1
|
Warfvinge R, Geironson Ulfsson L, Dhapola P, Safi F, Sommarin M, Soneji S, Hjorth-Hansen H, Mustjoki S, Richter J, Thakur RK, Karlsson G. Single-cell multiomics analysis of chronic myeloid leukemia links cellular heterogeneity to therapy response. eLife 2024; 12:RP92074. [PMID: 39503729 PMCID: PMC11540304 DOI: 10.7554/elife.92074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI-insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment and are imperative for disease progression as well as recurrence during treatment-free remission (TFR). Here, we have generated high-resolution single-cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1IS (%) following 12 months of TKI therapy. Simultaneous measurement of global gene expression profiles together with >40 surface markers from the same cells revealed that each patient harbored a unique composition of stem and progenitor cells at diagnosis. The patients with treatment failure after 12 months of therapy had a markedly higher abundance of molecularly defined primitive cells at diagnosis compared to the optimal responders. The multiomic feature landscape enabled visualization of the primitive fraction as a mixture of molecularly distinct BCR::ABL1+ LSCs and BCR::ABL1-hematopoietic stem cells (HSCs) in variable ratio across patients, and guided their prospective isolation by a combination of CD26 and CD35 cell surface markers. We for the first time show that BCR::ABL1+ LSCs and BCR::ABL1- HSCs can be distinctly separated as CD26+CD35- and CD26-CD35+, respectively. In addition, we found the ratio of LSC/HSC to be higher in patients with prospective treatment failure compared to optimal responders, at diagnosis as well as following 3 months of TKI therapy. Collectively, this data builds a framework for understanding therapy response and adapting treatment by devising strategies to extinguish or suppress TKI-insensitive LSCs.
Collapse
Affiliation(s)
- Rebecca Warfvinge
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | | | - Parashar Dhapola
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Fatemeh Safi
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Mikael Sommarin
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs HospitalTrondheimNorway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Satu Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of HelsinkiHelsinkiFinland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer CenterTrondheimNorway
- iCAN Digital Precision Cancer Medicine FlagshipHelsinkiFinland
| | - Johan Richter
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund UniversityLundSweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University HospitalLundSweden
| | - Ram Krishna Thakur
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund UniversityLundSweden
| |
Collapse
|
2
|
Garbayo E, El Moukhtari SH, Rodríguez-Nogales C, Agirre X, Rodriguez-Madoz JR, Rodriguez-Marquez P, Prósper F, Couvreur P, Blanco-Prieto MJ. RNA-loaded nanoparticles for the treatment of hematological cancers. Adv Drug Deliv Rev 2024; 214:115448. [PMID: 39303823 DOI: 10.1016/j.addr.2024.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Hematological cancers encompass a diverse group of malignancies affecting the blood, bone marrow, lymph nodes, and spleen. These disorders present unique challenges due to their complex etiology and varied clinical manifestations. Despite significant advancements in understanding and treating hematological malignancies, innovative therapeutic approaches are continually sought to enhance patient outcomes. This review highlights the application of RNA nanoparticles (RNA-NPs) in the treatment of hematological cancers. We delve into detailed discussions on in vitro and preclinical studies involving RNA-NPs for adult patients, as well as the application of RNA-NPs in pediatric hematological cancer. The review also addresses ongoing clinical trials involving RNA-NPs and explores the emerging field of CAR-T therapy engineered by RNA-NPs. Finally, we discuss the challenges still faced in translating RNA-NP research to clinics.
Collapse
Affiliation(s)
- Elisa Garbayo
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Souhaila H El Moukhtari
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Carlos Rodríguez-Nogales
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain
| | - Xabier Agirre
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Juan R Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Paula Rodriguez-Marquez
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Felipe Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain; Hemato-Oncology Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pío XII 55, 31008 Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain; Departmento de Hematología and CCUN, Clínica Universidad de Navarra, University of Navarra, Avenida Pío XII 36, 31008 Pamplona, Spain
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Université Paris-Saclay, Orsay Cedex, France.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain; Cancer Center Clinica Universidad de Navarra (CCUN). Avenida Pio XII 36, 31008 Pamplona, Spain.
| |
Collapse
|
3
|
Wang S, Chen J, Hou R, Xiong Y, Shi H, Chen Z, Li J, Wang X. Structure optimization, synthesis and bioactivity evaluation of novel BCR-ABL tyrosine kinase inhibitor targeting T315I mutation. Chem Biol Interact 2024; 403:111248. [PMID: 39332790 DOI: 10.1016/j.cbi.2024.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a malignant hematologic tumor caused by BCR-ABL fusion protein that binds with ATP to exert tyrosinase activity and persistently activates downstream phosphorylation pathways. The tyrosine kinase inhibitors (TKIs) represented by Imatinib are the key clinical therapy to the CML. While the mutations on the target lead to the serious drug resistance problems, especially the T315I mutation remains an unresolved challenge, and the cardiotoxicity has limited the clinical application of the third generation TKI Ponatinib despite its favorable efficacy against the T315I mutation. Even though, structural optimization of Ponatinib remains a potential strategy to overcome the resistance imposed by the mutation. Herein, we present a series of novel BCR-ABL/T315I tyrosine kinase inhibitors obtained by virtual screening using ZINC21710815, a BCR-ABL/T315I inhibitor reported earlier by our team, as a lead compound, and structural optimization of lead compounds against the T315I mutation, as well as screening of two novel compounds by activity evaluation and mechanistic studies, W4 and W8. W4 and W8 have better cell death-inducing effects and special selectivity against BaF3/T315I, which are worthy of further in-depth study to obtain more desirable anti-CML drugs as lead compounds.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Humans
- Mutation
- Cell Line, Tumor
- Structure-Activity Relationship
- Molecular Docking Simulation
- Animals
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Mice
- Imidazoles/chemistry
- Imidazoles/pharmacology
- Imidazoles/chemical synthesis
- Tyrosine Kinase Inhibitors
Collapse
Affiliation(s)
- Shuo Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Jingjing Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Rui Hou
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Yijing Xiong
- Tianjin Chempharmatech Co., Ltd, B5-4th, Tianda-tech Park, No 80, The 4th Avenue, TEDA, 300000, Tianjin, China
| | - Huaihuai Shi
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China
| | - Zhesheng Chen
- St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, United States
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China.
| | - Xin Wang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., 730000, Lanzhou, China.
| |
Collapse
|
4
|
Liu W, Wang C, Ouyang W, Hao J, Ren J, Peng L, Tang S, Liu Y, Zhu Y, Weng X, Jing D, Chen S, Wang J, Mi JQ. Efficacy and safety of olverembatinib in adult BCR::ABL1-positive ALL with T315I mutation or relapsed/refractory disease. Br J Haematol 2024. [PMID: 39363594 DOI: 10.1111/bjh.19804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Abstract
Third-generation tyrosine kinase inhibitors (TKIs) have much potential for the treatment of BCR::ABL1-positive leukaemia, particularly that harbouring the ABL1 T315I mutation. Olverembatinib (HQP1351), a novel third-generation TKI, has favourable efficacy and safety profiles in chronic myeloid leukaemia. Here, we present the clinical findings from 31 BCR::ABL1-positive acute lymphoblastic leukaemia (ALL) patients who received olverembatinib. Among the 14 patients with overt relapsed/refractory (R/R) disease (including 10 with the T315I mutation), 71.4% achieved an overall response. Of the other 17 patients with minimal residual disease (MRD)-positive ALL (including 14 with the T315I mutation), 60.0% and 47.1% achieved MRD flow negativity and complete molecular remission, respectively. With a median follow-up time of 16.3 months, the median event-free survival and overall survival were 3.9 and 8.3 months respectively, in overt R/R patients, and 11.5 and 18.4 months in MRD-positive patients. Allogeneic haematopoietic stem cell transplantation further improved outcomes among responders. The safety profile was generally manageable. This study suggests that olverembatinib-based therapy is another promising option for BCR::ABL1-positive ALL in addition to ponatinib, especially for patients with MRD-positive disease and a single T315I mutation.
