1
|
Castillo-Iturra J, Sánchez A, Balaguer F. Colonoscopic surveillance in Lynch syndrome: guidelines in perspective. Fam Cancer 2024; 23:459-468. [PMID: 39066849 PMCID: PMC11512898 DOI: 10.1007/s10689-024-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Lynch syndrome predisposes to a high risk of colorectal cancer and colonoscopy remains the primary preventive strategy. The prevention of colorectal cancer through colonoscopy relies on identifying and removing adenomas, the main precursor lesion. Nevertheless, colonoscopy is not an optimal strategy since post-colonoscopy colorectal cancer remains an important issue. In continuation of a 2021 journal review, the present article seeks to offer an updated perspective by examining relevant articles from the past 3 years. We place recent findings in the context of existing guidelines, with a specific focus on colonoscopy surveillance. Key aspects explored include colonoscopy quality standards, timing of initiation, and surveillance intervals. Our review provides a comprehensive analysis of adenoma-related insights in Lynch syndrome, delving into emerging technologies like virtual chromoendoscopy and artificial intelligence-assisted endoscopy. This review aims to contribute valuable insights into the topic of colonoscopy surveillance in Lynch syndrome.
Collapse
Affiliation(s)
- Joaquín Castillo-Iturra
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ariadna Sánchez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salud, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
2
|
Loong L, Huntley C, Pethick J, McRonald F, Santaniello F, Shand B, Tulloch O, Goel S, Lüchtenborg M, Allen S, Torr B, Snape K, George A, Lalloo F, Norbury G, Eccles DM, Tischkowitz M, Antoniou AC, Pharoah P, Shaw A, Morris E, Burn J, Monahan K, Hardy S, Turnbull C. Lynch syndrome diagnostic testing pathways in endometrial cancers: a nationwide English registry-based study. J Med Genet 2024:jmg-2024-110231. [PMID: 39433398 DOI: 10.1136/jmg-2024-110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND For female patients with Lynch syndrome (LS), endometrial cancer (EC) is often their first cancer diagnosis. A testing pathway of somatic tumour testing triage followed by germline mismatch repair (MMR) gene testing is an effective way of identifying the estimated 3% of EC caused by LS. METHODS A retrospective national population-based observational study was conducted using comprehensive national data collections of functional, somatic and germline MMR tests available via the English National Cancer Registration Dataset. For all EC diagnosed in 2019, the proportion tested, median time to test, yield of abnormal results and factors influencing testing pathway initiation were examined. RESULTS There was an immunohistochemistry (IHC) or microsatellite instability (MSI) test recorded for 17.8% (1408/7928) of patients diagnosed with EC in 2019. Proportions tested varied by Cancer Alliance and age. There was an MLH1 promoter hypermethylation test recorded for 43.1% (149/346) of patients with MLH1 protein IHC loss or MSI. Of patients with EC eligible from tumour-testing, 25% (26/104) had a germline MMR test recorded. Median time from cancer diagnosis to germline MMR test was 315 days (IQR 222-486). CONCLUSION This analysis highlights the regional variation in recorded testing, patient attrition, delays and missed opportunities to diagnose LS, providing an informative baseline for measuring the impact of the national guidance from the National Institute for Health and Care Excellence on universal reflex LS testing in EC, implemented in 2020.
Collapse
Affiliation(s)
- Lucy Loong
- Institute of Cancer Research Division of Genetics and Epidemiology, Sutton, UK
- National Disease Registration Service, London, UK
| | - Catherine Huntley
- Institute of Cancer Research Division of Genetics and Epidemiology, Sutton, UK
- National Disease Registration Service, London, UK
| | | | | | | | - Brian Shand
- National Disease Registration Service, London, UK
| | | | - Shilpi Goel
- National Disease Registration Service, London, UK
- Health Data Insight, Cambridge, UK
| | - Margreet Lüchtenborg
- National Disease Registration Service, London, UK
- Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Comprehensive Cancer Centre, King's College London, London, UK
| | - Sophie Allen
- Institute of Cancer Research Division of Genetics and Epidemiology, Sutton, UK
- National Disease Registration Service, London, UK
| | - Bethany Torr
- Institute of Cancer Research Division of Genetics and Epidemiology, Sutton, UK
| | - Katie Snape
- Department of Clinical Genetics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Angela George
- Gynaecology Unit, Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research-Sutton, London, UK
| | - Fiona Lalloo
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Gail Norbury
- South East Genomic Laboratory Hub, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - Diana M Eccles
- Human Genetics and Genomic Medicine, University of Southampton Faculty of Medicine, Southampton, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, Cambridge Biomedical Research Centre, National Institute for Health Research, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Paul Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adam Shaw
- Department of Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Eva Morris
- Applied Health Research Unit, Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kevin Monahan
- The Lynch Syndrome and Family Cancer Clinic, St Mark's Hospital and Academic Institute, London, UK
- Imperial College London, London, UK
| | - Steven Hardy
- National Disease Registration Service, London, UK
| | - Clare Turnbull
- Institute of Cancer Research Division of Genetics and Epidemiology, Sutton, UK
- National Disease Registration Service, London, UK
| |
Collapse
|
3
|
Colas C, Guerrini-Rousseau L, Suerink M, Gallon R, Kratz CP, Ayuso É, Brugières L, Wimmer K. ERN GENTURIS guidelines on constitutional mismatch repair deficiency diagnosis, genetic counselling, surveillance, quality of life, and clinical management. Eur J Hum Genet 2024:10.1038/s41431-024-01708-6. [PMID: 39420201 DOI: 10.1038/s41431-024-01708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD), first described 25 years ago, confers an extremely high and lifelong cancer risk, including haematologic, brain, and gastrointestinal tract malignancies, and is associated with several non-neoplastic features. Our understanding of this condition has improved and novel assays to assist CMMRD diagnosis have been developed. Surveillance protocols need adjustment taking into account recent observational prospective studies assessing their effectiveness. Response to immune checkpoint inhibitors and the effectiveness and toxicity of other treatments have been described. An update and merging of the different guidelines on diagnosis and clinical management of CMMRD into one comprehensive guideline was needed. Seventy-two expert members of the European Reference Network GENTURIS and/or the European care for CMMRD consortium and one patient representative developed recommendations for CMMRD diagnosis, genetic counselling, surveillance, quality of life, and clinical management based on a systematic literature search and comprehensive literature review and a modified Delphi process. Recommendations for the diagnosis of CMMRD provide testing criteria, propose strategies for CMMRD testing, and define CMMRD diagnostic criteria. Recommendations for surveillance cover each CMMRD-associated tumour type and contain information on starting age, frequency, and surveillance modality. Recommendations for clinical management cover cancer treatment, management of benign tumours or non-neoplastic features, and chemoprevention. Recommendations also address genetic counselling and quality of life. Based on existing guidelines and currently available data, we present 82 recommendations to improve and standardise the care of CMMRD patients in Europe. These recommendations are not meant to be prescriptive and may be adjusted based on individual decisions.
Collapse
Affiliation(s)
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Richard Gallon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | | | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Miret Durazo CI, Zachariah Saji S, Rawat A, Motiño Villanueva AL, Bhandari A, Nurjanah T, Ryali N, Zepeda Martínez IG, Cruz Santiago JA. Exploring Aspirin's Potential in Cancer Prevention: A Comprehensive Review of the Current Evidence. Cureus 2024; 16:e70005. [PMID: 39445288 PMCID: PMC11498354 DOI: 10.7759/cureus.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Aspirin, traditionally recognized for its analgesic, anti-inflammatory, antipyretic, and antiplatelet effects, has recently attracted attention for its potential role in cancer prevention. Initially studied for cardiovascular disease prevention, emerging evidence suggests that aspirin may reduce the risk of certain cancers, particularly colorectal cancer (CRC). This narrative review integrates findings from early studies, animal models, epidemiological data, and clinical trials to evaluate aspirin's efficacy as a chemopreventive agent. Aspirin's anticancer effects are primarily attributed to its cyclooxygenase (COX) enzyme inhibition, which decreases prostaglandin E2 (PGE2) levels and disrupts cancer-related signaling pathways. While epidemiological studies support an association between aspirin use and reduced cancer incidence and mortality, especially for CRC and potentially for breast (BC) and prostate cancers (PCa), the risk of adverse effects, such as gastrointestinal (GI) and intracranial bleeding, complicates its use and warrants careful consideration. The decision to use aspirin for cancer prevention should be individualized, balancing its therapeutic benefits against potential adverse effects. It also underscores the necessity for further research to refine dosage guidelines, assess long-term impacts, and explore additional biomarkers to guide personalized cancer prevention strategies.
Collapse
Affiliation(s)
| | | | - Akash Rawat
- Department of General Medicine, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, IND
| | | | - Amit Bhandari
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, SXM
| | - Tutut Nurjanah
- Department of General Medicine, Universitas Yarsi, Jakarta, IDN
| | - Niharika Ryali
- Department of General Medicine, Gandhi Medical College, Hyderabad, IND
| | | | - Josue A Cruz Santiago
- Department of General Medicine, Universidad Autónoma de Guadalajara, Guadalajara, MEX
| |
Collapse
|
6
|
Carley H, Kulkarni A. Reproductive decision-making in cancer susceptibility syndromes. Best Pract Res Clin Obstet Gynaecol 2024; 96:102527. [PMID: 38987108 DOI: 10.1016/j.bpobgyn.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Cancer susceptibility syndromes confer an increased lifetime risk of cancer and occur due to germline likely-pathogenic or pathogenic variants in a cancer susceptibility gene. Clinical Genetics services advise patients of ways to manage their future cancer risks, often prefaced with uncertainties due to poor understandings of individualised risk. For individuals/couples whose future offspring are at risk of a cancer susceptibility syndrome, different options are available depending on their preferences and circumstances, including prenatal diagnosis and preimplantation genetic testing. This review provides an overview of the most common cancer susceptibility syndromes, available reproductive options and a genetic counselling framework recommended to support individuals/couples in their decision-making. We describe complexities of decision-making involving moderate penetrance and sex-specific variable penetrance genes and explore associated ethical issues arising in this complex area of medicine.
Collapse
Affiliation(s)
- Helena Carley
- Clinical Genetics, 7(th) Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK; Clinical Ethics, Law, & Society Group, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Anjana Kulkarni
- Clinical Genetics, 7(th) Floor Borough Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK; Guy's & St Thomas NHS Foundation Trust, UK.
| |
Collapse
|
7
|
Heriyanto DS, Yoshuantari N, Akbariani G, Lau V, Hanini H, Hidayati Z, Arief MZ, Gunawan AN, Ridwanuloh AM, Kusharyoto W, Handaya AY, Ilyas M, Kurnianda J, Hutajulu SH, Susanti S. High Probability of Lynch Syndrome Among Colorectal Cancer Patients Is Associated With Higher Occurrence of KRAS and PIK3CA Mutations. World J Oncol 2024; 15:612-624. [PMID: 38993255 PMCID: PMC11236368 DOI: 10.14740/wjon1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Background In Indonesia, early-onset colorectal cancer (EOCRC) rates are higher in patients < 50 years old compared to Western populations, possibly due to a higher frequency of Lynch syndrome (LS) in CRC patients. We aimed to examine the association of KRAS and PIK3CA mutations with LS. Methods In this retrospective cross-sectional single-center study, the PCR-HRM-based test was used for screening of microsatellite instability (MSI) mononucleotide markers (BAT25, BAT26, BCAT25, MYB, EWSR1), MLH1 promoter methylation, and oncogene mutations of BRAF (V600E), KRAS (exon 2 and 3), and PIK3CA (exon 9 and 20) in FFPE DNA samples. Results All the samples (n = 244) were from Dr. Sardjito General Hospital Yogyakarta, Indonesia. KRAS and PIK3CA mutations were found in 151/244 (61.88%) and 107/244 (43.85%) of samples, respectively. KRAS and PIK3CA mutations were significantly associated with MSI status in 32/42 (76.19%) and 25/42 (59.52%) of samples, respectively. KRAS mutation was significantly associated with LS status in 26/32 (81.25%) of samples. The PIK3CA mutation was present in a higher proportion in LS samples of 19/32 (59.38%), but not statistically significant. Clinicopathology showed that KRAS mutation was significantly associated with right-sided CRC and higher histology grade in 39/151 (25.83%) and 24/151 (16.44%) samples, respectively. PIK3CA mutation was significantly associated with female sex and lower levels of tumor-infiltrating lymphocytes in 62/107 (57.94%) and 26/107 (30.23%) samples, respectively. KRAS and PIK3CA mutations did not significantly affect overall survival (120 months) in LS and non-LS patients. Conclusions The high probability of LS in Indonesian CRC patients is associated with KRAS and PIK3CA mutations.
