differentiate between a right aortic arch with left duct (RAA-LD) in a blinded cohort of vascular rings. METHODS Review of records to identify surgically confirmed cases of DAA diagnosed prenatally from 2014 to 2018 (cohort-A). Prenatal echocardiograms were reviewed and the segments of the aortic arches anterior and posterior to the trachea, aortic isthmuses and the presence/absence of the Z-sign were described. The utility of these markers were assessed in a separate cohort (B) of fetuses with surgically confirmed cases of DAA or RAA-LD. RESULTS Cohort-A comprised 34 cases with DAA; there was a dominant RAA in 32/34 (94%) and balanced left aortic arch (LAA) and RAA in two cases. The proximal LAA was seen in 29/34 (85%), distal LAA in 15/34 (44%) and the LAA aortic isthmus in 4/34 (12%). The "Z" configuration was present in 29/34 (85%) cases. The most predictive marker for DAA in cohort-B was the Z-sign (sensitivity: 100%, specificity: 81%). CONCLUSION The "Z" sign is a useful differentiator between RAA-LD and DAA. The absence of visualization of the left aortic isthmus does not preclude the presence of a DAA.
Collapse
Affiliation(s)
- Milou P M Van Poppel
- Division of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- Harris Birthright Centre, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - John M Simpson
- Division of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- Harris Birthright Centre, Fetal Medicine Research Institute, King's College Hospital, London, UK
| | - Trisha V Vigneswaran
- Division of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- Harris Birthright Centre, Fetal Medicine Research Institute, King's College Hospital, London, UK
| |
Collapse
|
43
|
Schulz A, Lloyd DFA, van Poppel MPM, Roberts TA, Steinweg JK, Pushparajah K, Hajnal JV, Razavi R. Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Sci Rep 2022; 12:5395. [PMID: 35354868 PMCID: PMC8967860 DOI: 10.1038/s41598-022-09327-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/21/2022] [Indexed: 01/19/2023] Open
Abstract
The impact of fetal motion on phase contrast magnetic resonance imaging (PC-MRI) with metric optimized gating (MOG) remains unknown, despite being a known limitation to prenatal MRI. This study aims to describe the effect of motion on fetal flow-measurements using PC-MRI with MOG and to generate a scoring-system that could be used to predict motion-corrupted datasets at the time of acquisition. Ten adult volunteers underwent PC-MRI with MOG using a motion-device to simulate reproducible in-plane motion encountered in fetuses. PC-MRI data were acquired on ten fetuses. All ungated images were rated on their quality from 0 (no motion) to 2 (severe motion). There was no significant difference in measured flows with in-plane motion during the first and last third of sequence acquisition. Movement in the middle section of acquisition produced a significant difference while all referring ungated images were rated with a score of 2. Intra-Class-Correlation (ICC) for flow-measurements in adult and fetal datasets was lower for datasets with scores of 2. For fetal applications, the use of a simple three-point scoring system reliably identifies motion-corrupted sequences from unprocessed data at the time of acquisition, with a high score corresponding to significant underestimation of flow values and increased interobserver variability.
Collapse
Affiliation(s)
- Alexander Schulz
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, 10117, Germany.
| | - David F A Lloyd
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Milou P M van Poppel
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Thomas A Roberts
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Johannes K Steinweg
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK.,Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
44
|
Fetal magnetic resonance imaging (MRI) enhances the diagnosis of congenital body anomalies. J Pediatr Surg 2022; 57:239-244. [PMID: 34823845 DOI: 10.1016/j.jpedsurg.2021.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
AIMS We sought to assess variability and concordance between fetal MRI and ultrasound (USS) in the evaluation of fetal body abnormalities. METHODS All fetal body anomalies reported on F-MRI within the iFIND database (http://www.ifindproject.com) were included. Differences in findings regarding anomalies on contemporaneous USS were explored. Three clinical specialists evaluated each case independently, and the anomaly severity was graded: as "insignificant" to "lethal". The value of MRI in alteration of either antenatal or postnatal care was established. RESULTS Fifty-four cases were identified consisting of 5 healthy controls, 37 with USS-identified body anomalies, and 12 with known CNS or cardiac anomalies. In fetuses with a known body anomaly, information on the MRI was relevant to change the clinical course in 59% of cases. There was also an incidental detection rate of 7% in fetuses with known cardiac or CNS anomalies, or 1.5% of normal control, although these were rarely clinically relevant. Importantly, fetuses undergoing MRI for cardiac concerns did have major anomalies that were missed (one case of oesophageal atresia and two cases of ARM). CONCLUSIONS In cases where fetal anomalies are suspected, F-MRI is a valuable means of further characterizing anomalies and may detect additional anomalies in fetuses with recognized cardiac or CNS anomalies. In fetuses with a recognized body anomaly, more than half of those scanned by MRI had information available which changed clinical management. Importantly there were also incidental findings in healthy control fetuses, so the management of these needs to be recognized in fetal MRI research. LEVEL OF EVIDENCE II, Prospective cohort study.