Collapse
Affiliation(s)
- Weiyang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanyan Ouyang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hao
- Department of Hematology, Bei Zhan Hospital, Shanghai, China
| | - Jiayi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Peng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanfang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhou M, Yin X, Zhang L, Cui Z, Jiang X, Ji Q, Ma S, Chen C. RNA-Binding Protein Lin28B Promotes Chronic Myeloid Leukemia Blast Crisis by Transcriptionally Upregulating miR-181d. Mol Cancer Res 2024; 22:932-942. [PMID: 38847604 DOI: 10.1158/1541-7786.mcr-23-0928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/05/2024] [Accepted: 06/04/2024] [Indexed: 10/03/2024]
Abstract
The blast crisis (BC) of chronic myeloid leukemia (CML) has poor efficacy against existing treatments and extremely short survival. However, the molecular mechanism of CML-chronic phase (CP) transformation to CML-BC is not yet fully understood. Here, we show that Lin28B, an RNA-binding protein, acted as an activator enhancing the transformation to CML-BC by mediating excessive cell proliferation. The level of Lin28B expression was apparently elevated in patients with CML-BC compared with newly diagnosed patients with CML-CP. The overexpression of Lin28B promoted the proliferation of leukemia cells. Mechanistically, we identified Lin28B as a DNA-binding protein by binding to the promoter region of miR-181d and upregulating its expression, which inhibited the expression of programmed cell death 4 (PDCD4) by binding to the PDCD4 3'UTR region, thereby enhancing the proliferation of CML cells. Overall, the "Lin28B-miR-181d-PDCD4" regulatory axis promoted CML blast crisis. Implications: Our findings highlight the oncogenic role of Lin28B in CML blast crisis, acting as a DNA-binding protein that transcriptionally upregulates miR-181d expression.
Collapse
MESH Headings
- Humans
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Blast Crisis/genetics
- Blast Crisis/pathology
- Blast Crisis/metabolism
- Up-Regulation
- Cell Proliferation/genetics
- Mice
- Cell Line, Tumor
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xiaolin Yin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Zelong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xinwen Jiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qingli Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Sai Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, P.R. China
| |
Collapse
|
6
|
Zhao J, Wang G, Yan G, Zheng M, Li H, Bai Y, Zheng X, Chen Z. Hsa_circ_0006010 and hsa_circ_0002903 in peripheral blood serve as novel diagnostic, surveillance and prognostic biomarkers for disease progression in chronic myeloid leukemia. BMC Cancer 2024; 24:1172. [PMID: 39304860 PMCID: PMC11414102 DOI: 10.1186/s12885-024-12943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND In the era of tyrosine kinase inhibitor (TKI) treatment, the progression of chronic myeloid leukemia (CML) remains a significant clinical challenge, and genetic biomarkers for the early identification of CML patients at risk for progression are limited. This study explored whether essential circular RNAs (circRNAs) can be used as biomarkers for diagnosing and monitoring CML disease progression and assessing CML prognosis. METHODS Peripheral blood (PB) samples were collected from 173 CML patients (138 patients with chronic phase CML [CML-CP] and 35 patients with accelerated phase/blast phase CML [CML-AP/BP]) and 63 healthy controls (HCs). High-throughput RNA sequencing (RNA-Seq) was used to screen dysregulated candidate circRNAs for a circRNA signature associated with CML disease progression. Quantitative real-time PCR (qRT-PCR) was used for preliminary verification and screening of candidate dysregulated genes, as well as subsequent exploration of clinical applications. Receiver operating characteristic (ROC) curve analysis, Spearman's rho correlation test, and the Kaplan-Meier method were used for statistical analysis. RESULTS The aberrant expression of hsa_circ_0006010 and hsa_circ_0002903 during CML progression could serve as valuable biomarkers for differentiating CML-AP/BP patients from CMP-CP patients or HCs. In addition, the expression levels of hsa_circ_0006010 and hsa_circ_0002903 were significantly associated with the clinical features of CML patients but were not directly related to the four scoring systems. Furthermore, survival analysis revealed that high hsa_circ_0006010 expression and low hsa_circ_0002903 expression indicated poor progression-free survival (PFS) in CML patients. Finally, PB hsa_circ_0006010 and hsa_circ_0002903 expression at diagnosis may also serve as disease progression surveillance markers for CML patients but were not correlated with PB BCR-ABL1/ABL1IS. CONCLUSIONS Our study demonstrated that PB levels of hsa_circ_0006010 and hsa_circ_0002903 may serve as novel diagnostic, surveillance, and prognostic biomarkers for CML disease progression and may contribute to assisting in the diagnosis of CML patients at risk for progression and accurate management of advanced CML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Disease Progression
- Male
- Female
- RNA, Circular/blood
- RNA, Circular/genetics
- Prognosis
- Middle Aged
- Adult
- Aged
- Case-Control Studies
Collapse
Affiliation(s)
- Jingwei Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
| | - Guiran Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325036, China
| | - Guiling Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
| | - Mengting Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
| | - Hongshuang Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
| | - Yuanyuan Bai
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, The Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou, Zhejiang, 325035, China.
| | - Zhanguo Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 1111 Wenzhou Avenue, Longwan District, Wenzhou, Zhejiang, 325024, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
Liu Y, Yang Z, Zhang J, Guo N, Liu N, Zhang Q, Dang X, Li Y, Zhang J, Pan X. Integrating amino acids into Bcr-Abl inhibitors: design, synthesis, biological evaluation, and in silico studies. RSC Med Chem 2024:d4md00417e. [PMID: 39246751 PMCID: PMC11376069 DOI: 10.1039/d4md00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/20/2024] [Indexed: 09/10/2024] Open
Abstract
Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-AblT315I. In continuation of these studies, we further enriched the linker types by developing a library of compounds with tert-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-AblWT and Bcr-AblT315I kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds TL8, TL10, BS4, BS10, SR5 and SR11 exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds TL8, BS4 and SR5 effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of tert-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, tert-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds BS4, SR5, and especially TL8, can be used as starting points for further optimization.
Collapse
Affiliation(s)
- Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Zeyu Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Na Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Nanxin Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Xintao Dang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University Xi'an 710061 China
| |
Collapse
|
8
|
Liu S, Sun C, Tang H, Peng C, Peng F. Leonurine: a comprehensive review of pharmacokinetics, pharmacodynamics, and toxicology. Front Pharmacol 2024; 15:1428406. [PMID: 39101131 PMCID: PMC11294146 DOI: 10.3389/fphar.2024.1428406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Leonurine is an alkaloid unique to the Leonurus genus, which has many biological activities, such as uterine contraction, anti-inflammation, anti-oxidation, regulation of cell apoptosis, anti-tumor, angiogenesis, anti-platelet aggregation, and inhibition of vasoconstriction. This paper summarizes the extraction methods, synthetic pathways, biosynthetic mechanisms, pharmacokinetic properties, pharmacological effects in various diseases, toxicology, and clinical trials of leonurine. To facilitate a successful transition into clinical application, intensified efforts are required in several key areas: structural modifications of leonurine to optimize its properties, comprehensive pharmacokinetic assessments to understand its behavior within the body, thorough mechanistic studies to elucidate how it works at the molecular level, rigorous safety evaluations and toxicological investigations to ensure patient wellbeing, and meticulously conducted clinical trials to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Iriyama N, Iwanaga E, Kimura Y, Watanabe N, Ishikawa M, Nakayama H, Sato E, Tabayashi T, Mitsumori T, Takaku T, Nakazato T, Tokuhira M, Fujita H, Ando M, Hatta Y, Kawaguchi T. Changes in chronic myeloid leukemia treatment modalities and outcomes after introduction of second-generation tyrosine kinase inhibitors as first-line therapy: a multi-institutional retrospective study by the CML Cooperative Study Group. Int J Hematol 2024; 120:60-70. [PMID: 38587692 DOI: 10.1007/s12185-024-03758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
This study investigated changes in treatment modalities and outcomes of chronic myeloid leukemia in the chronic phase (CP-CML) after the approval of second-generation tyrosine kinase inhibitors (2G-TKIs) for first-line therapy. Patients were grouped into those who underwent TKI therapy up to December 2010 (imatinib era group, n = 185) and after January 2011 (2G-TKI era group, n = 425). All patients in the imatinib era group were initially treated with imatinib, whereas patients in the 2G-TKI era group were mostly treated with dasatinib (55%) or nilotinib (36%). However, outcomes including progression-free survival, overall survival, and CML-related death (CRD) did not differ significantly between groups. When stratified by risk scores, the prognostic performance of the ELTS score was superior to that of the Sokal score. Even though both scoring systems predicted CRD in the imatinib era, only the ELTS score predicted CRD in the 2G-TKI era. Notably, the outcome of patients classified as high-risk by ELTS score was more favorable in the 2G-TKI era group than in the imatinib era group. Thus, expanding treatment options may have improved patient outcomes in CP-CML, particularly in patients classified as high-risk by ELTS score.