Collapse
Affiliation(s)
- Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
- Collaboration Research Center for Precision Oncology based Omics - PKR PrOmics, Yogyakarta, Indonesia
| | - Naomi Yoshuantari
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Gilang Akbariani
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Vincent Lau
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Hanifa Hanini
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Zulfa Hidayati
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Muhammad Zulfikar Arief
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
| | - Andrew Nobiantoro Gunawan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Asep Muhamad Ridwanuloh
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency Republic of Indonesia, Ir. Soekarno Science and Technology Park, Bogor, Indonesia
| | - Wien Kusharyoto
- Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency Republic of Indonesia, Ir. Soekarno Science and Technology Park, Bogor, Indonesia
| | - Adeodatus Yuda Handaya
- Division of Digestive Surgeon, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital Yogyakarta, Indonesia
| | - Mohammad Ilyas
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Johan Kurnianda
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Susanna Hilda Hutajulu
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito General Hospital, Yogyakarta, Indonesia
| | - Susanti Susanti
- Pathgen Diagnostik Teknologi, Ir. Soekarno Science and Technology Park, National Research and Innovation Agency Republic of Indonesia, Bogor, Indonesia
- Molecular Pathology Research Group, Academic Unit of Translational Medical Science, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Indonesia
| |
Collapse
|
8
|
Maoz A, Rodriguez NJ, Yurgelun MB, Syngal S. Gastrointestinal Cancer Precursor Conditions and Their Detection. Hematol Oncol Clin North Am 2024; 38:783-811. [PMID: 38760197 DOI: 10.1016/j.hoc.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Gastrointestinal cancers are a leading cause of cancer morbidity and mortality. Many gastrointestinal cancers develop from cancer precursor lesions, which are commonly found in individuals with hereditary cancer syndromes. Hereditary cancer syndromes have advanced our understanding of cancer development and progression and have facilitated the evaluation of cancer prevention and interception efforts. Common gastrointestinal hereditary cancer syndromes, including their organ-specific cancer risk and surveillance recommendations, are reviewed in this article. The management of common gastroesophageal, pancreatic, and colonic precursor lesions is also discussed, regardless of their genetic background. Further research is needed to advance chemoprevention and immunoprevention strategies.
Collapse
Affiliation(s)
- Asaf Maoz
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA. https://twitter.com/asaf_maoz
| | - Nicolette J Rodriguez
- Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, 75 Francis Street, Boston MA 02115, USA; Division of Cancer Genetics and Prevention, 450 Brookline Avenue, Boston MA 02215, USA. https://twitter.com/Dr_NJRodriguez
| | - Matthew B Yurgelun
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA. https://twitter.com/MattYurgelun
| | - Sapna Syngal
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
9
|
De-Leon-Covarrubias UE, Perez-Trujillo JJ, Villa-Cedillo SA, Martinez-Perez AG, Montes-de-Oca-Saucedo CR, Loera-Arias MDJ, Garcia-Garcia A, Saucedo-Cardenas O, Montes-de-Oca-Luna R. Unlocking the Potential: Caloric Restriction, Caloric Restriction Mimetics, and Their Impact on Cancer Prevention and Treatment. Metabolites 2024; 14:418. [PMID: 39195514 DOI: 10.3390/metabo14080418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024] Open
Abstract
Caloric restriction (CR) and its related alternatives have been shown to be the only interventions capable of extending lifespan and decreasing the risk of cancer, along with a reduction in burden in pre-clinical trials. Nevertheless, the results from clinical trials have not been as conclusive as the pre-clinical results. Recognizing the challenges associated with long-term fasting, the application of caloric restriction mimetics (CRMs), pharmacological agents that mimic the molecular effects of CR, to harness the potential benefits while overcoming the practical limitations of fasting has resulted in an interesting alternative. This review synthesizes the findings of diverse clinical trials evaluating the safety and efficacy of CR and CRMs. In dietary interventions, a fast-mimicking diet was the most tolerated to reduce tumoral growth markers and chemotherapy side effects. CRMs were well tolerated, and metformin and aspirin showed the most promising effect in reducing cancer risk in a selected group of patients. The application of CR and/or CRMs shows promising effects in anti-cancer therapy; however, there is a need for more evidence to safely include these interventions in standard-of-care therapies.
Collapse
Affiliation(s)
| | - Jose Juan Perez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Sheila Adela Villa-Cedillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | | | | | - Maria de Jesus Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Aracely Garcia-Garcia
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Odila Saucedo-Cardenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes-de-Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| |
Collapse
|
10
|
Gibson E, Li H, Staub J, Neklason D, Keener M, Kanth P. Colonoscopy and Upper Endoscopy Surveillance in Lynch Syndrome: A Longitudinal Study From a Large Tertiary Healthcare System. GASTRO HEP ADVANCES 2024; 3:995-1000. [PMID: 39296872 PMCID: PMC11408768 DOI: 10.1016/j.gastha.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 09/21/2024]
Abstract
Background and Aims Lynch syndrome (LS) is caused by pathogenic mutations in mismatch repair (MMR) genes. There are limited data on differences in colorectal cancer (CRC) surveillance by MMR genes, and an international consensus on surveillance based on genes is not established. We aimed to evaluate colonoscopy and esophagogastroduodenoscopy (EGD) surveillance outcomes and compare CRC surveillance findings by the mutated gene. Methods One hundred one patients with LS were included and colonoscopy results were compared by MMR mutation. Primary outcomes included the development and recurrence of adenoma, CRC, high-grade dysplasia, advanced adenoma, and sessile serrated lesions. Logistic regressions evaluated the relationship between genes and the development or recurrence of primary outcomes. Survival analysis evaluated primary outcomes in patients with ≥ 2 colonoscopies. EGD results were summarized. Results Three hundred twenty seven colonoscopies were reviewed. Compared to PMS2, MLH1 was associated with a higher risk of advanced adenoma/high-grade dysplasia/CRC development (odds ratio [OR] 9.85, 95% confidence interval [CI]: 1.97-77.24) and MSH2 was associated with a higher risk of adenoma development (OR 4.17, 95% CI: 1.11-17.61). Among those with > 2 colonoscopies, MLH1 (hazard ratio 18.98, 95% CI: 1.31-274.51) and MSH6 (hazard ratio 15.03, 95% CI: 1.16-194.65) had a higher risk of sessile serrated lesions compared to MSH2. Among patients who had adenoma detected once, MLH1 had a higher risk of adenoma recurrence compared to MSH6 (OR 14.59, 95% CI: 1.53-244.30) and PMS2 (OR 47.15, 95% CI: 4.26-984.28). MSH2 had a higher risk of adenoma recurrence compared to PMS2 (OR 11.89, 95% CI: 1.38-164.78). Of 170 EGDs, an actionable finding was identified in 16% of patients during their first 3 EGDs. Conclusion Surveillance colonoscopy outcomes differed in patients with LS and suggest the need to guide surveillance based on MMR gene mutation.
Collapse
Affiliation(s)
- Elena Gibson
- Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Haojia Li
- Division of Biostatistics, University of Utah, Salt Lake City, Utah
| | - Judith Staub
- Division of Gastroenterology, University of Utah Health, Salt Lake City, Utah
| | - Deb Neklason
- Division of Epidemiology, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Megan Keener
- Division of Epidemiology, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Priyanka Kanth
- Division of Gastroenterology, University of Utah Health, Salt Lake City, Utah
- Division of Gastroenterology, MedStar Georgetown University, Washington, District of Columbia
| |
Collapse
|
11
|
Steinke-Lange V, Holinski-Feder E. [Lynch syndrome]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:290-299. [PMID: 38864870 DOI: 10.1007/s00292-024-01339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 06/13/2024]
Abstract
Patients with Lynch syndrome, one of the most common hereditary tumor predisposition syndromes, harbor an increased risk for a broad spectrum of especially gastrointestinal and gynecological tumors. Causative for the syndrome are variants in DNA mismatch repair genes, which are passed on to the offspring at a 50% chance (autosomal dominant inheritance). The tumor tissue of these patients usually shows microsatellite instability, which is of increasing relevance regarding prognosis and therapeutic decisions. The detection of a causative genetic variant in a patient enables predictive testing of family members to provide relief to noncarriers and provide carriers with intensified risk-adapted surveillance. In addition, chemoprevention with aspirin (acetylsalicylic acid) has been proven useful for chemoprevention in studies. Therefore, the diagnosis of Lynch syndrome is important for patients and their relatives.
Collapse
Affiliation(s)
- Verena Steinke-Lange
- MGZ - Medizinisch Genetisches Zentrum, Bayerstraße 3-5, 80335, München, Deutschland.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München Campus Innenstadt, München, Deutschland.
- Europäisches Referenznetzwerk für erbliche Tumorerkrankungen (ERN GENTURIS), Nijmegen, Niederlande.
- Deutsches Referenznetzwerk für erbliche Tumorerkrankungen, Bonn, Deutschland.
| | - Elke Holinski-Feder
- MGZ - Medizinisch Genetisches Zentrum, Bayerstraße 3-5, 80335, München, Deutschland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München Campus Innenstadt, München, Deutschland
- Europäisches Referenznetzwerk für erbliche Tumorerkrankungen (ERN GENTURIS), Nijmegen, Niederlande
- Deutsches Referenznetzwerk für erbliche Tumorerkrankungen, Bonn, Deutschland
| |
Collapse
|
12
|
Gallon R, Herrero-Belmonte P, Phelps R, Hayes C, Sollars E, Egan D, Spiewak H, Nalty S, Mills S, Loo PS, Borthwick GM, Santibanez-Koref M, Burn J, McAnulty C, Jackson MS. A novel colorectal cancer test combining microsatellite instability and BRAF/RAS analysis: Clinical validation and impact on Lynch syndrome screening. BJC REPORTS 2024; 2:48. [PMID: 38962168 PMCID: PMC11216981 DOI: 10.1038/s44276-024-00072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/05/2024]
Abstract
Background Lynch syndrome (LS) is under-diagnosed. UK National Institute for Health and Care Excellence guidelines recommend multistep molecular testing of all colorectal cancers (CRCs) to screen for LS. However, the complexity of the pathway has resulted in limited improvement in diagnosis. Methods One-step multiplex PCR was used to generate sequencing-ready amplicons from 14 microsatellite instability (MSI) markers and 22 BRAF, KRAS, and NRAS mutation hotspots. MSI and BRAF/RAS variants were detected using amplicon-sequencing and automated analysis. The assay was clinically validated and deployed into service in northern England, followed by regional and local audits to assess its impact. Results MSI analysis achieved 99.1% sensitivity and 99.2% specificity and was reproducible (r = 0.995). Mutation hotspot analysis had 100% sensitivity, 99.9% specificity, and was reproducible (r = 0.998). Assay-use in service in 2022-2023 increased CRC testing (97.2% (2466/2536) versus 28.6% (601/2104)), halved turnaround times, and identified more CRC patients at-risk of LS (5.5% (139/2536) versus 2.9% (61/2104)) compared to 2019-2020 when a multi-test pathway was used. Conclusion A novel amplicon-sequencing assay of CRCs, including all biomarkers for LS screening and anti-EGFR therapy, achieved >95% testing rate. Adoption of this low cost, scalable, and fully automatable test will complement on-going, national initiatives to improve LS screening.