Collapse
|
45
|
Gaga R. Editorial for "Super-Resolution Cine Image Enhancement for Fetal Cardiovascular Magnetic Resonance Imaging". J Magn Reson Imaging 2021; 56:232-233. [PMID: 34738688 DOI: 10.1002/jmri.27985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Remus Gaga
- 2 Pediatric Clinic, Mother and Child Department, University of Medicine and Pharmacy Iuliu Haţieganu Cluj-Napoca, Emergency Clinical Hospital for Children, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Stout JN, Bedoya MA, Grant PE, Estroff JA. Fetal Neuroimaging Updates. Magn Reson Imaging Clin N Am 2021; 29:557-581. [PMID: 34717845 PMCID: PMC8562558 DOI: 10.1016/j.mric.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MR imaging is used in conjunction with ultrasound screening for fetal brain abnormalities because it offers better contrast, higher resolution, and has multiplanar capabilities that increase the accuracy and confidence of diagnosis. Fetal motion still severely limits the MR imaging sequences that can be acquired. We outline the current acquisition strategies for fetal brain MR imaging and discuss the near term advances that will improve its reliability. Prospective and retrospective motion correction aim to make the complement of MR neuroimaging modalities available for fetal diagnosis, improve the performance of existing modalities, and open new horizons to understanding in utero brain development.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - M Alejandra Bedoya
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal and Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Maternal Fetal Care Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
47
|
Berggren K, Ryd D, Heiberg E, Aletras AH, Hedström E. Super-Resolution Cine Image Enhancement for Fetal Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 56:223-231. [PMID: 34652860 DOI: 10.1002/jmri.27956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal cardiac magnetic resonance imaging (MRI) improves the diagnosis of congenital heart defects, but is sensitive to fetal motion due to long image acquisition time. This may be overcome with faster image acquisition with low resolution, followed by image enhancement to provide clinically useful images. PURPOSE To combine phase-encoding undersampling with super-resolution neural networks to achieve high-resolution fetal cine cardiac MR images with short acquisition time. STUDY TYPE Prospective. SUBJECTS Twenty-eight fetuses (gestational week 36 [interquartile range 33-38 weeks]). FIELD STRENGTH/SEQUENCE 1.5 T, balanced steady-state free precession (bSSFP) cine sequence. ASSESSMENT Images were acquired using fully sampled Doppler ultrasound-gated clinical bSSFP cine as reference, with equivalent cine sequences with decreased phase-encoding resolution (25%, 33%, and 50% of clinical standard). Two super-resolution methods based on convolutional neural networks were proposed and evaluated (phasrGAN and phasrresnet). Data were partitioned into training (36 cine slices), validation (3 cine slices), and test sets (67 cine slices) without overlap. Conventional reconstruction methods using bicubic interpolation and k-space zeropadding were used for comparison. Three blinded observers scored image quality between 1 and 10. STATISTICAL TESTS Image scores are reported as median [interquartile range] and were compared using Mann-Whitney's nonparametric test with P < 0.05 showing statistically significant differences. RESULTS Both proposed methods showed no significant difference in image quality compared to clinical images (8 [7-8.5]) down to 33% (phasrGAN 8 [6.5-8]; phasrresnet 8 [7-8], all P ≥ 0.19) phase-encoding resolution, i.e., up to three times faster image acquisition, whereas bicubic interpolation and k-space zeropadding showed significantly lower quality for 33% phase-encoding resolution (both 7 [6-8]). DATA CONCLUSION Super-resolution enhancement can be used for fetal cine cardiac MRI to reduce image acquisition time while maintaining image quality. This may lead to an improved success rate for fetal cine MR imaging, as the impact of fetal motion is lessened by shortened acquisitions. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Klas Berggren
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| | - Einar Heiberg
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
48
|
Weichert J, Weichert A. A 'holistic' sonographic view on congenital heart disease - How automatic reconstruction using fetal intelligent navigation echocardiography (FINE) eases the unveiling of abnormal cardiac anatomy part I: Right heart anomalies. Echocardiography 2021; 38:1430-1445. [PMID: 34232534 DOI: 10.1111/echo.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/18/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022] Open
Abstract