Collapse
Affiliation(s)
- Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Eisaku Iwanaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuta Kimura
- Department of Hematology, Japan Community Health Care Organization, Saitama Medical Center, Saitama, Japan
| | - Naoki Watanabe
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Maho Ishikawa
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hitomi Nakayama
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Eriko Sato
- Department of Hematology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Takayuki Tabayashi
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Toru Mitsumori
- Department of Hematology, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Tomoiku Takaku
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomonori Nakazato
- Department of Hematology, Yokohama Municipal Citizen's Hospital, Yokohama, Japan
| | - Michihide Tokuhira
- Department of Hematology, Japan Community Health Care Organization, Saitama Medical Center, Saitama, Japan
| | - Hiroyuki Fujita
- Department of Hematology, Saiseikai Yokohama Nanbu Hospital, Yokohama, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Tatsuya Kawaguchi
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University Hospital, Kumamoto, Japan
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
10
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Zhao M, Dai B, Li X, Zhang Y, Qiao C, Qin Y, Li Z, Li Q, Wang S, Yang Y, Chen Y. RAPSYN-mediated neddylation of BCR-ABL alternatively determines the fate of Philadelphia chromosome-positive leukemia. eLife 2024; 12:RP88375. [PMID: 38865175 PMCID: PMC11168747 DOI: 10.7554/elife.88375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- NEDD8 Protein/metabolism
- NEDD8 Protein/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Muscle Proteins/metabolism
Collapse
Affiliation(s)
- Mengya Zhao
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
| | - Beiying Dai
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
| | - Xiaodong Li
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
| | - Yixin Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
| | - Chun Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yaru Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
| | - Zhao Li
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
| | - Qingmei Li
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
| | - Shuzhen Wang
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
| | - Yijun Chen
- Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjingChina
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqingChina
| |
Collapse
|
12
|
Wei W, Li S, Zhang Y, Deng S, He Q, Zhao X, Xu Y, Yu L, Ye J, Zhao W, Jiang Z. Analytical validation of the DropXpert S6 system for diagnosis of chronic myelocytic leukemia. LAB ON A CHIP 2024; 24:3080-3092. [PMID: 38747247 DOI: 10.1039/d4lc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Digital PCR is a powerful method for absolute nucleic acid quantification and is widely used in the absolute quantification of viral copy numbers, tumor marker detection, and prenatal diagnosis. However, for most of the existing droplet-based dPCR systems, the droplet generation, PCR reaction, and droplet detection are performed separately using different instruments. Making digital PCR both easy to use and practical by integrating the qPCR workflow into a superior all-in-one walkaway solution is one of the core ideas. A new innovative and integrated digital droplet PCR platform was developed that utilizes cutting-edge microfluidics to integrate dPCR workflows onto a single consumable chip. This makes previously complex workflows fast and simple; the whole process of droplet generation, PCR amplification, and droplet detection is completed on one chip, which meets the clinical requirement of "sample in, result out". It provides high multiplexing capabilities and strong sensitivity while all measurements were within the 95% confidence interval. This study is the first validation of the DropXpert S6 system and focuses primarily on verifying its reliability, repeatability, and consistency. In addition, the accuracy, detection limit, linearity, and precision of the system were evaluated after sample collection. Among them, the accuracy assessment by calculating the absolute bias of each target gene yielded a range from -0.1 to 0.08, all within ±0.5 logarithmic orders of magnitude; the LOB for the assay was set at 0, and the LoD value calculated using probit curves is MR4.7 (0.002%); the linearity evaluation showed that the R2 value of the BCR-ABL was 0.9996, and the R2 value of the ABL metrics calculated using the ERM standard was 0.9999; and the precision evaluation showed that all samples had a CV of less than 4% for intra-day, inter-day, and inter-instrument variation. The CV of inter-batch variation was less than 7%. The total CV was less than 5%. The results of the study demonstrate that dd-PCR can be applied to molecular detection and the clinical evaluation of CML patients and provide more precise personal treatment guidance, and its reproducibility predicts the future development of a wide range of clinical applications.
Collapse
Affiliation(s)
- Wenjia Wei
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Shujun Li
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Ying Zhang
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Simin Deng
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Qun He
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Xielan Zhao
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Yajing Xu
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| | - Linfen Yu
- Shenzhen Biorain Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Junwei Ye
- Shenzhen Biorain Technology Co., Ltd, Shenzhen, Guangdong, China
| | - Weiwei Zhao
- Rehabilitation Medical Center of Jiangning Hospital, Nanjing, Jiangsu, China
| | - Zhiping Jiang
- Xiangya Hospital Central South University Department of Hematology Changsha, Hunan, China.
- Xiangya Hospital Central South University National Clinical Research Center for Geriatric Disorders Changsha, Hunan, China
- Hunan Hematology Oncology Clinical Medical Research Center Changsha, Hunan, China
| |
Collapse
|
13
|
Bai J, Feng Z, Chen Y, Li Y, Zhang L, Li L. Lycorine attenuated proliferation and induced apoptosis on imatinib-resistant K562 cell by inhibiting autophagy. Discov Oncol 2024; 15:217. [PMID: 38856766 PMCID: PMC11164850 DOI: 10.1007/s12672-024-01080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Tyrosine kinase inhibitor (TKI) resistance is a significant factor exacerbating the burden on chronic myeloid leukemia (CML) patients and impacting clinical efficacy. The main goal is to offer new insights into overcoming drug resistance in treating CML. METHODS Imatinib (IM) resistant K562/IM cells were generated using gradient induction. Responses to IM, lycorine, and autophagy modulators were assessed using CCK-8. Protein expression of Beclin-1, Atg5, LC3, Caspase-3, P62, Bax, Bcl-2, and P-gp was detected using Western blot. Lycorine-induced apoptosis and cell cycle changes were evaluated through flow cytometry, while autophagy alterations were detected using monodansylcadaverine (MDC) staining. In the K562/IM mice model, non-obese diabetic severe combined immunodeficent (NOD-SCID) mice were subcutaneously inoculated with K562/IM cells. After 17 days of lycorine injection, assessments included tumor size, hematoxylin-eosin (HE) staining, and Ki67 expression. RESULTS After 72 h of IM treatment, K562/IM cells showed a 55.86-fold increase in drug resistance compared to K562 cells. Lycorine treatment for 24 h inhibited cell proliferation and induced G0/G1 phase cell cycle arrest and apoptosis in both K562 and K562/IM cells. MDC staining indicated reduced autophagy in K562/IM cells, mitigated by lycorine. In vivo experiments demonstrated reduced tumor size and Ki67 proliferation index in the lycorine treatment group (K562+L, K562/IM+L) compared to the control group, particularly in the drug-resistant group. However, no significant change in Ki67 was observed in the K562 group after lycorine treatment. CONCLUSION In summary, K562/IM cells displayed heightened autophagy levels compared to K562 cells. Lycorine effectively impeded the proliferation of K562/IM cells through diverse mechanisms, including reduced autophagy, enhanced apoptosis, and induced cell cycle arrest.
Collapse
Affiliation(s)
- Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Hematologic Disease Clinical Medical Research Center, Lanzhou, 730000, China
| | - Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yaqiong Chen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Hematologic Disease Clinical Medical Research Center, Lanzhou, 730000, China
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Hematologic Disease Clinical Medical Research Center, Lanzhou, 730000, China.
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Hematologic Disease Clinical Medical Research Center, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Zheng R, Wei W, Liu S, Zeng D, Yang Z, Tang J, Tan J, Huang Z, Gao M. The FABD domain is critical for the oncogenicity of BCR/ABL in chronic myeloid leukaemia. Cell Commun Signal 2024; 22:314. [PMID: 38849885 PMCID: PMC11157785 DOI: 10.1186/s12964-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Animals
- Humans
- Mice
- Cell Proliferation
- Apoptosis/genetics
- Actins/metabolism
- Carcinogenesis/genetics
- Protein Domains
- Cell Line, Tumor
Collapse
Affiliation(s)
- Renren Zheng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dachuan Zeng
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinfeng Tan
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Rea D, Fodil S, Lengline E, Raffoux E, Cayuela JM. Tyrosine Kinase Inhibitor Discontinuation in Chronic Myeloid Leukemia: Strategies to Optimize Success and New Directions. Curr Hematol Malig Rep 2024; 19:104-110. [PMID: 38393431 DOI: 10.1007/s11899-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE OF REVIEW The discovery that patients suffering from chronic myeloid leukemia who obtain deep and long-lasting molecular responses upon treatment with tyrosine kinase inhibitors may maintain their disease silent for many years after therapy discontinuation launched the era of treatment-free remission as a key management goal in clinical practice. The purpose of this review on treatment-free remission is to discuss clinical advances, highlight knowledge gaps, and describe areas of research. RECENT FINDINGS Patients in treatment-free remission are a minority, and it is believed that some may still retain a reservoir of leukemic stem cells; thus, whether they can be considered as truly cured is uncertain. Strengthening BCR::ABL1 inhibition increases deep molecular responses but is not sufficient to improve treatment-free remission, and we lack biomarkers to identify and specifically target residual cells with aggressive potential. Another level of complexity resides in the intra- and inter-patient clonal heterogeneity of minimal residual disease and characteristics of the bone marrow environment. Finding determinants of deep molecular responses achievement and elucidating varying biological mechanisms enabling either post-tyrosine kinase inhibitor chronic myeloid leukemia control or relapse may help develop innovative and safe therapies. In the light of the increasing prevalence of CML, targeting the residual leukemic stem cell pool is thought to be the key.