Collapse
Affiliation(s)
- Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patricia Herrero-Belmonte
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel Phelps
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christine Hayes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth Sollars
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Daniel Egan
- North East and Yorkshire Genomic Laboratory Hub Central Lab, St James’s University Hospital, Leeds, UK
| | - Helena Spiewak
- North East and Yorkshire Genomic Laboratory Hub Central Lab, St James’s University Hospital, Leeds, UK
| | - Sam Nalty
- Sheffield Diagnostic Genetics Service, North East and Yorkshire Genomic Laboratory Hub, Sheffield Children’s NHS Foundation Trust, Sheffield, UK
| | - Sarah Mills
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peh Sun Loo
- Department of Cellular Pathology, Royal Victoria Infirmary, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gillian M. Borthwick
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mauro Santibanez-Koref
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Burn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ciaron McAnulty
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael S. Jackson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Anderson CE, Liska D. Treatment of Microsatellite-Unstable Rectal Cancer in Sporadic and Hereditary Settings. Clin Colon Rectal Surg 2024; 37:233-238. [PMID: 38882941 PMCID: PMC11178385 DOI: 10.1055/s-0043-1770717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Microsatellite instability is rare in rectal cancer and associated with younger age of onset and Lynch syndrome. All rectal cancers should be tested for microsatellite instability prior to treatment decisions. Patients with microsatellite instability are relatively resistant to chemotherapy. However, recent small studies have shown dramatic response with neoadjuvant immunotherapy. Patients with Lynch syndrome have a hereditary predisposition to cancer and thus an elevated risk of metachronous cancer. Therefore, while "watch and wait" is a well-established practice for sporadic rectal cancers that obtain a complete clinical response after chemoradiation, its safety in patients with Lynch syndrome has not yet been defined. The extent of surgery for patients with Lynch syndrome and rectal cancer is controversial and there is significant debate as to the relative advantages of a segmental proctectomy with postoperative endoscopic surveillance versus a therapeutic and prophylactic total proctocolectomy. Surgical decision making for the patient with Lynch syndrome and rectal cancer is complex and demands a multidisciplinary approach, taking into account both patient- and tumor-specific factors. Neoadjuvant immunotherapy show great promise in the treatment of these patients, and further maturation of data from prospective trials will likely change the current treatment paradigm. Patients with Lynch syndrome and rectal cancer who do not undergo total proctocolectomy require yearly surveillance colonoscopies and should consider chemoprophylaxis with aspirin.
Collapse
Affiliation(s)
- Cristan E. Anderson
- Department of Colon and Rectal Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| | - David Liska
- Department of Colon and Rectal Surgery, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
14
|
Power RF, Doherty DE, Horgan R, Fahey P, Gallagher DJ, Lowery MA, Cadoo KA. Modifiable risk factors for cancer among people with lynch syndrome: an international, cross-sectional survey. Hered Cancer Clin Pract 2024; 22:10. [PMID: 38877502 PMCID: PMC11177364 DOI: 10.1186/s13053-024-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/14/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Lynch syndrome is the most common cause of hereditary colorectal and endometrial cancer. Lifestyle modification may provide an opportunity for adjunctive cancer prevention. In this study, we aimed to characterise modifiable risk factors in people with Lynch syndrome and compare this with international guidelines for cancer prevention. METHODS A cross-sectional study was carried out utilizing survey methodology. Following public and patient involvement, the survey was disseminated through patient advocacy groups and by social media. Self-reported demographic and health behaviours were collected in April 2023. Guidelines from the World Cancer Research Fund (WCRF) were used to compare percentage adherence to 9 lifestyle recommendations, including diet, physical activity, weight, and alcohol intake. Median adherence scores, as a surrogate for lifestyle risk, were calculated and compared between groups. RESULTS 156 individuals with Lynch syndrome participated from 13 countries. The median age was 51, and 54% were cancer survivors. The mean BMI was 26.7 and the mean weekly duration of moderate to vigorous physical activity was 90 min. Median weekly consumption of ethanol was 60 g, and 3% reported current smoking. Adherence to WCRF recommendations for cancer prevention ranged from 9 to 73%, with all but one recommendation having < 50% adherence. The median adherence score was 2.5 out of 7. There was no significant association between median adherence scores and age (p = 0.27), sex (p = 0.31), or cancer history (p = 0.75). CONCLUSIONS We have characterised the modifiable risk profile of people living with Lynch syndrome, outlining targets for intervention based on lifestyle guidelines for the general population. As evidence supporting the relevance of modifiable factors in Lynch syndrome emerges, behavioural modification may prove an impactful means of cancer prevention.
Collapse
Affiliation(s)
- Robert F Power
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Cancer Genetics service, Trinity St James's Cancer Institute, Dublin, Ireland
| | - Damien E Doherty
- Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
| | | | - Pat Fahey
- Lynch syndrome Ireland, Dublin, Ireland
| | - David J Gallagher
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Cancer Genetics service, Trinity St James's Cancer Institute, Dublin, Ireland
- Department of Medical Oncology, Trinity St James's Cancer Institute, Dublin, Ireland
| | - Maeve A Lowery
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Medical Oncology, Trinity St James's Cancer Institute, Dublin, Ireland
| | - Karen A Cadoo
- School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Cancer Genetics service, Trinity St James's Cancer Institute, Dublin, Ireland.
- Department of Medical Oncology, Trinity St James's Cancer Institute, Dublin, Ireland.
| |
Collapse
|
15
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
16
|
Sievänen T, Jokela T, Hyvärinen M, Korhonen TM, Pylvänäinen K, Mecklin JP, Karvanen J, Sillanpää E, Seppälä TT, Laakkonen EK. Circulating miRNA Signature Predicts Cancer Incidence in Lynch Syndrome-A Pilot Study. Cancer Prev Res (Phila) 2024; 17:243-254. [PMID: 38551987 PMCID: PMC11148538 DOI: 10.1158/1940-6207.capr-23-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 06/05/2024]
Abstract
Lynch syndrome (LS) is the most common autosomal dominant cancer syndrome and is characterized by high genetic cancer risk modified by lifestyle factors. This study explored whether a circulating miRNA (c-miR) signature predicts LS cancer incidence within a 4-year prospective surveillance period. To gain insight how lifestyle behavior could affect LS cancer risk, we investigated whether the cancer-predicting c-miR signature correlates with known risk-reducing factors such as physical activity, body mass index (BMI), dietary fiber, or NSAID usage. The study included 110 c-miR samples from LS carriers, 18 of whom were diagnosed with cancer during a 4-year prospective surveillance period. Lasso regression was utilized to find c-miRs associated with cancer risk. Individual risk sum derived from the chosen c-miRs was used to develop a model to predict LS cancer incidence. This model was validated using 5-fold cross-validation. Correlation and pathway analyses were applied to inspect biological functions of c-miRs. Pearson correlation was used to examine the associations of c-miR risk sum and lifestyle factors. hsa-miR-10b-5p, hsa-miR-125b-5p, hsa-miR-200a-3p, hsa-miR-3613-5p, and hsa-miR-3615 were identified as cancer predictors by Lasso, and their risk sum score associated with higher likelihood of cancer incidence (HR 2.72, 95% confidence interval: 1.64-4.52, C-index = 0.72). In cross-validation, the model indicated good concordance with the average C-index of 0.75 (0.6-1.0). Coregulated hsa-miR-10b-5p, hsa-miR-125b-5p, and hsa-miR-200a-3p targeted genes involved in cancer-associated biological pathways. The c-miR risk sum score correlated with BMI (r = 0.23, P < 0.01). In summary, BMI-associated c-miRs predict LS cancer incidence within 4 years, although further validation is required. PREVENTION RELEVANCE The development of cancer risk prediction models is key to improving the survival of patients with LS. This pilot study describes a serum miRNA signature-based risk prediction model that predicts LS cancer incidence within 4 years, although further validation is required.
Collapse
Affiliation(s)
- Tero Sievänen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tiina Jokela
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Matti Hyvärinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje Korhonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Kirsi Pylvänäinen
- The wellbeing services county of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- The wellbeing services county of Central Finland, Jyväskylä, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Juha Karvanen
- Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland
| | - Elina Sillanpää
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- The wellbeing services county of Central Finland, Jyväskylä, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
- Department of Abdominal Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Gastroenterology and Alimentary Tract Surgery and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
| | - Eija K Laakkonen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
17
|
Bowen CM, Demarest K, Vilar E, Shah PD. Novel Cancer Prevention Strategies in Individuals With Hereditary Cancer Syndromes: Focus on BRCA1, BRCA2, and Lynch Syndrome. Am Soc Clin Oncol Educ Book 2024; 44:e433576. [PMID: 38913968 DOI: 10.1200/edbk_433576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Germline pathogenic variants (PVs) in the BRCA1 and BRCA2 genes confer elevated risks of breast, ovarian, and other cancers. Lynch syndrome (LS) is associated with increased risks of multiple cancer types including colorectal and uterine cancers. Current cancer risk mitigation strategies have focused on pharmacologic risk reduction, enhanced surveillance, and preventive surgeries. While these approaches can be effective, they stand to be improved on because of either limited efficacy or undesirable impact on quality of life. The current review summarizes ongoing investigational efforts in cancer risk prevention strategies for patients with germline PVs in BRCA1, BRCA2, or LS-associated genes. These efforts span radiation, surgery, and pharmacology including vaccine strategies. Understanding the molecular events involved in the premalignant to malignant transformation in high-risk individuals may ultimately contribute significantly to novel prevention strategies.
Collapse
Affiliation(s)
- Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Payal D Shah
- Perelman Center for Advanced Medicine, Abramson Cancer Center, Philadelphia, PA
| |
Collapse
|
18
|
Bian W, Bian W, Li Q, Li Y. Aspirin in Patients with Viral Hepatitis: Systematic Review and Meta-Analysis of Observational Studies. J Gastrointest Cancer 2024; 55:638-651. [PMID: 38557825 DOI: 10.1007/s12029-024-01027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a disease demonstrating increasing morbidity and mortality, especially in patients with chronic viral hepatitis. Studies have shown that aspirin can reduce the incidence of liver cancer; however, the degree of benefit in patients with viral hepatitis is unclear. This study focused on the association between aspirin use and HCC risk in patients with chronic viral hepatitis. METHODS A systematic search of the PubMed, Embase, Web of Science, and Cochrane Library databases was performed from the earliest available date to December 16, 2023. The primary outcome was HCC incidence, and the secondary outcome was gastrointestinal bleeding. The results were expressed as hazard ratios (HRs) and 95% confidence intervals (CIs). Meta-analyses were performed by using random or fixed-effects models based on the heterogeneity assessed via the I2 statistic. RESULTS A total of 13 articles (303,414 participants and 14,423 HCC patients) were included in the analysis. The incidence of HCC in aspirin users was lower than that in non-aspirin users (HR 0.75; 95% CI, 0.68-0.83; P < 0.001; I2 = 90.0%). Subgroup analysis further showed that this effect may be more obvious in HCV patients, non-cirrhotic patients, patients with statins, and long-term aspirin users, but it may have the risk of gastrointestinal bleeding (HR 1.13; 95% CI, 1.07-1.20; P = 0.906; I2 = 0.0%). CONCLUSIONS Our meta-analysis shows that in patients with chronic viral hepatitis, aspirin use is associated with a significantly reduced risk of liver cancer, but attention should be paid to the possible risk of gastrointestinal bleeding, and this conclusion needs further validation in the future.
Collapse
Affiliation(s)
- Wentao Bian
- Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenkai Bian
- National Radio Spectrum Management Research Institute, Xi'an, China
| | - Qingyu Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulian Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Drew DA, Kim AE, Lin Y, Qu C, Morrison J, Lewinger JP, Kawaguchi E, Wang J, Fu Y, Zemlianskaia N, Díez-Obrero V, Bien SA, Dimou N, Albanes D, Baurley JW, Wu AH, Buchanan DD, Potter JD, Prentice RL, Harlid S, Arndt V, Barry EL, Berndt SI, Bouras E, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Chang-Claude J, Conti DV, Devall MA, Figueiredo JC, Gruber SB, Gsur A, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Jenkins MA, Jordahl KM, Kundaje A, Le Marchand L, Li L, Lynch BM, Murphy N, Nassir R, Newcomb PA, Newton CC, Obón-Santacana M, Ogino S, Ose J, Pai RK, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Rennert G, Ruiz-Narvaez E, Sakoda LC, Scacheri PC, Schmit SL, Schoen RE, Stern MC, Su YR, Thomas DC, Tian Y, Tsilidis KK, Ulrich CM, Um CY, van Duijnhoven FJ, Van Guelpen B, White E, Hsu L, Moreno V, Peters U, Chan AT, Gauderman WJ. Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer. SCIENCE ADVANCES 2024; 10:eadk3121. [PMID: 38809988 PMCID: PMC11135391 DOI: 10.1126/sciadv.adk3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.