Attempting a comprehensive examination of the fetal heart remains challenging for unexperienced operators as it emphasizes the acquisition and documentation of sequential cross-sectional and sagittal views and inevitably results in diminished detection rates of fetuses affected by congenital heart disease. The introduction of four-dimensional spatio-temporal image correlation (4D STIC) technology facilitated a volumetric approach for thorough cardiac anatomic evaluation by the acquisition of cardiac 4D datasets. By analyzing and re-arranging of numerous frames according to their temporal event within the heart cycle, STIC allows visualization of cardiac structures as an endless cine loop sequence of a complete single cardiac cycle in motion. However, post-analysis with manipulation and repeated slicing of the volume usually requires experience and in-depth anatomic knowledge, which limits the widespread application of this advanced technique in clinical care and unfortunately leads to the underestimation of its diagnostic value to date. Fetal intelligent navigation echocardiography (FINE), a novel method that automatically generates and displays nine standard fetal echocardiographic views in normal hearts, has shown to be able to overcome these limitations. Very recent data on the detection of congenital heart defects (CHDs) using the FINE method revealed a high sensitivity and specificity of 98% and 93%, respectively. In this two-part manuscript, we focused on the performance of FINE in delineating abnormal anatomy of typical right and left heart lesions and thereby emphasized the educational potential of this technology for more than just teaching purposes. We further discussed recent findings in a pathophysiological and/or functional context.
Collapse
Affiliation(s)
- Jan Weichert
- Department of Gynecology & Obstetrics, Division of Prenatal Medicine, Campus Luebeck, University Hospital of Schleswig-Holstein, Luebeck, Schleswig-Holstein, Germany
| | - Alexander Weichert
- Elbe Center of Prenatal Medicine and Human Genetics, Hamburg, Germany.,Department of Obstetrics, Charité-Universitätsmedizin Berlin - CCM, Berlin, Germany.,Prenatal Medicine Bergmannstrasse, Berlin, Germany
| |
Collapse
|
49
|
Lloyd DF, van Poppel MP, Pushparajah K, Vigneswaran TV, Zidere V, Steinweg J, van Amerom JF, Roberts TA, Schulz A, Charakida M, Miller O, Sharland G, Rutherford M, Hajnal JV, Simpson JM, Razavi R. Analysis of 3-Dimensional Arch Anatomy, Vascular Flow, and Postnatal Outcome in Cases of Suspected Coarctation of the Aorta Using Fetal Cardiac Magnetic Resonance Imaging. Circ Cardiovasc Imaging 2021; 14:e012411. [PMID: 34187165 PMCID: PMC8300852 DOI: 10.1161/circimaging.121.012411] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Identifying fetuses at risk of severe neonatal coarctation of the aorta (CoA) can be lifesaving but is notoriously challenging in clinical practice with a high rate of false positives. Novel fetal 3-dimensional and phase-contrast magnetic resonance imaging (MRI) offers an unprecedented means of assessing the human fetal cardiovascular system before birth. We performed detailed MRI assessment of fetal vascular morphology and flows in a cohort of fetuses with suspected CoA, correlated with the need for postnatal intervention. METHODS Women carrying a fetus with suspected CoA on echocardiography were referred for MRI assessment between 26 and 36 weeks of gestation, including high-resolution motion-corrected 3-dimensional volumes of the fetal heart and phase-contrast flow sequences gated with metric optimized gating. The relationship between aortic geometry and vascular flows was then analyzed and compared with postnatal outcome. RESULTS Seventy-two patients (51 with suspected fetal CoA and 21 healthy controls) underwent fetal MRI with motion-corrected 3-dimensional vascular reconstructions. Vascular flow measurements from phase-contrast sequences were available in 53 patients. In the CoA group, 25 of 51 (49%) required surgical repair of coarctation after birth; the remaining 26 of 51 (51%) were discharged without neonatal intervention. Reduced blood flow in the fetal ascending aorta and at the aortic isthmus was associated with increasing angulation (P=0.005) and proximal displacement (P=0.006) of the isthmus and was seen in both true positive and false positive cases. A multivariate logistic regression model including aortic flow and isthmal displacement explained 78% of the variation in outcome and correctly predicted the need for intervention in 93% of cases. CONCLUSIONS Reduced blood flow though the left heart is associated with important configurational changes at the aortic isthmus in fetal life, predisposing to CoA when the arterial duct closes after birth. Novel fetal MRI techniques may have a role in both understanding and accurately predicting severe neonatal CoA.