Collapse
Affiliation(s)
- Delphine Rea
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France.
- France Intergroupe Des Leucémies Myéloïdes Chroniques FiLMC, Paris, France.
| | - Sofiane Fodil
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Etienne Lengline
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Emmanuel Raffoux
- Service d'Hématologie Adulte, Hôpital Saint-Louis APHP, 75010, Paris, France
| | - Jean-Michel Cayuela
- France Intergroupe Des Leucémies Myéloïdes Chroniques FiLMC, Paris, France
- Laboratoire Central d'Hématologie, Hôpital Saint-Louis APHP, Paris, France
| |
Collapse
|
16
|
Vicente ATS, Salvador JAR. PROteolysis-Targeting Chimeras (PROTACs) in leukemia: overview and future perspectives. MedComm (Beijing) 2024; 5:e575. [PMID: 38845697 PMCID: PMC11154823 DOI: 10.1002/mco2.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.
Collapse
Affiliation(s)
- André T. S. Vicente
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical ChemistryFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
| |
Collapse
|
17
|
Li F, Wang H, Ye T, Guo P, Lin X, Hu Y, Wei W, Wang S, Ma G. Recent Advances in Material Technology for Leukemia Treatments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313955. [PMID: 38547845 DOI: 10.1002/adma.202313955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Leukemia is a widespread hematological malignancy characterized by an elevated white blood cell count in both the blood and the bone marrow. Despite notable advancements in leukemia intervention in the clinic, a large proportion of patients, especially acute leukemia patients, fail to achieve long-term remission or complete remission following treatment. Therefore, leukemia therapy necessitates optimization to meet the treatment requirements. In recent years, a multitude of materials have undergone rigorous study to serve as delivery vectors or direct intervention agents to bolster the effectiveness of leukemia therapy. These materials include liposomes, protein-based materials, polymeric materials, cell-derived materials, and inorganic materials. They possess unique characteristics and are applied in a broad array of therapeutic modalities, including chemotherapy, gene therapy, immunotherapy, radiotherapy, hematopoietic stem cell transplantation, and other evolving treatments. Here, an overview of these materials is presented, describing their physicochemical properties, their role in leukemia treatment, and the challenges they face in the context of clinical translation. This review inspires researchers to further develop various materials that can be used to augment the efficacy of multiple therapeutic modalities for novel applications in leukemia treatment.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaiji Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyun Lin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Saglio G, Yassin M, Alhuraiji A, Lal A, Alam A, Khan F, Khadada F, Osman H, Elkonaissi I, Marashi M, Abuhaleeqa M, Al-Khabori M, Pandita R, Al-Kindi S, Bahzad S, Daou D, Al Qudah Y. Current Status and Management of Chronic Myeloid Leukemia in the Gulf Region: Survey Results and Expert Opinion. Cancers (Basel) 2024; 16:2114. [PMID: 38893233 PMCID: PMC11172167 DOI: 10.3390/cancers16112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 06/21/2024] Open
Abstract
Studies on chronic myeloid leukemia (CML) in the Gulf region are scarce, consisting of a survey and expert meeting that included 15 experts in 2023 which discussed CML diagnosis, testing, treatment objectives, toxicities, and discontinuation in the Gulf region. Most patients were reported to be in first-line therapy, and the most common treatments were imatinib/imatinib generic in first-line and dasatinib in second- and third-lines. Mutation analysis was not reported to be routinely performed at the time of diagnosis but rather in case of progression to accelerated/blast phase or any sign of loss of response. While all participants were aware that BCR-ABL should be monitored every three months during the first year of treatment, 10% reported monitoring BCR-ABL every six months in practice due to test cost and lab capability. The most important first-line therapy objective was "achievement of major molecular response" (MMR) in younger patients and "overall survival" in older ones. The most important treatment objectives were "MMR" and "early molecular response followed by prolongation of overall survival" in the short term and "treatment-free remission" in the long term. The current practices in CML in the Gulf region appear to be similar to global figures.
Collapse
Affiliation(s)
- Giuseppe Saglio
- Department of Hematology, University of Turin, 10124 Torino, Italy;
| | | | - Ahmad Alhuraiji
- Kuwait Cancer Control Center, Shuwaikh 1031, Kuwait; (A.A.); (R.P.); (S.B.)
| | - Amar Lal
- Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates (A.A.); (H.O.)
| | - Arif Alam
- Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates (A.A.); (H.O.)
| | - Faraz Khan
- American Hospital, Dubai P.O. Box 3050, United Arab Emirates;
| | - Fatima Khadada
- Kuwait Cancer Control Center, Shuwaikh 1031, Kuwait; (A.A.); (R.P.); (S.B.)
| | - Hani Osman
- Tawam Hospital, Al Ain P.O. Box 5674, United Arab Emirates (A.A.); (H.O.)
| | - Islam Elkonaissi
- Shaikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
| | | | | | - Murtadha Al-Khabori
- Department of Hematology, Sultan Qaboos University, Muscat 123, Oman; (M.A.-K.); (S.A.-K.)
| | - Ramesh Pandita
- Kuwait Cancer Control Center, Shuwaikh 1031, Kuwait; (A.A.); (R.P.); (S.B.)
| | - Salam Al-Kindi
- Department of Hematology, Sultan Qaboos University, Muscat 123, Oman; (M.A.-K.); (S.A.-K.)
| | - Shakir Bahzad
- Kuwait Cancer Control Center, Shuwaikh 1031, Kuwait; (A.A.); (R.P.); (S.B.)
| | - Dayane Daou
- Gulf, Novartis Pharma Services AG, 4056 Basel, Switzerland;
| | - Yasmin Al Qudah
- Oncology, Gulf, Novartis Pharma Services AG, 4056 Basel, Switzerland;
| |
Collapse
|
19
|
Cheng F, Cui Z, Li Q, Chen S, Li W, Zhang Y. Influence of genetic polymorphisms on imatinib concentration and therapeutic response in patients with chronic-phase chronic myeloid leukemia. Int Immunopharmacol 2024; 133:112090. [PMID: 38640718 DOI: 10.1016/j.intimp.2024.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Diminished bioavailability of imatinib in leukemic cells contributes to poor clinical response. We examined the impact of genetic polymorphisms of imatinib on the pharmacokinetics and clinical response in 190 patients with chronic myeloid leukaemia (CML). METHODS Single nucleotide polymorphisms were genotyped using pyrophosphate sequencing. Plasma trough levels of imatinib were measured using liquid chromatography-tandem mass spectrometry. RESULTS Patients carrying the TT genotype for ABCB1 (rs1045642, rs2032582, and rs1128503), GG genotype for CYP3A5-rs776746 and AA genotype for ABCG2-rs2231142 polymorphisms showed higher concentration of imatinib. Patients with T allele for ABCB1 (rs1045642, rs2032582, and rs1128503), A allele for ABCG2-rs2231142, and G allele for CYP3A5-rs776746 polymorphisms showed better cytogenetic response and molecular response. In multivariate analysis, carriers of the CYP3A5-rs776746 G allele exhibited higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR). Similarly, patients with the T allele of ABCB1-rs1045642 and rs1128503 demonstrated significantly increased CCyR rates. Patients with the A allele of ABCG2-rs2231142 were associated with higher MMR rates. The AA genotype for CYP3A5-rs776746, and the CC genotype for ABCB1-rs104562, and rs1128503 polymorphisms were associated with a higher risk of imatinib failure. Patients with the G allele for CYP3A5-rs776746 exhibited a higher incidence of anemia, and T allele for ABCB1-rs2032582 demonstrated an increased incidence of diarrhea. CONCLUSIONS Genotyping of ABCB1, ABCG2, and CYP3A5 genes may be considered in the management of patients with CML to tailor therapy and optimize clinical outcomes.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Shi Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
20
|
Li Y, Yuan S, Zhou Y, Zhou J, Zhang X, Zhang P, Xiao W, Zhang Y, Deng J, Lou S. Long non-coding RNA PXN-AS1 promotes glutamine synthetase-mediated chronic myeloid leukemia BCR::ABL1-independent resistance to Imatinib via cell cycle signaling pathway. Cancer Cell Int 2024; 24:186. [PMID: 38811958 PMCID: PMC11138077 DOI: 10.1186/s12935-024-03363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a common hematological malignancy, and tyrosine kinase inhibitors (TKIs) represent the primary therapeutic approach for CML. Activation of metabolism signaling pathway has been connected with BCR::ABL1-independent TKIs resistance in CML cells. However, the specific mechanism by which metabolism signaling mediates this drug resistance remains unclear. Here, we identified one relationship between glutamine synthetase (GS) and BCR::ABL1-independent Imatinib resistance in CML cells. METHODS GS and PXN-AS1 in bone marrow samples of CML patients with Imatinib resistance (IR) were screened and detected by whole transcriptome sequencing. GS expression was upregulated using LVs and blocked using shRNAs respectively, then GS expression, Gln content, and cell cycle progression were respectively tested. The CML IR mice model were established by tail vein injection, prognosis of CML IR mice model were evaluated by Kaplan-Meier analysis, the ratio of spleen/body weight, HE staining, and IHC. PXN-AS1 level was blocked using shRNAs, and the effects of PXN-AS1 on CML IR cells in vitro and in vivo were tested the same as GS. Several RNA-RNA tools were used to predict the potential target microRNAs binding to both GS and PXN-AS1. RNA mimics and RNA inhibitors were used to explore the mechanism through which PXN-AS1 regulates miR-635 or miR-635 regulates GS. RESULTS GS was highly expressed in the bone marrow samples of CML patients with Imatinib resistance. In addition, the lncRNA PXN-AS1 was found to mediate GS expression and disorder cell cycle in CML IR cells via mTOR signaling pathway. PXN-AS1 regulated GS expression by binding to miR-635. Additionally, knockdown of PXN-AS1 attenuated BCR::ABL1-independent Imatinib resistance in CML cells via PXN-AS1/miR-635/GS/Gln/mTOR signaling pathway. CONCLUSIONS Thus, PXN-AS1 promotes GS-mediated BCR::ABL1-independent Imatinib resistance in CML cells via cell cycle signaling pathway.