Collapse
Affiliation(s)
- David A. Drew
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre E. Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eric Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yubo Fu
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Natalia Zemlianskaia
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Stephanie A. Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
- BioRealm LLC, Walnut, CA, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria 3010 Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria 3010 Australia
- Genomic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John D. Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Ross L. Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elizabeth L. Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmanouil Bouras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T. Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert Carreras-Torres
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, 17190 Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V. Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew A.M. Devall
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jane C. Figueiredo
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephen B. Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
- Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrea Gsur
- Center for Cancer Research, Medical University Vienna, Vienna, Austria
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Tabitha A. Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina M. Jordahl
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, Charlottesville, VA, USA
| | - Brigid M. Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura’a University, Mecca, Saudi Arabia
| | - Polly A. Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J. Pellatt
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anita R. Peoples
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lori C. Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Peter C. Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephanie L. Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Robert E. Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mariana C. Stern
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yu-Ru Su
- Biostatistics Division, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Duncan C. Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- School of Public Health, Capital Medical University, Beijing, China
| | - Konstantinos K. Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Cornelia M. Ulrich
- Huntsman Cancer Institute, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | | | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Andrew T. Chan
- Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - W. James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Chen WY, Ballman KV, Partridge AH, Hahn OM, Briccetti FM, Irvin WJ, Symington B, Visvanathan K, Pohlmann PR, Openshaw TH, Weiss A, Winer EP, Carey LA, Holmes MD. Aspirin vs Placebo as Adjuvant Therapy for Breast Cancer: The Alliance A011502 Randomized Trial. JAMA 2024; 331:1714-1721. [PMID: 38683596 PMCID: PMC11059055 DOI: 10.1001/jama.2024.4840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Importance Observational studies of survivors of breast cancer and prospective trials of aspirin for cardiovascular disease suggest improved breast cancer survival among aspirin users, but prospective studies of aspirin to prevent breast cancer recurrence are lacking. Objective To determine whether aspirin decreases the risk of invasive cancer events among survivors of breast cancer. Design, Setting, and Participants A011502, a phase 3, randomized, placebo-controlled, double-blind trial conducted in the United States and Canada with 3020 participants who had high-risk nonmetastatic breast cancer, enrolled participants from 534 sites from January 6, 2017, through December 4, 2020, with follow-up to March 4, 2023. Interventions Participants were randomized (stratified for hormone receptor status [positive vs negative], body mass index [≤30 vs >30], stage II vs III, and time since diagnosis [<18 vs ≥18 months]) to receive 300 mg of aspirin (n = 1510) or placebo once daily (n = 1510) for 5 years. Main Outcomes and Measures The primary outcome was invasive disease-free survival. Overall survival was a key secondary outcome. Results A total of 3020 participants were randomized when the data and safety monitoring committee recommended suspending the study at the first interim analysis because the hazard ratio had crossed the prespecified futility bound. By median follow-up of 33.8 months (range, 0.1-72.6 months), 253 invasive disease-free survival events were observed (141 in the aspirin group and 112 in the placebo group), yielding a hazard ratio of 1.27 (95% CI, 0.99-1.63; P = .06). All invasive disease-free survival events, including death, invasive progression (both distant and locoregional), and new primary events, were numerically higher in the aspirin group, although the differences were not statistically significant. There was no difference in overall survival (hazard ratio, 1.19; 95% CI, 0.82-1.72). Rates of grades 3 and 4 adverse events were similar in both groups. Conclusion and Relevance Among participants with high-risk nonmetastatic breast cancer, daily aspirin therapy did not improve risk of breast cancer recurrence or survival in early follow-up. Despite its promise and wide availability, aspirin should not be recommended as an adjuvant breast cancer treatment. Trial Registration ClinicalTrials.gov Identifier: NCT02927249.
Collapse
Affiliation(s)
- Wendy Y. Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | | | - Ann H. Partridge
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Olwen M. Hahn
- Alliance Protocol Operations Office, University of Chicago, Chicago, Illinois
| | | | | | - Banu Symington
- Memorial Hospital of Sweetwater County, Rock Springs, Wyoming
| | - Kala Visvanathan
- Sidney Kimmel Cancer Center at Johns Hopkins University, Baltimore, Maryland
| | - Paula R. Pohlmann
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston
| | | | - Anna Weiss
- Department of Surgery, University of Rochester, Rochester, New York
| | | | - Lisa A. Carey
- UNC Lineberger Cancer Center, University of North Carolina, Chapel Hill
| | - Michelle D. Holmes
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
21
|
Gilad O, Muller C, Kupfer SS. Chemoprevention in Inherited Colorectal Cancer Syndromes. Clin Colon Rectal Surg 2024; 37:172-179. [PMID: 38606042 PMCID: PMC11006448 DOI: 10.1055/s-0043-1770384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Cancer prevention in hereditary gastrointestinal predisposition syndromes relies primarily on intensive screening (e.g., colonoscopy) or prophylactic surgery (e.g., colectomy). The use of chemopreventive agents as an adjunct to these measures has long been studied both in the general population and in hereditary cancer patients, in whom the risk of malignancy, and therefore the potential risk reduction, is considerably greater. However, to date only few compounds have been found to be effective, safe, and tolerable for widespread use. Furthermore, many of the studies involving these rare syndromes suffer from small sample sizes, heterogeneous patient cohorts, short follow-up duration, and lack of standardized endpoints, creating challenges to draw generalizable conclusion regarding efficacy. The following review summarizes the current data on various chemopreventive compounds used in Lynch syndrome and familial adenomatous polyposis in addition to several agents that are currently being investigated.
Collapse
Affiliation(s)
- Ophir Gilad
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| | - Charles Muller
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois
| | - Sonia S. Kupfer
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago, Chicago, Illinois
| |
Collapse
|
22
|
Helderman NC, van Leerdam ME, Kloor M, Ahadova A, Nielsen M. Emerge of colorectal cancer in Lynch syndrome despite colonoscopy surveillance: A challenge of hide and seek. Crit Rev Oncol Hematol 2024; 197:104331. [PMID: 38521284 DOI: 10.1016/j.critrevonc.2024.104331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Even with colonoscopy surveillance, Lynch syndromes (LS) carriers still develop colorectal cancer (CRC). The cumulative incidence of CRCs under colonoscopy surveillance varies depending on the affected mismatch repair (MMR) gene. However, the precise mechanisms driving these epidemiological patterns remain incompletely understood. In recent years, several potential mechanisms explaining the occurrence of CRCs during colonoscopy surveillance have been proposed in individuals with and without LS. These encompass biological factors like concealed/accelerated carcinogenesis through a bypassed adenoma stage and accelerated progression from adenomas. Alongside these, various colonoscopy-related factors may contribute to formation of CRCs under colonoscopy surveillance, like missed yet detectable (pre)cancerous lesions, detected yet incompletely removed (pre)cancerous lesions, and colonoscopy-induced carcinogenesis due to tumor cell reimplantation. In this comprehensive literature update, we reviewed these potential factors and evaluated their relevance to each MMR group in an attempt to raise further awareness and stimulate research regarding this conflicting phenomenon.
Collapse
Affiliation(s)
- Noah C Helderman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Matthias Kloor
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Abbass MA, Poylin V, Strong S. Hereditary Colorectal Cancer Syndromes Registry: What, How, and Why? Clin Colon Rectal Surg 2024; 37:198-202. [PMID: 38606043 PMCID: PMC11006437 DOI: 10.1055/s-0043-1770733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Caring for patients with colorectal cancer inherited cancer syndromes is complex, and it requires a well-thought integration process between a multidisciplinary team, an accessible database, and a registry coordinator. This requires an aligned vision between the administrative business team and the clinical team. Although we can manage most of the cancers that those patients develop according to oncologic guidance, the future risk of patients and their families might add emotional and psychological burdens on them in the absence of a well-qualified and trained team where balancing quality of life and cancer risk are at the essence of decision making.
Collapse
Affiliation(s)
- Mohammad Ali Abbass
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vitaliy Poylin
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Scott Strong
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
24
|
McRonald FE, Pethick J, Santaniello F, Shand B, Tyson A, Tulloch O, Goel S, Lüchtenborg M, Borthwick GM, Turnbull C, Shaw AC, Monahan KJ, Frayling IM, Hardy S, Burn J. Identification of people with Lynch syndrome from those presenting with colorectal cancer in England: baseline analysis of the diagnostic pathway. Eur J Hum Genet 2024; 32:529-538. [PMID: 38355963 PMCID: PMC11061113 DOI: 10.1038/s41431-024-01550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
It is believed that >95% of people with Lynch syndrome (LS) remain undiagnosed. Within the National Health Service (NHS) in England, formal guidelines issued in 2017 state that all colorectal cancers (CRC) should be tested for DNA Mismatch Repair deficiency (dMMR). We used a comprehensive population-level national dataset to analyse implementation of the agreed diagnostic pathway at a baseline point 2 years post-publication of official guidelines. Using real-world data collected and curated by the National Cancer Registration and Analysis Service (NCRAS), we retrospectively followed up all people diagnosed with CRC in England in 2019. Nationwide laboratory diagnostic data incorporated somatic (tumour) testing for dMMR (via immunohistochemistry or microsatellite instability), somatic testing for MLH1 promoter methylation and BRAF status, and constitutional (germline) testing of MMR genes. Only 44% of CRCs were screened for dMMR; these figures varied over four-fold with respect to geography. Of those CRCs identified as dMMR, only 51% underwent subsequent diagnostic testing. Overall, only 1.3% of patients with colorectal cancer had a germline MMR genetic test performed; up to 37% of these tests occurred outside of NICE guidelines. The low rates of molecular diagnostic testing in CRC support the premise that Lynch syndrome is underdiagnosed, with significant attrition at all stages of the testing pathway. Applying our methodology to subsequent years' data will allow ongoing monitoring and analysis of the impact of recent investment. If the diagnostic guidelines were fully implemented, we estimate that up to 700 additional people with LS could be identified each year.
Collapse
Affiliation(s)
| | - Joanna Pethick
- National Disease Registration Service, NHS England, London, UK
| | - Francesco Santaniello
- National Disease Registration Service, NHS England, London, UK
- Health Data Insight, Cambridge, UK
| | - Brian Shand
- National Disease Registration Service, NHS England, London, UK
- Health Data Insight, Cambridge, UK
| | - Adele Tyson
- National Disease Registration Service, NHS England, London, UK
- Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Oliver Tulloch
- National Disease Registration Service, NHS England, London, UK
- Health Data Insight, Cambridge, UK
| | - Shilpi Goel
- National Disease Registration Service, NHS England, London, UK
- Health Data Insight, Cambridge, UK
| | - Margreet Lüchtenborg
- National Disease Registration Service, NHS England, London, UK
- Cancer Epidemiology and Cancer Services Research, King's College London, London, UK
| | - Gillian M Borthwick
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Adam C Shaw
- Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kevin J Monahan
- St Mark's Hospital Centre for Familial Intestinal Cancer, Imperial College, London, UK
| | - Ian M Frayling
- St Mark's Hospital Centre for Familial Intestinal Cancer, Imperial College, London, UK
- St Vincent's University Hospital, Dublin, Ireland
| | - Steven Hardy
- National Disease Registration Service, NHS England, London, UK
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Smith-Byrne K, Hedman Å, Dimitriou M, Desai T, Sokolov AV, Schioth HB, Koprulu M, Pietzner M, Langenberg C, Atkins J, Penha RC, McKay J, Brennan P, Zhou S, Richards BJ, Yarmolinsky J, Martin RM, Borlido J, Mu XJ, Butterworth A, Shen X, Wilson J, Assimes TL, Hung RJ, Amos C, Purdue M, Rothman N, Chanock S, Travis RC, Johansson M, Mälarstig A. Identifying therapeutic targets for cancer among 2074 circulating proteins and risk of nine cancers. Nat Commun 2024; 15:3621. [PMID: 38684708 PMCID: PMC11059161 DOI: 10.1038/s41467-024-46834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/05/2024] [Indexed: 05/02/2024] Open
Abstract
Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.