Collapse
Affiliation(s)
- David F.A. Lloyd
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Milou P.M. van Poppel
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Trisha V. Vigneswaran
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Vita Zidere
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Johannes Steinweg
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Joshua F.P. van Amerom
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Thomas A. Roberts
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Alexander Schulz
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Marietta Charakida
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Owen Miller
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Gurleen Sharland
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Mary Rutherford
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - Joseph V. Hajnal
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
| | - John M. Simpson
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| | - Reza Razavi
- School of Imaging Sciences and Biomedical Engineering, King’s College London, United Kingdom (D.F.A.L., M.P.M.v.P., K.P., J.S., J.F.P.v.A., T.R., A.S., M.R., J.H., R.R.)
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, United Kingdom (D.F.A.L., K.P., T.V.V., V.Z., M.C., O.M., G.S., J.M.S., R.R.)
| |
Collapse
|
50
|
Davidson JR, Uus A, Matthew J, Egloff AM, Deprez M, Yardley I, De Coppi P, David A, Carmichael J, Rutherford MA. Fetal body MRI and its application to fetal and neonatal treatment: an illustrative review. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:447-458. [PMID: 33721554 PMCID: PMC7614154 DOI: 10.1016/s2352-4642(20)30313-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
This Review depicts the evolving role of MRI in the diagnosis and prognostication of anomalies of the fetal body, here including head and neck, thorax, abdomen and spine. A review of the current literature on the latest developments in antenatal imaging for diagnosis and prognostication of congenital anomalies is coupled with illustrative cases in true radiological planes with viewable three-dimensional video models that show the potential of post-acquisition reconstruction protocols. We discuss the benefits and limitations of fetal MRI, from anomaly detection, to classification and prognostication, and defines the role of imaging in the decision to proceed to fetal intervention, across the breadth of included conditions. We also consider the current capabilities of ultrasound and explore how MRI and ultrasound can complement each other in the future of fetal imaging.
Collapse
Affiliation(s)
- Joseph R Davidson
- Prenatal Cell and Gene Therapy, Elizabeth Garrett Anderson Institute of Women's Health, University College London, London, UK; UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Alena Uus
- Stem Cells and Regenerative Medicine; Perinatal Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jacqueline Matthew
- Stem Cells and Regenerative Medicine; Perinatal Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Alexia M Egloff
- Stem Cells and Regenerative Medicine; Perinatal Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Maria Deprez
- Stem Cells and Regenerative Medicine; Perinatal Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Iain Yardley
- Paediatric Surgery, Evelina London Children's Hospital, London, UK
| | - Paolo De Coppi
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children, London, UK; Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anna David
- Prenatal Cell and Gene Therapy, Elizabeth Garrett Anderson Institute of Women's Health, University College London, London, UK; Fetal Medicine Unit, University College London, London, UK
| | - Jim Carmichael
- Paediatric Radiology, Evelina London Children's Hospital, London, UK
| | - Mary A Rutherford
- Stem Cells and Regenerative Medicine; Perinatal Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|