Collapse
Affiliation(s)
- Yifei Li
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Shiyi Yuan
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Ying Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Jingwen Zhou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400316, China
| | - Ping Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Wenrui Xiao
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Ying Zhang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| | - Shifeng Lou
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
21
|
Bielack SS, Mettmann V, Baumhoer D, Blattmann C, Burkhardt B, Deinzer CKW, Kager L, Kevric M, Mauz-Körholz C, Müller-Abt P, Reinhardt D, Sabo AA, Schrappe M, Sorg B, Windhager R, Hecker-Nolting S. Osteosarcoma Arising as a Secondary Malignancy following Treatment for Hematologic Cancer: A Report of 33 Affected Patients from the Cooperative Osteosarcoma Study Group (COSS). Cancers (Basel) 2024; 16:1836. [PMID: 38791915 PMCID: PMC11120238 DOI: 10.3390/cancers16101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE Osteosarcoma may arise as a secondary cancer following leukemias or lymphomas. We intended to increase the knowledge about such rare events. PATIENTS AND METHODS We searched the Cooperative Osteosarcoma Study Group's database for individuals who developed their osteosarcoma following a previous hematological malignancy. The presentation and treatment of both malignancies was investigated, and additional neoplasms were noted. Outcomes after osteosarcoma were analyzed and potential prognostic factors were searched for. RESULTS A total of 33 eligible patients were identified (male: 23, female: 10; median age: 12.9 years at diagnosis of hematological cancer; 20 lymphomas, 13 leukemias). A cancer predisposition syndrome was evident in one patient only. The hematological cancers had been treated by radiotherapy in 28 (1 unknown) and chemotherapy in 26 cases, including bone-marrow transplantation in 9. The secondary bone sarcomas (high-grade central 27, periosteal 2, extra-osseous 2, undifferentiated pleomorphic sarcoma of bone 2) arose after a median lag-time of 9.4 years, when patients were a median of 19.1 years old. Tumors were considered radiation-related in 26 cases (1 unknown). Osteosarcoma-sites were in the extremities (19), trunk (12), or head and neck (2). Metastases at diagnosis affected eight patients. Information on osteosarcoma therapy was available for 31 cases. All of these received chemotherapy. Local therapy involved surgery in 27 patients, with a good response reported for 9/18 eligible patients. Local radiotherapy was given to three patients. The median follow-up was 3.9 (0.3-12.0) years after bone tumor diagnosis. During this period, 21 patients had developed events as defined, and 15 had died, resulting in 5-year event-free and overall survival rates of 40% (standard error: 9%) and 56% (10%), respectively. There were multiple instances of additional neoplasms. Several factors were found to be of prognostic value (p < 0.05) for event-free (osteosarcoma site in the extremities) or overall (achievement of a surgical osteosarcoma-remission, receiving chemotherapy for the hematologic malignancy) survival. CONCLUSIONS We were able to prove radiation therapy for hematological malignancies to be the predominant risk factor for later osteosarcomas. A resulting overrepresentation of axial and a tendency towards additional neoplasms affects prognosis. Still, selected patients may become long-term survivors with appropriate therapies, which is an argument against therapeutic negligence.
Collapse
Affiliation(s)
- Stefan S. Bielack
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
- Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Vanessa Mettmann
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| | - Daniel Baumhoer
- Knochentumor Referenzzentrum, Institut für Medizinische Genetik und Pathologie, Universitätsspital und Universität Basel, 4031 Basel, Switzerland;
| | - Claudia Blattmann
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| | - Birgit Burkhardt
- Klinik für Kinder- und Jugendmedizin, Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Christoph K. W. Deinzer
- Abteilung Innere Medizin VIII—Medizinische Onkologie und Pneumologie, Universitätsklinikum Tübingen, 72076 Tübingen, Germany;
| | - Leo Kager
- St. Anna Kinderspital, Universitätsklinik für Kinder- und Jugendheilkunde der Medizinischen Universität Wien, 1090 Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), 1090 Vienna, Austria
| | - Matthias Kevric
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| | - Christine Mauz-Körholz
- Pädiatrische Hämatologie und Onkologie, Zentrum für Kinderheilkunde der Justus-Liebig-Universität, 35390 Gießen, Germany;
- Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
| | - Peter Müller-Abt
- Radiologisches Institut (Kinderradiologie), Zentrum für Kinder-, Jugend- und Frauenmedizin, Klinikum Stuttgart—Olgahospital, 70174 Stuttgart, Germany;
| | - Dirk Reinhardt
- Klinik für Kinderheilkunde III, Zentrum für Kinder- und Jugendmedizin, Universitätsmedizin Essen, 45147 Essen, Germany;
| | - Alexandru-Anton Sabo
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| | - Martin Schrappe
- Klinik für Kinder- und Jugendmedizin I, Campus Kiel, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
| | - Benjamin Sorg
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| | - Reinhard Windhager
- Universitätsklinik für Orthopädie und Unfallchirurgie, Klinische Abteilung für Orthopädie, Medizinische Universität Wien, 1090 Vienna, Austria;
| | - Stefanie Hecker-Nolting
- Klinikum Stuttgart—Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Onkologie, Hämatologie, Immunologie), 70174 Stuttgart, Germany; (V.M.); (C.B.); (M.K.); (A.-A.S.); (B.S.); (S.H.-N.)
| |
Collapse
|
22
|
Wang Y, Liang ZJ, Gale RP, Liao HZ, Ma J, Gong TJ, Shao YQ, Liang Y. Chronic myeloid leukaemia: Biology and therapy. Blood Rev 2024; 65:101196. [PMID: 38604819 DOI: 10.1016/j.blre.2024.101196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Chronic myeloid leukaemia (CML) is caused by BCR::ABL1. Tyrosine kinase-inhibitors (TKIs) are the initial therapy. Several organizations have reported milestones to evaluate response to initial TKI-therapy and suggest when a change of TKI should be considered. Achieving treatment-free remission (TFR) is increasingly recognized as the optimal therapy goal. Which TKI is the best initial therapy for which persons and what depth and duration of molecular remission is needed to achieve TFR are controversial. In this review we discuss these issues and suggest future research directions.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Remission Induction
- Biology
Collapse
Affiliation(s)
- Yun Wang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Jian Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Robert Peter Gale
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Hua-Ze Liao
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China
| | - Tie-Jun Gong
- Harbin Institute of Hematology and Oncology, Harbin First Hospital, Harbin 150010, China.
| | - Ying-Qi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| | - Yang Liang
- Department of Hematologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
23
|
Baassiri A, Ghais A, Kurdi A, Rahal E, Nasr R, Shirinian M. The molecular signature of BCR::ABLP210 and BCR::ABLT315I in a Drosophila melanogaster chronic myeloid leukemia model. iScience 2024; 27:109538. [PMID: 38585663 PMCID: PMC10995885 DOI: 10.1016/j.isci.2024.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder resulting from a balanced translocation leading to BCR::ABL1 oncogene with increased tyrosine kinase activity. Despite the advancements in the development of tyrosine kinase inhibitors (TKIs), the T315I gatekeeper point mutation in the BCR::ABL1 gene remains a challenge. We have previously reported in a Drosophila CML model an increased hemocyte count and disruption in sessile hemocyte patterns upon expression of BCR::ABL1p210 and BCR::ABL1T315I in the hemolymph. In this study, we performed RNA sequencing to determine if there is a distinct gene expression that distinguishes BCR::ABL1p210 and BCR::ABL1T315I. We identified six genes that were consistently upregulated in the fly CML model and validated in adult and pediatric CML patients and in a mouse cell line expressing BCR::ABL1T315I. This study provides a comprehensive analysis of gene signatures in BCR::ABL1p210 and BCR::ABL1T315I, laying the groundwork for targeted investigations into the role of these genes in CML pathogenesis.