Collapse
Affiliation(s)
- Karl Smith-Byrne
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK.
| | - Åsa Hedman
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Marios Dimitriou
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Trishna Desai
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Alexandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schioth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mine Koprulu
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare Institute, Queen Mary University of London, London, UK
| | - Joshua Atkins
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Ricardo Cortez Penha
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Brent J Richards
- Departments of Medicine (Endocrinology), Human Genetics, Epidemiology and Biostatistics, McGill University, Montréal, QC, Canada
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Richard M Martin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Joana Borlido
- Cancer Immunology Discovery, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Xinmeng J Mu
- Oncology Research Unit, Pfizer Worldwide Research and Development Medicine, Pfizer Inc, San Diego, USA
| | - Adam Butterworth
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Xia Shen
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Jim Wilson
- Usher Institute, MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine and the Cardiovascular Institute, School of Medicine, Stanford University, Stanford, USA
| | - Rayjean J Hung
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Canada
| | - Christopher Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, USA
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Oxford, UK
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Anders Mälarstig
- External Science and Innovation, Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
26
|
Skriver C, Maltesen T, Dehlendorff C, Skovlund CW, Schmidt M, Sørensen HT, Friis S. Long-term aspirin use and cancer risk: a 20-year cohort study. J Natl Cancer Inst 2024; 116:530-538. [PMID: 37966913 DOI: 10.1093/jnci/djad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Long-term use of aspirin has been shown to reduce colorectal cancer risk, but the association remains inconclusive for individual noncolorectal cancers. We examined the association between long-term aspirin use and cancer risk in Denmark. METHODS Using nationwide registries, we followed individuals aged 40-70 years at baseline (January 1, 1997) for cancer diagnoses through 2018. We assessed low-dose (75-150 mg) aspirin use according to continuity, duration, and cumulative amount. In addition, we explored associations with consistent high-dose (500 mg) aspirin use. Using Cox regression, we estimated multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) with aspirin use for overall and site-specific cancer. RESULTS Among 1 909 531 individuals, 422 778 were diagnosed with cancer during mean follow-up of 18.2 years. Low-dose aspirin use did not reduce the hazard ratio for cancer overall irrespective of continuity and duration of use (continuous use: HR = 1.04, 95% CI = 1.03 to 1.06). However, long-term (≥5 or ≥10 years) use was associated with at least 10% reductions in hazard ratios for several cancer sites: colon, rectum, esophagus, stomach, liver, pancreas, small intestine, head and neck, brain tumors, meningioma, melanoma, thyroid, non-Hodgkin lymphoma, and leukemia. Substantially elevated hazard ratios were found for lung and bladder cancer. In secondary analyses, consistent high-dose aspirin use was associated with reduced hazard ratios for cancer overall (HR = 0.89, 95% CI = 0.85 to 0.93) and for several cancer sites. CONCLUSION Long-term low-dose aspirin use was associated with slight to moderately reduced risks for several cancers but not for cancer overall owing to increased risk for some common cancers. Similar or slightly stronger inverse associations were observed for consistent use of high-dose aspirin.
Collapse
Affiliation(s)
| | - Thomas Maltesen
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | | | | | - Morten Schmidt
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren Friis
- Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
27
|
Jones AN, Scheurlen KM, Macleod A, Simon HL, Galandiuk S. Obesity and Inflammatory Factors in the Progression of Early-Onset Colorectal Cancer. Cancers (Basel) 2024; 16:1403. [PMID: 38611081 PMCID: PMC11010915 DOI: 10.3390/cancers16071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction associated with obesity leads to a chronic pro-inflammatory state with systemic effects, including the alteration of macrophage metabolism. Tumor-associated macrophages have been linked to the formation of cancer through the production of metabolites such as itaconate. Itaconate downregulates peroxisome proliferator-activated receptor gamma as a tumor-suppressing factor and upregulates anti-inflammatory cytokines in M2-like macrophages. Similarly, leptin and adiponectin also influence macrophage cytokine expression and contribute to the progression of colorectal cancer via changes in gene expression within the PI3K/AKT pathway. This pathway influences cell proliferation, differentiation, and tumorigenesis. This work provides a review of obesity-related hormones and inflammatory mechanisms leading to the development and progression of early-onset colorectal cancer (EOCRC). A literature search was performed using the PubMed and Cochrane databases to identify studies related to obesity and EOCRC, with keywords including 'EOCRC', 'obesity', 'obesity-related hormones', 'itaconate', 'adiponectin', 'leptin', 'M2a macrophage', and 'microbiome'. With this concept of pro-inflammatory markers contributing to EOCRC, increased use of chemo-preventative agents such as aspirin may have a protective effect. Elucidating this association between obesity-related, hormone/cytokine-driven inflammatory effects with EOCRC may help lead to new therapeutic targets in preventing and treating EOCRC.
Collapse
Affiliation(s)
- Alexandra N. Jones
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Katharina M. Scheurlen
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Anne Macleod
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
| | - Hillary L. Simon
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
- Division of Colon and Rectal Surgery, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Susan Galandiuk
- Price Institute of Surgical Research, University of Louisville, Louisville, KY 40202, USA; (A.N.J.); (A.M.); (H.L.S.)
- Division of Colon and Rectal Surgery, Hiram C. Polk Jr. MD Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
28
|
Sheth J, Sheth H, Sheth F, Thelma BK, Joshi M, Kaur I, Joshi C. 48th annual meeting and international conference of the Indian Society of Human Genetics 2024: fostering collaborations within rare disease research community. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 23:100373. [PMID: 38434479 PMCID: PMC10905951 DOI: 10.1016/j.lansea.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Jayesh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, Ahmedabad, Gujarat, India
| | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | | | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| |
Collapse
|
29
|
Sadien ID, Davies RJ, Wheeler JMD. The genomics of sporadic and hereditary colorectal cancer. Ann R Coll Surg Engl 2024; 106:313-320. [PMID: 38555871 PMCID: PMC10981993 DOI: 10.1308/rcsann.2024.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2024] [Indexed: 04/02/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Over the past three decades, extensive efforts have sought to elucidate the genomic landscape of CRC. These studies reveal that CRC is highly heterogeneous at the molecular level, with different subtypes characterised by distinct somatic mutational profiles, epigenetic aberrations and transcriptomic signatures. This review summarises our current understanding of the genomic and epigenomic alterations implicated in CRC development and progression. Particular focus is given to how characterisation of CRC genomes is leading to more personalised approaches to diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - JMD Wheeler
- Cambridge University Hospitals NHS Foundation Trust, UK
| |
Collapse
|
30
|
Alkhatib O, Miles T, Jones RP, Mair R, Palmer R, Winter H, McDermott FD. Current and future genomic applications for surgeons. Ann R Coll Surg Engl 2024; 106:321-328. [PMID: 38555869 PMCID: PMC10981988 DOI: 10.1308/rcsann.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Genomics is a crucial part of managing surgical disease. This review focuses on some of the genomic advances that are available now and looks to the future of their application in surgical practice. Whole-genome sequencing enables unbiased coverage across the entire human genome of approximately three billion base pairs. Newer technologies, such as those that permit long-read sequence analysis, provide additional information in longer phased fragment and base pair epigenomic (methylomic) data. Whole-genome sequencing is currently available in England for cancers in children, teenagers and young adults, central nervous system tumours, sarcoma and haematological malignancies. Circulating tumour DNA (ctDNA), immunotherapy and pharmacogenomics have emerged as groundbreaking approaches in the field of cancer treatment. These are now revolutionising the way oncologists and surgeons approach curative cancer surgery. Cancer vaccines offer an innovative approach to reducing recurrence after surgery by priming the immune system to trigger an immune response. The Cancer Vaccine Launch Pad project facilitates cancer vaccine studies in England. The BNT122-01 trial is recruiting patients with ctDNA-positive high-risk colorectal cancer after surgery to assess the impact of cancer vaccines. The evolving landscape of cancer treatment demands a dynamic and integrated approach from the surgical multidisciplinary team. Immunotherapy, ctDNA, pharmacogenomics, vaccines, mainstreaming and whole-genome sequencing are just some of the innovations that have the potential to redefine the standards of care. The continued exploration of these innovative diagnostics and therapies, the genomic pathway evolution and their application in diverse cancer types highlights the transformative impact of precision medicine in surgery.
Collapse
Affiliation(s)
- O Alkhatib
- Liverpool University Teaching Hospitals NHS Foundation Trust, UK
| | - T Miles
- Southwest Genomics Medicine Service Alliance, UK
| | | | | | | | - H Winter
- University Hospitals Bristol and Weston NHS Foundation Trust, UK
| | | |
Collapse
|
31
|
Wang M, Chen S, He X, Yuan Y, Wei X. Targeting inflammation as cancer therapy. J Hematol Oncol 2024; 17:13. [PMID: 38520006 PMCID: PMC10960486 DOI: 10.1186/s13045-024-01528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No.17, Block3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
Baker-Rand H, Kitson SJ. Recent Advances in Endometrial Cancer Prevention, Early Diagnosis and Treatment. Cancers (Basel) 2024; 16:1028. [PMID: 38473385 DOI: 10.3390/cancers16051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Endometrial cancer is the sixth commonest cancer in women worldwide, with over 417,000 diagnoses in 2020. The disease incidence has increased by 132% over the last 30 years and is set to continue to rise in response to an ageing population and increasing global rates of obesity and diabetes. A greater understanding of the mechanisms driving endometrial carcinogenesis has led to the identification of potential strategies for primary disease prevention, although prospective evaluation of their efficacy within clinical trials is still awaited. The early diagnosis of endometrial cancer is associated with improved survival, but has historically relied on invasive endometrial sampling. New, minimally invasive tests using protein and DNA biomarkers and cytology have the potential to transform diagnostic pathways and to allow for the surveillance of high-risk populations. The molecular classification of endometrial cancers has been shown to not only have a prognostic impact, but also to have therapeutic value and is increasingly used to guide adjuvant treatment decisions. Advanced and recurrent disease management has also been revolutionised by increasing the use of debulking surgery and targeted treatments, particularly immunotherapy. This review summarises the recent advances in the prevention, diagnosis and treatment of endometrial cancer and seeks to identify areas for future research.
Collapse
Affiliation(s)
- Holly Baker-Rand
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Sarah J Kitson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Academic Health Science Centre, Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
33
|
Huntley C, Loong L, Mallinson C, Bethell R, Rahman T, Alhaddad N, Tulloch O, Zhou X, Lee J, Eves P, McRonald F, Torr B, Burn J, Shaw A, Morris EJ, Monahan K, Hardy S, Turnbull C. The comprehensive English National Lynch Syndrome Registry: development and description of a new genomics data resource. EClinicalMedicine 2024; 69:102465. [PMID: 38356732 PMCID: PMC10864212 DOI: 10.1016/j.eclinm.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Background Lynch Syndrome (LS) is a cancer predisposition syndrome caused by constitutional pathogenic variants in the mismatch repair (MMR) genes. To date, fragmentation of clinical and genomic data has restricted understanding of national LS ascertainment and outcomes, and precluded evaluation of NICE guidance on testing and management. To address this, via collaboration between researchers, the National Disease Registration Service (NDRS), NHS Genomic Medicine Service Alliances (GMSAs), and NHS Regional Clinical Genetics Services, a comprehensive registry of LS carriers in England has been established. Methods For comprehensive ascertainment of retrospectively identified MMR pathogenic variant (PV) carriers (diagnosed prior to January 1, 2023), information was retrieved from all clinical genetics services across England, then restructured, amalgamated, and validated via a team of trained experts in NDRS. An online submission portal was established for prospective ascertainment from January 1, 2023. The resulting data, stored in a secure database in NDRS, were used to investigate the demographic and genetic characteristics of the cohort, censored at July 25, 2023. Cancer outcomes were investigated via linkage to the National Cancer Registration Dataset (NCRD). Findings A total of 11,722 retrospective and 570 prospective data submissions were received, resulting in a comprehensive English National Lynch Syndrome Registry (ENLSR) comprising 9030 unique individuals. The most frequently identified pathogenic MMR genes were MSH2 and MLH1 at 37.2% (n = 3362) and 29.1% (n = 2624), respectively. 35.9% (n = 3239) of the ENLSR cohort received their LS diagnosis before their first cancer diagnosis (presumptive predictive germline test). Of these, 6.3% (n = 204) developed colorectal cancer, at a median age of initial diagnosis of 51 (IQR 40-62), compared to 73 years (IQR 64-80) in the general population (p < 0.0001). Interpretation The ENLSR represents the first comprehensive national registry of PV carriers in England and one of the largest cohorts of MMR PV carriers worldwide. The establishment of a secure, centralised infrastructure and mechanism for routine registration of newly identified carriers ensures sustainability of the data resource. Funding This work was funded by the Wellcome Trust, Cancer Research UK and Bowel Cancer UK. The funder of this study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.
Collapse
Affiliation(s)
- Catherine Huntley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
- National Disease Registration Service, NHS England, London, UK
| | - Lucy Loong
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
- National Disease Registration Service, NHS England, London, UK
| | | | - Rachel Bethell
- National Disease Registration Service, NHS England, London, UK
| | - Tameera Rahman
- National Disease Registration Service, NHS England, London, UK
- Health Data Insight CIC, Cambridge, UK
| | - Neelam Alhaddad
- National Disease Registration Service, NHS England, London, UK
| | - Oliver Tulloch
- National Disease Registration Service, NHS England, London, UK
| | - Xue Zhou
- National Disease Registration Service, NHS England, London, UK
| | - Jason Lee
- National Disease Registration Service, NHS England, London, UK
| | - Paul Eves
- National Disease Registration Service, NHS England, London, UK
| | - Fiona McRonald
- National Disease Registration Service, NHS England, London, UK
| | - Bethany Torr
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Adam Shaw
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Eva J.A. Morris
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kevin Monahan
- The Lynch Syndrome and Family Cancer Clinic, St Mark's Hospital and Academic Institute, Harrow, London, UK
- Imperial College London, London, UK
| | - Steven Hardy
- National Disease Registration Service, NHS England, London, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
- National Disease Registration Service, NHS England, London, UK
| |
Collapse
|
34
|
Dal Buono A, Puccini A, Franchellucci G, Airoldi M, Bartolini M, Bianchi P, Santoro A, Repici A, Hassan C. Lynch Syndrome: From Multidisciplinary Management to Precision Prevention. Cancers (Basel) 2024; 16:849. [PMID: 38473212 DOI: 10.3390/cancers16050849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND AIMS Lynch syndrome (LS) is currently one of the most prevalent hereditary cancer conditions, accounting for 3% of all colorectal cancers and for up to 15% of those with DNA mismatch repair (MMR) deficiency, and it was one of the first historically identified. The understanding of the molecular carcinogenesis of LS tumors has progressed significantly in recent years. We aim to review the most recent advances in LS research and explore genotype-based approaches in surveillance, personalized cancer prevention, and treatment strategies. METHODS PubMed was searched to identify relevant studies, conducted up to December 2023, investigating molecular carcinogenesis in LS, surveillance strategies, cancer prevention, and treatment in LS tumors. RESULTS Multigene panel sequencing is becoming the benchmark in the diagnosis of LS, allowing for the detection of a pathogenic constitutional variant in one of the MMR genes. Emerging data from randomized controlled trials suggest possible preventive roles of resistant starch and/or aspirin in LS. Vaccination with immunogenic frameshift peptides appears to be a promising approach for both the treatment and prevention of LS-associated cancers, as evidenced by pre-clinical and preliminary phase 1/2a studies. CONCLUSIONS Although robust diagnostic algorithms, including prompt testing of tumor tissue for MMR defects and referral for genetic counselling, currently exist for suspected LS in CRC patients, the indications for LS screening in cancer-free individuals still need to be refined and standardized. Investigation into additional genetic and non-genetic factors that may explain residual rates of interval cancers, even in properly screened populations, would allow for more tailored preventive strategies.
Collapse
Affiliation(s)
- Arianna Dal Buono
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alberto Puccini
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Gianluca Franchellucci
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Marco Airoldi
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Michela Bartolini
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Paolo Bianchi
- Clinical Analysis Laboratory, Oncological Molecular Genetics Section, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Alessandro Repici
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| | - Cesare Hassan
- Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy
| |
Collapse
|
35
|
Hynes J, Dawson L, Seal M, Green J, Woods M, Etchegary H. "There should be one spot that you can go:" BRCA mutation carriers' perspectives on cancer risk management and a hereditary cancer registry. J Community Genet 2024; 15:49-58. [PMID: 37864742 PMCID: PMC10858006 DOI: 10.1007/s12687-023-00685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Individuals who carry BRCA1 or BRCA2 pathogenic variants are recommended to have extensive cancer prevention screening and risk-reducing surgeries. Uptake of these recommendations is variable, and there remains room for improvement in the risk management of BRCA carriers. This paper explores female BRCA carriers' experiences with the current model of care and their perspectives on (and interest in) an inherited cancer registry. Findings can inform the development of a dedicated high-risk screening and management program for these patients. Quantitative and qualitative data were gathered through a provincial descriptive survey and semi-structured qualitative interviews to assess BRCA carriers' opinions toward risk management services in the province of Newfoundland and Labrador (NL), Canada. Survey (n = 69) and interview data (n = 15) revealed continuity and coordination challenges with the current system of care of high-risk individuals. Respondents suggested an inherited cancer registry would help identify high-risk individuals and provide a centralized system of risk management for identified carriers. Respondents identified concerns about the privacy of their registry data, including who could access it. Findings suggest BRCA carriers see great value in an inherited cancer registry. Specifically, participants noted it could provide a centralized system to help improve the coordination of burdensome, life-long risk management. Important patient concerns about protecting their privacy and their health data confidentiality must be addressed in patient and public information and informed consent documents about a registry.
Collapse
Affiliation(s)
- J Hynes
- Faculty of Medicine, Memorial University, Craig L. Dobbin Centre for Genetics, Rm 4M210, St. John's, NL, A1B 3V6, Canada
| | - L Dawson
- Department Obstetrics and Gynecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - M Seal
- Cancer Care Program, Eastern Regional Health Authority, St. John's, NL, Canada
| | - J Green
- Faculty of Medicine, Memorial University, Craig L. Dobbin Centre for Genetics, Rm 4M210, St. John's, NL, A1B 3V6, Canada
| | - M Woods
- Faculty of Medicine, Memorial University, Craig L. Dobbin Centre for Genetics, Rm 4M210, St. John's, NL, A1B 3V6, Canada
| | - H Etchegary
- Faculty of Medicine, Memorial University, Craig L. Dobbin Centre for Genetics, Rm 4M210, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
36
|
Gurbatri CR, Radford GA, Vrbanac L, Im J, Thomas EM, Coker C, Taylor SR, Jang Y, Sivan A, Rhee K, Saleh AA, Chien T, Zandkarimi F, Lia I, Lannagan TRM, Wang T, Wright JA, Kobayashi H, Ng JQ, Lawrence M, Sammour T, Thomas M, Lewis M, Papanicolas L, Perry J, Fitzsimmons T, Kaazan P, Lim A, Stavropoulos AM, Gouskos DA, Marker J, Ostroff C, Rogers G, Arpaia N, Worthley DL, Woods SL, Danino T. Engineering tumor-colonizing E. coli Nissle 1917 for detection and treatment of colorectal neoplasia. Nat Commun 2024; 15:646. [PMID: 38245513 PMCID: PMC10799955 DOI: 10.1038/s41467-024-44776-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.
Collapse
Affiliation(s)
- Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Georgette A Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Elaine M Thomas
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Samuel R Taylor
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ayelet Sivan
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Anas A Saleh
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tiffany Chien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | | | - Ioana Lia
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Tamsin R M Lannagan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Tongtong Wang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Josephine A Wright
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Hiroki Kobayashi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jia Q Ng
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Matt Lawrence
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tarik Sammour
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Michelle Thomas
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Mark Lewis
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Lito Papanicolas
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Joanne Perry
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Tracy Fitzsimmons
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Patricia Kaazan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Amanda Lim
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | | | - Dion A Gouskos
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Julie Marker
- Cancer Voices SA, Adelaide, South Australia, Australia
| | - Cheri Ostroff
- University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Geraint Rogers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Spring Hill, 4000, Queensland, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10027, USA.
- Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
37
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
38
|
Elwood P, Morgan G, Watkins J, Protty M, Mason M, Adams R, Dolwani S, Pickering J, Delon C, Longley M. Aspirin and cancer treatment: systematic reviews and meta-analyses of evidence: for and against. Br J Cancer 2024; 130:3-8. [PMID: 38030748 PMCID: PMC10782022 DOI: 10.1038/s41416-023-02506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Aspirin as a possible treatment of cancer has been of increasing interest for over 50 years, but the balance of the risks and benefits remains a point of contention. We summarise the valid published evidence 'for' and 'against' the use of aspirin as a cancer treatment and we present what we believe are relevant ethical implications. Reasons for aspirin include the benefits of aspirin taken by patients with cancer upon relevant biological cancer mechanisms. These explain the observed reductions in metastatic cancer and vascular complications in cancer patients. Meta-analyses of 118 observational studies of mortality in cancer patients give evidence consistent with reductions of about 20% in mortality associated with aspirin use. Reasons against aspirin use include increased risk of a gastrointestinal bleed though there appears to be no valid evidence that aspirin is responsible for fatal gastrointestinal bleeding. Few trials have been reported and there are inconsistencies in the results. In conclusion, given the relative safety and the favourable effects of aspirin, its use in cancer seems justified, and ethical implications of this imply that cancer patients should be informed of the present evidence and encouraged to raise the topic with their healthcare team.