Collapse
Affiliation(s)
- Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
24
|
Tian J, Song YP, Zhang GC, Wang SF, Chu XX, Chai Y, Wang CL, He AL, Zhang F, Shen XL, Zhang WH, Yang LH, Nie DN, Wang DM, Zhu HL, Gao D, Lou SF, Zhou ZP, Su GH, Li Y, Lin JY, Shi QZ, Ouyang GF, Jing HM, Chen SJ, Li J, Mi JQ. Oral arsenic plus imatinib versus imatinib solely for newly diagnosed chronic myeloid leukemia: a randomized phase 3 trial with 5-year outcomes. J Cancer Res Clin Oncol 2024; 150:189. [PMID: 38605258 PMCID: PMC11009770 DOI: 10.1007/s00432-024-05700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE The synergistic effects of combining arsenic compounds with imatinib against chronic myeloid leukemia (CML) have been established using in vitro data. We conducted a clinical trial to compare the efficacy of the arsenic realgar-indigo naturalis formula (RIF) plus imatinib with that of imatinib monotherapy in patients with newly diagnosed chronic phase CML (CP-CML). METHODS In this multicenter, randomized, double-blind, phase 3 trial, 191 outpatients with newly diagnosed CP-CML were randomly assigned to receive oral RIF plus imatinib (n = 96) or placebo plus imatinib (n = 95). The primary end point was the major molecular response (MMR) at 6 months. Secondary end points include molecular response 4 (MR4), molecular response 4.5 (MR4.5), progression-free survival (PFS), overall survival (OS), and adverse events. RESULTS The median follow-up duration was 51 months. Due to the COVID-19 pandemic, the recruitment to this study had to be terminated early, on May 28, 2020. The rates of MMR had no significant statistical difference between combination and imatinib arms at 6 months and any other time during the trial. MR4 rates were similar in both arms. However, the 12-month cumulative rates of MR4.5 in the combination and imatinib arms were 20.8% and 10.5%, respectively (p = 0.043). In core treatment since the 2-year analysis, the frequency of MR4.5 was 55.6% in the combination arm and 38.6% in the imatinib arm (p = 0.063). PFS and OS were similar at five years. The safety profiles were similar and serious adverse events were uncommon in both groups. CONCLUSION The results of imatinib plus RIF as a first-line treatment of CP-CML compared with imatinib might be more effective for achieving a deeper molecular response (Chinadrugtrials number, CTR20170221).
Collapse
Affiliation(s)
- Jie Tian
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Ping Song
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | - Ye Chai
- Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chun-Ling Wang
- The Affiliated Huaian No 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Ai-Li He
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Feng Zhang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xu-Liang Shen
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wei-Hua Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lin-Hua Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Da-Nian Nie
- The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | | - Huan-Ling Zhu
- West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Da Gao
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Shi-Feng Lou
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ze-Ping Zhou
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Guo-Hong Su
- Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yan Li
- The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin-Ying Lin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qing-Zhi Shi
- The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | | | | | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qing Mi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Xu Y, Qi W, Zheng C, Li Y, Lu Z, Guan J, Lu C, Zhao B. Loss of the vitamin D receptor triggers senescence in chronic myeloid leukemia via DDIT4-mediated DNA damage. J Mol Cell Biol 2024; 15:mjad066. [PMID: 37880985 PMCID: PMC11190374 DOI: 10.1093/jmcb/mjad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic malignancy driven by the fusion gene BCR::ABL1. Drug resistance to tyrosine kinase inhibitors (TKIs), due to BCR::ABL1 mutations and residual leukemia stem cells (LSCs), remains a major challenge in CML treatment. Here, we revealed the requirement of the vitamin D receptor (VDR) in the progression of CML. VDR was upregulated by BCR::ABL1 and highly expressed in CML cells. Interestingly, VDR knockdown inhibited the proliferation of CML cells driven by both BCR::ABL1 and TKI-resistant BCR::ABL1 mutations. Mechanistically, VDR transcriptionally regulated DDIT4 expression; reduced DDIT4 levels upon VDR knockdown triggered DNA damage and senescence via p53 signaling activation in CML cells. Furthermore, VDR deficiency not only suppressed tumor burden and progression in primary CML mice but also reduced the self-renewal capacity of CML-LSCs. Together, our study demonstrated that targeting VDR is a promising strategy to overcome TKI resistance and eradicate LSCs in CML.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Cellular Senescence/genetics
- Cellular Senescence/drug effects
- DNA Damage
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Receptors, Calcitriol/metabolism
- Receptors, Calcitriol/genetics
- Signal Transduction
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wentao Qi
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhiyuan Lu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250012, China
| | - Jianmin Guan
- Department of Hematology, Heze Municipal Hospital, Heze 274031, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
26
|
Pepeler MS, Tıglıoglu M, Dagdas S, Ozhamamcıoglu E, Han U, Albayrak A, Aydın MS, Korkmaz G, Pamukcuoğlu M, Ceran F, Albayrak M, Ozet G. Prognostic Impact of Bone Marrow Fibrosis and Effects of Tyrosine Kinase Inhibitors on Bone Marrow Fibrosis in Chronic Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e161-e167. [PMID: 38342726 DOI: 10.1016/j.clml.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Myelofibrosis is reported in around 40% of newly diagnosed chronic myeloid leukemia (CML) patients and have an important role in the pathobiology and prognosis of CML. This retrospective study aimed to evaluate the effects of bone marrow (BM) fibrosis on disease prognosis and the effects of specific tyrosine-kinase inhibitors (TKIs) on BM fibrosis in CML patients. METHODS The study included 96 patients (>18 years) diagnosed with chronic phase (CP) CML. The clinical and demographic information were collected from the medical files. Post-treatment BM aspirate and core biopsy samples were analyzed for the presence of fibrosis and dysplasia. RESULTS The mean age of the study patients was 52.69 years; 47.9% of the patients were female. At the onset, 53 (63.1%) patients had BM fibrosis. The difference in the overall survival of the patients with respect to BM fibrosis grades was significant (p = .001). Within the BM fibrosis grade groups, there were significant differences between grade 0 vs. grade 2, grade 0 vs. grade 3, and grade 1 vs. grade 3 (p = .005, p = .002, and p = .003 respectively) There was no significant association between the presence of BM fibrosis at the onset and not responding to first-line therapy (p = .724). Moreover, no significant association was found between the presence of BM fibrosis at the onset and molecular (p = .623) or cytogenetic response (p = .535) to first-line therapy. Additionally, the association between the type of second-line and third-line therapy and molecular response (p = .773 and p = .424, respectively) or cytogenetic response (p = .298 and p = .641) was not significant. CONCLUSION Although BM fibrosis seems to be a crucial complication of CML with a poor prognosis, it can be reversed via TKI treatment which may result in improved survival. It might be considered to check the BM for this complication on a regular basis during therapies to test its prognostic influence in CML patients in prospective controlled trials. Further studies focused on this issue are required to utilize BM fibrosis as a candidate prognostic factor.
Collapse
Affiliation(s)
| | - Mesut Tıglıoglu
- Adult Hematology Deparment, Dıskapı Training and Research Hospital, Ankara, Turkey
| | - Simten Dagdas
- Adult Hematology Deparment, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Unsal Han
- Pathology Department, Dıskapı Training and Research Hospital, Ankara, Turkey
| | - Aynur Albayrak
- Pathology Department, Ankara Bilkent City Hospital, Ankara, Turkey
| | | | - Gülten Korkmaz
- Adult Hematology Deparment, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Merve Pamukcuoğlu
- Adult Hematology Deparment, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Funda Ceran
- Adult Hematology Deparment, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Murat Albayrak
- Adult Hematology Deparment, Dıskapı Training and Research Hospital, Ankara, Turkey
| | - Gülsüm Ozet
- Adult Hematology Deparment, Ankara Bilkent City Hospital, Ankara, Turkey
| |
Collapse
|
27
|
Frankhouser DE, Rockne RC, Uechi L, Zhao D, Branciamore S, O'Meally D, Irizarry J, Ghoda L, Ali H, Trent JM, Forman S, Fu YH, Kuo YH, Zhang B, Marcucci G. State-transition modeling of blood transcriptome predicts disease evolution and treatment response in chronic myeloid leukemia. Leukemia 2024; 38:769-780. [PMID: 38307941 PMCID: PMC10997512 DOI: 10.1038/s41375-024-02142-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors (TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential's stable critical points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment response, supporting this as a potentially valuable approach to time clinical intervention, before phenotypic changes become detectable.