Collapse
Affiliation(s)
- Peter Elwood
- Population Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Gareth Morgan
- Population Medicine, Cardiff University, Cardiff, CF14 4XN, UK.
| | - John Watkins
- Population Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Majd Protty
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Malcolm Mason
- School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Richard Adams
- Population Medicine, Cardiff University, Cardiff, CF14 4XN, UK
- Wales Cancer Bank, University Hospital of Wales, Cardiff, CF14 4XN, UK
| | - Sunil Dolwani
- School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Janet Pickering
- Population Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | |
Collapse
|
39
|
Rajan N, Cook S, Best K, Monahan K. Universal testing of cutaneous sebaceous carcinoma: a missed opportunity in Lynch syndrome detection. Lancet Oncol 2024; 25:e1-e2. [PMID: 38181808 DOI: 10.1016/s1470-2045(23)00595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Affiliation(s)
- Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sam Cook
- Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Katie Best
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kevin Monahan
- The Centre for Familial Intestinal Cancer, St Mark's National Bowel Hospital, and Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
40
|
Liu Z, Cui L, Wang J, Zhao W, Teng Y. Aspirin boosts the synergistic effect of EGFR/p53 inhibitors on lung cancer cells by regulating AKT/mTOR and p53 pathways. Cell Biochem Funct 2024; 42:e3902. [PMID: 38100146 DOI: 10.1002/cbf.3902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024]
Abstract
The regimen of afatinib and vinorelbine has been used to treat breast or lung cancer cells with some limitations. Aspirin alone or in combination with other agents has shown unique efficacy in the treatment of cancer. We designed a preclinical study to investigate whether the triple therapy of aspirin, afatinib, and vinorelbine could synergistically inhibit the growth of p53 wild-type nonsmall cell lung cancer (NSCLC) cells. Three NSCLC cells A549, H460, and H1975 were selected to study the effect of triple therapy on cell proliferation and apoptosis. Compared to single agents, triple therapy synergistically inhibited the proliferation of lung cancer cells with combination index <1. Meanwhile, the therapeutic index of triple therapy was superior to that of single agents, indicating a balance between efficacy and safety in the combination of three agents. Mechanistic studies showed that triple therapy significantly induced apoptosis by decreasing mitochondrial membrane potential, increasing reactive oxygen species, and regulating mitochondria-related proteins. Moreover, epidermal growth factor receptor (EGFR) downstream signaling proteins including JNK, AKT, and mTOR were dramatically suppressed and p53 was substantially increased after NSCLC cells were exposed to the triple therapy. We provided evidence that the triple therapy of aspirin, afatinib and vinorelbine synergistically inhibited lung cancer cell growth through inactivation of the EGFR/AKT/mTOR pathway and accumulation of p53, providing a new treatment strategy for patients with p53 wild-type NSCLC.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Li Cui
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Jinyao Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wanshun Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
- National & Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co. Ltd., Tianjin, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
41
|
Chevalier E, Benamouzig R. Chemoprevention in hereditary digestive neoplasia: A comprehensive review. Therap Adv Gastroenterol 2023; 16:17562848231215585. [PMID: 38050626 PMCID: PMC10693784 DOI: 10.1177/17562848231215585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Hereditary syndromes, such as familial adenomatous polyposis (FAP), MUTYH polyposis or Lynch syndrome, are particularly predisposing to the development of colorectal cancer. These situations have necessitated the development of adapted prevention strategies based largely on reinforced endoscopic surveillance and the search for complementary prevention strategies. This is the case for chemoprevention, which is the long-term administration of chemical agents limiting carcinogenesis, used as primary or secondary prophylaxis. The aim of this review is to present the available literature and the latest advances in chemoprevention in patients with FAP or MUTYH and other polyposis as well as in patients with Lynch syndrome. The main conclusions of the few available guidelines in these situations are also discussed.
Collapse
Affiliation(s)
- Eugénie Chevalier
- Department of Gastroenterology and Digestive Oncology, Avicenne Hospital, Bobigny, France
| | - Robert Benamouzig
- Department of Gastroenterology and Digestive Oncology, Avicenne Hospital, AP-HP, Paris Nord la Sorbonne University, 125 Rue de Stalingrad, Bobigny 93000, France
| |
Collapse
|
42
|
Lacaze P, Marquina C, Tiller J, Brotchie A, Kang YJ, Merritt MA, Green RC, Watts GF, Nowak KJ, Manchanda R, Canfell K, James P, Winship I, McNeil JJ, Ademi Z. Combined population genomic screening for three high-risk conditions in Australia: a modelling study. EClinicalMedicine 2023; 66:102297. [PMID: 38192593 PMCID: PMC10772163 DOI: 10.1016/j.eclinm.2023.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 01/10/2024] Open
Abstract
Background No previous health-economic evaluation has assessed the impact and cost-effectiveness of offering combined adult population genomic screening for mutliple high-risk conditions in a national public healthcare system. Methods This modeling study assessed the impact of offering combined genomic screening for hereditary breast and ovarian cancer, Lynch syndrome and familial hypercholesterolaemia to all young adults in Australia, compared with the current practice of clinical criteria-based testing for each condition separately. The intervention of genomic screening, assumed as an up-front single cost in the first annual model cycle, would detect pathogenic variants in seven high-risk genes. The simulated population was 18-40 year-olds (8,324,242 individuals), modelling per-sample test costs ranging AU$100-$1200 (base-case AU$200) from the year 2023 onwards with testing uptake of 50%. Interventions for identified high-risk variant carriers follow current Australian guidelines, modelling imperfect uptake and adherence. Outcome measures were morbidity and mortality due to cancer (breast, ovarian, colorectal and endometrial) and coronary heart disease (CHD) over a lifetime horizon, from healthcare-system and societal perspectives. Outcomes included quality-adjusted life years (QALYs) and incremental cost-effectiveness ratio (ICER), discounted 5% annually (with 3% discounting in scenario analysis). Findings Over the population lifetime (to age 80 years), the model estimated that genomic screening per-100,000 individuals would lead to 747 QALYs gained by preventing 63 cancers, 31 CHD cases and 97 deaths. In the total model population, this would translate to 31,094 QALYs gained by preventing 2612 cancers, 542 non-fatal CHD events and 4047 total deaths. At AU$200 per-test, genomic screening would require an investment of AU$832 million for screening of 50% of the population. Our findings suggest that this intervention would be cost-effective from a healthcare-system perspective, yielding an ICER of AU$23,926 (∼£12,050/€14,110/US$15,345) per QALY gained over the status quo. In scenario analysis with 3% discounting, an ICER of AU$4758/QALY was obtained. Sensitivity analysis for the base case indicated that combined genomic screening would be cost-effective under 70% of simulations, cost-saving under 25% and not cost-effective under 5%. Threshold analysis showed that genomic screening would be cost-effective under the AU$50,000/QALY willingness-to-pay threshold at per-test costs up to AU$325 (∼£164/€192/US$208). Interpretation Our findings suggest that offering combined genomic screening for high-risk conditions to young adults would be cost-effective in the Australian public healthcare system, at currently realistic testing costs. Other matters, including psychosocial impacts, ethical and societal issues, and implementation challenges, also need consideration. Funding Australian Government, Department of Health, Medical Research Future Fund, Genomics Health Futures Mission (APP2009024). National Heart Foundation Future Leader Fellowship (102604).
Collapse
Affiliation(s)
- Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Clara Marquina
- Health Economics and Policy Evaluation Research (HEPER) Group, Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Jane Tiller
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam Brotchie
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yoon-Jung Kang
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Melissa A. Merritt
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Robert C. Green
- Mass General Brigham, Broad Institute, Ariadne Labs and Harvard Medical School, Boston, MA, 02114, USA
| | - Gerald F. Watts
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, 6001, Australia
| | - Kristen J. Nowak
- Public and Aboriginal Health Division, Western Australia Department of Health, East Perth, WA, 6004, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Karen Canfell
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Paul James
- Parkville Familial Cancer Centre, Peter McCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, VIC, 3050, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Ingrid Winship
- Department of Genomic Medicine, Royal Melbourne Hospital City Campus, Parkville, VIC, 3050, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, 3050, Australia
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Zanfina Ademi
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
- Health Economics and Policy Evaluation Research (HEPER) Group, Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| |
Collapse
|
43
|
Katona BW, Stadler ZK. Less is more: rethinking colorectal cancer resection strategies in Lynch syndrome. Lancet Gastroenterol Hepatol 2023; 8:1061-1063. [PMID: 37865104 DOI: 10.1016/s2468-1253(23)00251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 10/23/2023]
Affiliation(s)
- Bryson W Katona
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zsofia K Stadler
- Clinical Genetics and Gastrointestinal Oncology Services, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
44
|
Cook S, Pethick J, Kibbi N, Hollestein L, Lavelle K, de Vere Hunt I, Turnbull C, Rous B, Husain A, Burn J, Lüchtenborg M, Santaniello F, McRonald F, Hardy S, Linos E, Venables Z, Rajan N. Sebaceous carcinoma epidemiology, associated malignancies and Lynch/Muir-Torre syndrome screening in England from 2008 to 2018. J Am Acad Dermatol 2023; 89:1129-1135. [PMID: 37031776 DOI: 10.1016/j.jaad.2023.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Sebaceous carcinomas (SC) may be associated with the cancer predisposition syndrome Muir-Torre/Lynch syndrome (MTS/LS), identifiable by SC mismatch repair (MMR) screening; however, there is limited data on MMR status of SC. OBJECTIVE To describe the epidemiology of SC, copresentation of other cancers, and population level frequency of MMR screening in SC. METHODS A population-based retrospective cohort study of SC patients in the National Cancer Registration and Analysis Service in England. RESULTS This study included 1077 SC cases (739 extraocular, 338 periocular). Age-standardized incidence rates (ASIR) were higher in men compared with women, 2.74 (95% CI, 2.52-9.69) per 1,000,000 person-years for men versus 1.47 person-years (95% CI, 1.4-1.62) for women. Of the patients, 19% (210/1077) developed at least one MTS/LS-associated malignancy. MMR immunohistochemical screening was performed in only 20% (220/1077) of SC tumors; of these, 32% (70/219) of tumors were MMR deficient. LIMITATIONS Retrospective design. CONCLUSIONS Incorporation of MMR screening into clinical practice guidelines for the management of SC will increase the opportunity for MTS/LS diagnoses, with implications for cancer surveillance, chemoprevention with aspirin, and immunotherapy treatment targeted to MTS/LS cancers.
Collapse
Affiliation(s)
- Sam Cook
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Joanna Pethick
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Nour Kibbi
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Loes Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Research, Netherlands Comprehensive Cancer Center (IKNL), Utrecht, The Netherlands
| | - Katrina Lavelle
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Isabella de Vere Hunt
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Clare Turnbull
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Brian Rous
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Akhtar Husain
- Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - John Burn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Margreet Lüchtenborg
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom; Centre for Cancer, Society & Public Health, Comprehensive Cancer Centre, King's College London, London, United Kingdom
| | - Francesco Santaniello
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom; Health Data Insight, Cambridge, United Kingdom
| | - Fiona McRonald
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Steven Hardy
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom
| | - Eleni Linos
- Department of Dermatology, Stanford University School of Medicine, Stanford, California
| | - Zoe Venables
- National Disease Registration Service (NDRS), NHS Digital, London, United Kingdom; Department of Dermatology, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Dermatology, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
45
|
Naddaf R, Carasso S, Reznick-Levi G, Hasnis E, Qarawani A, Maza I, Gefen T, Half EE, Geva-Zatorsky N. Gut microbial signatures are associated with Lynch syndrome (LS) and cancer history in Druze communities in Israel. Sci Rep 2023; 13:20677. [PMID: 38001152 PMCID: PMC10673896 DOI: 10.1038/s41598-023-47723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Lynch syndrome (LS) is a hereditary cancer syndrome caused by autosomal dominant mutations, with high probability of early onset for several cancers, mainly colorectal cancer (CRC). The gut microbiome was shown to be influenced by host genetics and to be altered during cancer development. Therefore, we aimed to determine alterations in gut microbiome compositions of LS patients with and without cancer. We performed fecal microbiome analyses on samples of LS and non-LS members from the Druze ethnoreligious community in Israel, based on both their LS mutation and their cancer history. Our analysis revealed specific bacterial operational taxonomic units (OTUs) overrepresented in LS individuals as well as bacterial OTUs differentiating between the LS individuals with a history of cancer. The identified OTUs align with previous studies either correlating them to pro-inflammatory functions, which can predispose to cancer, or to the cancer itself, and as such, these bacteria can be considered as future therapeutic targets.
Collapse
Affiliation(s)
- Rawi Naddaf
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Shaqed Carasso
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | | | - Erez Hasnis
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Amalfi Qarawani
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Itay Maza
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel
| | - Tal Gefen
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Rappaport Technion Integrated Cancer Center, Haifa, Israel
| | - Elizabeth Emily Half
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Gastroenterology Institute Rambam Health Care Campus, Haifa, Israel.
| | - Naama Geva-Zatorsky
- Technion Israel Institute of Technology the Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.
- Rappaport Technion Integrated Cancer Center, Haifa, Israel.
- Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
46
|
Grădinaru TC, Gilca M, Vlad A, Dragoș D. Relevance of Phytochemical Taste for Anti-Cancer Activity: A Statistical Inquiry. Int J Mol Sci 2023; 24:16227. [PMID: 38003415 PMCID: PMC10671173 DOI: 10.3390/ijms242216227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting inflammation and the pathways linking inflammation with cancer is an innovative therapeutic strategy. Tastants are potential candidates for this approach, since taste receptors display various biological functions, including anti-inflammatory activity (AIA). The present study aims to explore the power different tastes have to predict a phytochemical's anti-cancer properties. It also investigates whether anti-inflammatory phytocompounds also have anti-cancer effects, and whether there are tastes that can better predict a phytochemical's bivalent biological activity. Data from the PlantMolecularTasteDB, containing a total of 1527 phytochemicals, were used. Out of these, only 624 phytocompounds met the inclusion criterion of having 40 hits in a PubMed search, using the name of the phytochemical as the keyword. Among them, 461 phytochemicals were found to possess anti-cancer activity (ACA). The AIA and ACA of phytochemicals were strongly correlated, irrespective of taste/orosensation or chemical class. Bitter taste was positively correlated with ACA, while sweet taste was negatively correlated. Among chemical classes, only flavonoids (which are most frequently bitter) had a positive association with both AIA and ACA, a finding confirming that taste has predictive primacy over chemical class. Therefore, bitter taste receptor agonists and sweet taste receptor antagonists may have a beneficial effect in slowing down the progression of inflammation to cancer.
Collapse
Affiliation(s)
- Teodora-Cristiana Grădinaru
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dorin Dragoș
- Department of Medical Semiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- 1st Internal Medicine Clinic, University Emergency Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, 050098 Bucharest, Romania
| |
Collapse
|
47
|
Shah D, Di Re A, Toh JWT. Aspirin chemoprevention in colorectal cancer: network meta-analysis of low, moderate, and high doses. Br J Surg 2023; 110:1691-1702. [PMID: 37499126 DOI: 10.1093/bjs/znad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Colorectal cancer is the third most common cancer, with nearly 2 million cases worldwide and just under 1 million deaths in 2020. Several trials have demonstrated that aspirin has the potential to reduce the incidence and/or recurrence of colorectal cancer; however, the optimal aspirin dose is unclear. METHODS Relevant studies were identified by searching MEDLINE, Embase and the Cochrane Library from database inception to 2 February 2022. Data from RCTs in which the incidence of colorectal cancer in patients without active colorectal cancer assigned to aspirin versus control were included. Two investigators independently identified studies and abstracted data. Study quality was assessed using Cochrane Collaboration risk-of-bias 2 tool. The study was performed according to PRISMA guidelines. Aspirin dose was stratified into low (50-163 mg/day), mid (164-325 mg/day), and high (500-1200 mg/day). RESULTS Thirteen articles representing 11 RCTs (92 550 participants) were included, with studies assessing aspirin as primary prophylaxis in general or high-risk populations, and as secondary prophylaxis for metachronous colorectal cancer. There was a statistically significant reduction in colorectal cancer incidence in the high-dose aspirin group compared with the group that received no aspirin or placebo (OR 0.69, 95 per cent credible interval 0.50 to 0.96; surface under the cumulative ranking 0.82). There was no statistically significant difference between mid- and low-dose aspirin versus no aspirin/placebo. CONCLUSION In this network meta-analysis of RCTs, high-dose aspirin was associated with a reduction in colorectal cancer incidence. However, this was based on a limited number of trials. This study did not show a statistically significant risk reduction in colorectal cancer incidence with mid- or low-dose aspirin.
Collapse
Affiliation(s)
- Devansh Shah
- Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Angelina Di Re
- Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - James W T Toh
- Department of Surgery, Westmead Hospital, Westmead, New South Wales, Australia
- Department of Colorectal Surgery, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
48
|
Li B, Wang K, Shi S, Li M, Ma MT, Zhou ZG, Wang ZC, Gong YN, Xiao Y, Zhao L, Meng Q, Liu YB. Prognostic value of neutrophil to lymphocyte ratio and platelet counts during chemotherapy in patients with advanced gastric cancer. Saudi Med J 2023; 44:1104-1112. [PMID: 37926448 PMCID: PMC10712764 DOI: 10.15537/smj.2023.44.11.20220946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVES To investigate the predictive significance of dynamic changes in the neutrophil to lymphocyte ratio (NLR) and platelet counts (PLTs) in patients with advanced gastric cancer (GC) during chemotherapy. METHODS A total of 259 advanced GC patients receiving chemotherapy were enrolled and grouped by high or low NLR with a cut value of 2.5 and PLT with cut value of 300×109/L. The Kaplan-Meier survival model and the Log-rank test were carried out to determine the comparison on the overall survival differences. Cox regression analysis was employed to carry out both univariate and multivariate regression studies, aiming to explore potential prognostic factors acting independently. RESULTS Higher pre-chemotherapy NLR exhibited an association with metastasis and advanced grade of Borrmann type, and higher NLR of pre- or post-chemotherapy GC patients was related with Borrmann type grade. Moreover, higher PLT counts are associated with advanced grades of Borrmann type. Interestingly, patients with lower post-chemotherapy NLR or decreasing NLR hold better overall response rate and disease control rate than those with higher NLR or increasing NLR. Furthermore, patients with high post-chemotherapy NLR alone or higher post-chemotherapy NLR plus higher post-chemotherapy PLT. CONCLUSION Our study suggested that high post-chemotherapy NLR and post-chemotherapy PLT might be adverse prognostic markers in advanced GC patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Bo Li
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Kemeng Wang
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Shuai Shi
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Meng Li
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Min-Ting Ma
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Zhi-Guo Zhou
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Zhi-Cong Wang
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Ya-Ning Gong
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Yajie Xiao
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Liyan Zhao
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Qingju Meng
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| | - Yi-Bing Liu
- From the Department Radiology (B. Li); from the Department of Medical Oncology (Ma, Liu), Fourth Hospital of Hebei Medical University, from the Department of Internal Medicine (K. Wang); from the Department of Orthopedics (Meng); from the Department of Medical Oncology (Gong), the first affiliated Hospital of Xingtai Medical College, from the Department of Medical Oncology (M. Li), Quyang cancer hospital/Hengzhou hospital, from the Department of Radiotherapy (Z. Wang), Cangzhou Central Hospital, Hebei, from YuceBio Technology Co. Ltd. (Xiao), Guangdong, China, and from the Department of Pathology (Shi), GROW-School for Oncology & Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
49
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
50
|
Møller P, Seppälä TT, Ahadova A, Crosbie EJ, Holinski-Feder E, Scott R, Haupt S, Möslein G, Winship I, Broeke SWBT, Kohut KE, Ryan N, Bauerfeind P, Thomas LE, Evans DG, Aretz S, Sijmons RH, Half E, Heinimann K, Horisberger K, Monahan K, Engel C, Cavestro GM, Fruscio R, Abu-Freha N, Zohar L, Laghi L, Bertario L, Bonanni B, Tibiletti MG, Lino-Silva LS, Vaccaro C, Valle AD, Rossi BM, da Silva LA, de Oliveira Nascimento IL, Rossi NT, Dębniak T, Mecklin JP, Bernstein I, Lindblom A, Sunde L, Nakken S, Heuveline V, Burn J, Hovig E, Kloor M, Sampson JR, Dominguez-Valentin M. Dominantly inherited micro-satellite instable cancer - the four Lynch syndromes - an EHTG, PLSD position statement. Hered Cancer Clin Pract 2023; 21:19. [PMID: 37821984 PMCID: PMC10568908 DOI: 10.1186/s13053-023-00263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
The recognition of dominantly inherited micro-satellite instable (MSI) cancers caused by pathogenic variants in one of the four mismatch repair (MMR) genes MSH2, MLH1, MSH6 and PMS2 has modified our understanding of carcinogenesis. Inherited loss of function variants in each of these MMR genes cause four dominantly inherited cancer syndromes with different penetrance and expressivities: the four Lynch syndromes. No person has an "average sex "or a pathogenic variant in an "average Lynch syndrome gene" and results that are not stratified by gene and sex will be valid for no one. Carcinogenesis may be a linear process from increased cellular division to localized cancer to metastasis. In addition, in the Lynch syndromes (LS) we now recognize a dynamic balance between two stochastic processes: MSI producing abnormal cells, and the host's adaptive immune system's ability to remove them. The latter may explain why colonoscopy surveillance does not reduce the incidence of colorectal cancer in LS, while it may improve the prognosis. Most early onset colon, endometrial and ovarian cancers in LS are now cured and most cancer related deaths are after subsequent cancers in other organs. Aspirin reduces the incidence of colorectal and other cancers in LS. Immunotherapy increases the host immune system's capability to destroy MSI cancers. Colonoscopy surveillance, aspirin prevention and immunotherapy represent major steps forward in personalized precision medicine to prevent and cure inherited MSI cancer.
Collapse
Affiliation(s)
- Pal Møller
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, PO Box 4950, 0424, NydalenOslo, Norway.
| | - Toni T Seppälä
- Faculty of Medicine and Health Technology, Cancer Centre, Tampere University and Tays, Tampere University Hospital, Tampere, Finland
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Operation Unit Applied Tumour Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Emma J Crosbie
- Gynaecological Oncology Research Group, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Elke Holinski-Feder
- Medizinische Klinik Und Poliklinik IV, Klinikum Der Universität München, Campus Innenstadt, 80336, Munich, Germany
- Center of Medical Genetics, 80335, Munich, Germany
| | - Rodney Scott
- Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW, 2305, Australia
| | - Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Gabriela Möslein
- Surgical Center for Hereditary Tumors, Academic Hospital University, Ev. Bethesda Khs Duisburg, Düsseldorf, Germany
| | - Ingrid Winship
- Genomic Medicine, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sanne W Bajwa-Ten Broeke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kelly E Kohut
- Centre for Psychosocial Research in Cancer, Health Sciences, University of Southampton, Southampton, UK
| | - Neil Ryan
- Medical School, University of Edinburgh, Edinburgh, UK
- Department of Gynaecology Oncology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea, SA28PP, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution Infection and Genomic Sciences, University of Manchester, Manchester, M13 9WL, UK
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University Hospital Bonn, 53127, Bonn, Germany
| | - Rolf H Sijmons
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elizabeth Half
- Gastrointestinal Cancer Prevention Unit, Gastroenterology Department, Rambam Health Care Campus, Haifa, Israel
| | - Karl Heinimann
- Medical Genetics, Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Karoline Horisberger
- Department of General, Visceral and Transplatation Surgery, University Hospital of Mainz, Mainz, Germany
| | - Kevin Monahan
- Lynch Syndrome & Family Cancer Clinic, Centre for Familial Intestinal Cancer, St Mark's Hospital, London, HA1 3UJ, Harrow, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107, Leipzig, Germany
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, 20132, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Milan-Bicocca, Fondazione IRCCS San Gerardo, Monza, Italy
| | - Naim Abu-Freha
- Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Levi Zohar
- Service High Risk GI Cancer Gastroenterology, Department Rabin Medical Center, Rabin, Israel
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori, IRCCS, 20141, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Maria Grazia Tibiletti
- Ospedale di Circolo ASST Settelaghi, Università dell'Insubria, Centro di Ricerca tumori eredo-familiari, Varese, Italy
| | | | - Carlos Vaccaro
- Instituo Medicina Translacional e Ingenieria Biomedica - Hospital Italiano Bs As. - CONICET, Buenos Aires, Argentina
| | - Adriana Della Valle
- Hospital Central de las Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | | | | | | | - Norma Teresa Rossi
- Fundación para el Progreso de la Medicina y Sanatorio Allende, Córdoba, Argentina
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Jukka-Pekka Mecklin
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland
| | - Inge Bernstein
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg University, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg University, 9000, Aalborg, Denmark
- The Danish HNPCC-register, Hvidovre Hospital, Hvidovre, Denmark
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Biomedicine, Aarhus University, DK-8000, Aarhus, Denmark
| | - Sigve Nakken
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, PO Box 4950, 0424, NydalenOslo, Norway
- Centre for bioinformatics, University of Oslo, Postbox 1080 Blindern, 0316, Oslo, Norway
- Centre for Cancer Cell Reprogramming (CanCell), Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Eivind Hovig
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, PO Box 4950, 0424, NydalenOslo, Norway
- Centre for bioinformatics, University of Oslo, Postbox 1080 Blindern, 0316, Oslo, Norway
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Operation Unit Applied Tumour Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, PO Box 4950, 0424, NydalenOslo, Norway
| |
Collapse
|