Collapse
Affiliation(s)
- David E Frankhouser
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA.
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA.
| | - Lisa Uechi
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Dandan Zhao
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Denis O'Meally
- Department of Diabetes and & Cancer Discovery Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Jihyun Irizarry
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Lucy Ghoda
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Haris Ali
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | | | - Stephen Forman
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Yu-Hsuan Fu
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Ya-Huei Kuo
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA.
| |
Collapse
|
28
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
29
|
Mela Osorio MJ, Moiraghi B, Osycka MV, Pavlovsky MA, Varela AI, Bendek Del Prete GE, Tosin MF, Pérez MA, Riva ME, Berrios RR, Fernández I, Sackmann Massa F, Giere I, Sighel C, Pavlovsky C. Long-Term Follow-Up in Patients With Chronic Myeloid Leukemia Treated With Ponatinib in a Real-World Cohort: Safety and Efficacy Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:158-164. [PMID: 37973457 DOI: 10.1016/j.clml.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Ponatinib is a third-generation tyrosine-kinase inhibitor (TKI), indicated in patients with chronic phase (CP), accelerated phase (AP), or blast phase (BP) chronic myeloid leukemia (CML), who are resistant or intolerant to ≥2 prior TKIs, patients for whom subsequent treatment with imatinib is not appropriate, and patients who have a T315I mutation. PATIENTS AND METHODS We aimed to evaluate outcomes of ponatinib treatment, including safety, with focus on cardiovascular toxicity, in real-world patients from Argentina. Data from patients with CP CML treated with ponatinib was retrospectively retrieved from 2013 to 2023 in 7 centers. RESULTS Seventy-two patients were included (median age: 44 years; male: 55.5%; T315I mutation: 32%: median treatment duration: 36 months. At baseline, 57 patients (79%) had a breakpoint cluster region-Abelson (BCR::ABL1) transcript level >10% on the international reporting scale (BCR::ABL1 IS). A molecular response (MR, BCR::ABL1 (IS) <1%) was achieved at 12 months in 51.6% of evaluable patients; 57% maintained MR at last follow-up. Overall, 43% and 25% maintained major MR (MMR) or deep MR (DMR) (MR4.0-MR5.0), respectively at last follow-up. Twelve (16.6%) ponatinib-resistant patients were rescued with allogeneic hematopoietic stem cell transplantation. The estimated 2-year progression-free survival (PFS) was 84%. Ponatinib dose was reduced during treatment in 22 patients; nevertheless, MMR was maintained in 50% of these patients. Severe arterial occlusive events (AOE) were reported in 10.9% of patients after a median treatment of 5 months. CONCLUSION CV toxicity was consistent with clinical trials and other real-world registries. Older age, hypercholesterolemia and a SCORE risk >2% were significantly associated with higher risk of AOEs. Controlling CV risk factors and reducing doses at optimal time points may help to optimize ponatinib use in daily practice.
Collapse
Affiliation(s)
| | - Beatriz Moiraghi
- Hospital General de Agudos José María Ramos Mejía, Buenos Aires, Argentina
| | | | | | - Ana Inés Varela
- Hospital General de Agudos José María Ramos Mejía, Buenos Aires, Argentina
| | | | - María Fernanda Tosin
- Hospital de Alta Complejidad El Cruce Néstor Kirchner, Florencio Varela, Argentina
| | - Mariel Ana Pérez
- Hospital Interzonal General de Agudos Profesor Dr. Rodolfo Rossi, La Plata, Argentina
| | - María Elisa Riva
- Hospital Interzonal General de Agudos General San Martín de La Plata, La Plata, Argentina
| | | | - Isolda Fernández
- Fundaleu - Fundación para combatir la leucemia, Buenos Aires, Argentina
| | | | - Isabel Giere
- Fundaleu - Fundación para combatir la leucemia, Buenos Aires, Argentina
| | - Carolina Sighel
- Fundaleu - Fundación para combatir la leucemia, Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Cheng F, Wang H, Li W, Zhang Y. Clinical pharmacokinetics and drug-drug interactions of tyrosine-kinase inhibitors in chronic myeloid leukemia: A clinical perspective. Crit Rev Oncol Hematol 2024; 195:104258. [PMID: 38307392 DOI: 10.1016/j.critrevonc.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
In the past decade, numerous tyrosine kinase inhibitors (TKIs) have been introduced in the treatment of chronic myeloid leukemia. Given the significant interpatient variability in TKIs pharmacokinetics, potential drug-drug interactions (DDIs) can greatly impact patient therapy. This review aims to discuss the pharmacokinetic characteristics of TKIs, specifically focusing on their absorption, distribution, metabolism, and excretion profiles. Additionally, it provides a comprehensive overview of the utilization of TKIs in special populations such as the elderly, children, and patients with liver or kidney dysfunction. We also highlight known or suspected DDIs between TKIs and other drugs, highlighting various clinically relevant interactions. Moreover, specific recommendations are provided to guide haemato-oncologists, oncologists, and clinical pharmacists in managing DDIs during TKI treatment in daily clinical practice.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, 430014, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
31
|
Zhao D, Long X, Wang J. Pharmacovigilance study of BCR-ABL1 tyrosine kinase inhibitors: a safety analysis of the FDA adverse event reporting system. BMC Pharmacol Toxicol 2024; 25:20. [PMID: 38395895 PMCID: PMC10885429 DOI: 10.1186/s40360-024-00741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND With the increased use of BCR-ABL1 tyrosine kinase inhibitors (TKIs) in cancer patients, adverse events (AEs) have garnered considerable interest. We conducted this pharmacovigilance study to evaluate the AEs of BCR-ABL1 TKIs in cancer patients using the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS To query AE reports from the FAERS database, we used OpenVigil 2.1. Descriptive analysis was then employed to describe the characteristics of TKIs-associated AE reports. We also utilized the disproportionality analysis to detect safety signals by calculating the proportional reporting ratio (PRR) and reporting odds ratios (ROR). RESULTS From the FAERS database, a total of 85,989 AE reports were retrieved, with 3,080 significant AE signals identified. Specifically, imatinib, nilotinib, dasatinib, bosutinib, and ponatinib had significant AE signals of 1,058, 813, 232, 186, and 791, respectively. These significant signals were further categorized into 26 system organ classes (SOCs). The AE signals of imatinib and ponatinib were primarily associated with general disorders and administration site conditions. On the other hand, nilotinib, dasatinib, and bosutinib were mainly linked to investigations, respiratory, thoracic and mediastinal disorders, and gastrointestinal disorders, respectively. Notably, new signals of 245, 278, 47, 55, and 253 were observed in imatinib, nilotinib, dasatinib, bosutinib, and ponatinib, respectively. CONCLUSIONS The results of this study demonstrated that AE signals differ among the five BCR-ABL1 TKIs. Furthermore, each BCR-ABL1 TKI displayed several new signals. These findings provide valuable information for clinicians aiming to reduce the risk of AEs during BCR-ABL1 TKI treatment.
Collapse
Affiliation(s)
- Dehua Zhao
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| | - Xiaoqing Long
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China
| | - Jisheng Wang
- Department of Clinical Pharmacy, The Third Hospital of Mianyang (Sichuan Mental Health Center), 621000, Mianyang, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
An Y, Zhang Q, Chen Y, Xia F, Wong YK, He H, Hao M, Tian J, Zhang X, Luo P, Wang J. Chemoproteomics Reveals Glaucocalyxin A Induces Mitochondria-Dependent Apoptosis of Leukemia Cells via Covalently Binding to VDAC1. Adv Biol (Weinh) 2024; 8:e2300538. [PMID: 38105424 DOI: 10.1002/adbi.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Cell Proliferation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Apoptosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mitochondria/metabolism
- Mitochondria/pathology
- Voltage-Dependent Anion Channel 1/genetics
- Voltage-Dependent Anion Channel 1/therapeutic use
- Diterpenes, Kaurane
Collapse
Affiliation(s)
- Yehai An
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Zhang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin-Kwan Wong
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hengkai He
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mingjing Hao
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
| | - Jiahang Tian
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Piao Luo
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- School of Pharmaceutical Sciences and School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
33
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
34
|
Wang Q, Wei X. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol 2024; 25:220-236. [PMID: 38286894 PMCID: PMC10873432 DOI: 10.1007/s11864-024-01179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
OPINION STATEMENT Metformin is a first-line drug in the clinical treatment of type 2 diabetes. Its main molecular mechanism involves the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which regulates cell energy metabolism. Many clinical studies have shown that metformin can reduce the incidence and mortality of cancer in patients with or without diabetes. In vitro studies also confirmed that metformin can inhibit proliferation, promote apoptosis, and enhance the response of cells to chemical drugs and other anticancer effects on a variety of leukemia cells. In recent years, leukemia has become one of the most common malignant diseases. Although great progress has been made in therapeutic approaches for leukemia, novel drugs and better treatments are still needed to improve the therapeutic efficacy of these treatments. This article reviews the application status and possible mechanism of metformin in the treatment of leukemia to further understand the anticancer mechanism of metformin and expand its clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
35
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Zhao B, Che H, Li L, Hu L, Yi W, Xiao L, Liu S, Hou Z. Asperuloside regulates the proliferation, apoptosis, and differentiation of chronic myeloid leukemia cell line K562 through the RAS/MEK/ERK pathway. Heliyon 2024; 10:e23580. [PMID: 38226258 PMCID: PMC10788273 DOI: 10.1016/j.heliyon.2023.e23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Context Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease caused by excessive proliferation and abnormal differentiation of hematopoietic stem cells. Asperuloside (ASP) is considered to have good biological activity and may be a good anti-CML drug. Objective This study aimed to explore the effects and possible mechanisms of ASP on the biological behavior of K562 cells based on RNA-seq. Materials and methods The IC50 of ASP in K562 cells was calculated by the concentration-effect curve. Cell viability, apoptosis, and differentiation were detected by CCK8, flow cytometry, benzidine staining, and WB analysis, respectively. Further, RNA-seq was used to analyze the possible mechanism of ASP regulating K562 cells. Results ASP significantly inhibited the proliferation, and promoted apoptosis and differentiation of K562 cells. A total of 117 differentially expressed genes were screened by RNA-seq, mainly involved in the RAS/MEK/ERK pathway. PD98059 was used to inhibit the RAS/MEK/ERK pathway in K562 cells, and results confirmed that PD98059 could not only inhibit the RAS/MEK/ERK pathway, but also inhibit the regulation of ASP on the proliferation and differentiation of K562 cells. Conclusion ASP inhibited the proliferation, promoted apoptosis and differentiation of K562 cells by regulating the RAS/MEK/ERK pathway, and played a good anti-CML role.
Collapse
Affiliation(s)
| | | | - Linlin Li
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lian Hu
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wenjing Yi
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Li Xiao
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Songshan Liu
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Zhufa Hou
- Department of Hematology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
37
|
Katsarou D, Kotanidou EP, Tsinopoulou VR, Tragiannidis A, Hatzipantelis E, Galli-Tsinopoulou A. Impact of Tyrosine Kinase Inhibitors (TKIs) on Growth in Children and Adolescents with Chronic Myeloid Leukemia: A Systematic Review. Curr Pharm Des 2024; 30:2631-2642. [PMID: 39005125 DOI: 10.2174/0113816128309071240626114308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic Myeloid Leukemia (CML) is a rare myeloproliferative disease in childhood. Treatment in CML includes Tyrosine Kinase Inhibitors (TKIs), which inhibit the cytoplasmic kinase BCR/ABL. Tyrosine kinases play a key role in the secretion of growth hormone and insulin-like growth factor 1 (IGF-1). OBJECTIVE The aim of this systematic review was to study the effect of TKIs on the growth of children and adolescents with CML. METHODS English-language publications were searched in the PubMed/Cochrane library/Google Scholar databases (2002-2023), and retrieved studies were assessed according to PRISMA-Statement and Newcastle- Ottawa-scale. RESULTS The search strategy yielded 1066 articles. After applying the inclusion/exclusion criteria, 941 were excluded based on title screening and 111 on abstract review. The systematic review included 14 articles (11 retrospective observational studies/3 clinical trials). Twelve studies reported data on the prevalence of growth disorders after the administration of 1st generation TKIs (imatinib). Two studies reported a negative effect of 2nd generation TKIs (dasatinib/nilotinib) on physical growth. Four studies recorded a decrease in height z-score after treatment compared to baseline. Two 1st-generation TKIs studies reported data on children's final height; one reported restoration of final height to normal after the onset of puberty, despite initial slowing, and the final height was lower than mid-parental target height. Serum IGF-1 levels were reported in 2 studies to be within normal range, while in 3 studies, a significant decrease was documented. Considerable study heterogeneity was observed related to dosage/duration of treatment/disease phase/stage of puberty/ethnicity. CONCLUSION A negative effect of TKIs on the growth and final height of children was noted.
Collapse
Affiliation(s)
- Dimitra Katsarou
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Thessaloniki, 54636, Greece
| | - Eleni P Kotanidou
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Emmanouil Hatzipantelis
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| | - Assimina Galli-Tsinopoulou
- Program of Postgraduate Studies "Adolescent Medicine and Adolescent Health Care", School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, 54636, Greece
| |
Collapse
|
38
|
Rea D, Cayssials E, Charbonnier A, Coiteux V, Etienne G, Goldwirt L, Guerci-Bresler A, Huguet F, Legros L, Roy L, Nicolini FE. [Optimizing the use of bosutinib in patients with chronic-phase chronic myeloid leukemia: Recommendations of a panel of experts from the Fi-LMC (French CML working group)]. Bull Cancer 2024; 111:87-96. [PMID: 38087729 DOI: 10.1016/j.bulcan.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 01/22/2024]
Abstract
The treatment of chronic myeloid leukemia relies on orally available tyrosine kinase inhibitors targeting the BCR::ABL1 oncoprotein. Bosutinib is a second generation adenosine triphosphate-competitive inhibitor approved for use in frontline adult chronic phase-chronic myeloid leukemia and all phases-chronic myeloid leukemia in the second line setting or beyond. Its efficacy was demonstrated in several pivotal clinical trials at 400mg once daily in the first line context and at 500mg once daily beyond first line. Bosutinib-related adverse events frequently occur early after treatment initiation and include gastro-intestinal symptoms and cytolytic hepatitis. These drug-related adverse events must be properly managed in order to preserve safety, efficacy and treatment acceptability. The French chronic myeloid leukemia study group gathered a panel of experts in hematology, pharmacology and hepatology in order to elaborate practical recommendations on the management of bosutinib treatment. These recommendations aim at optimizing the short and long-term tolerance and benefit/risk balance of bosutinib, mainly focusing at gastro-intestinal and liver toxicities.
Collapse
Affiliation(s)
- Delphine Rea
- DMU d'hématologie, hôpital universitaire Saint-Louis, Paris, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France.
| | - Emilie Cayssials
- CHU de Poitiers, département d'hématologie, Poitiers, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Aude Charbonnier
- Institut Paoli-Calmettes, hematology department, Marseille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Valérie Coiteux
- CHU Claude-Huriez, département d'hématologie, Lille, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Gabriel Etienne
- Institut Bergonié, département d'hématologie, Bordeaux, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | | | - Agnès Guerci-Bresler
- CHRU Brabois, service d'hématologie, Vandœuvre-lès-Nancy, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Françoise Huguet
- CHU de Toulouse, institut universitaire du cancer, département d'hématologie, Toulouse, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Laurence Legros
- Hôpital Paul-Brousse, département d'hématologie, Villejuif, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Lydia Roy
- AP-HP, hôpital universitaire Henri-Mondor, université Paris Est Créteil (UPEC), service d'hématologie clinique, Créteil, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| | - Franck Emmanuel Nicolini
- Centre Léon-Bérard, hématologie clinique, Inserm U1052, Lyon, France; France Intergroupe de la leucémie myéloïde chronique Fi-LMC, France
| |
Collapse
|
39
|
Mishra R, Garg S, Bharti P, Malla DR, Rohatgi I, Gautam S. Unusual presentation of extramedullary blast crisis in chronic myeloid leukemia: A case report. World J Hematol 2023; 10:42-47. [DOI: 10.5315/wjh.v10.i4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Extramedullary blast crisis in chronic myeloid leukemia (CML) is an uncommon occurrence of leukemic blast infiltration in regions other than the bone marrow. Malignant infiltration of the serosal membranes should be considered in cases where CML presents with ascites or pleural effusion.
CASE SUMMARY A 23-year-old female with CML presented with progressively worsening ascites and pleural effusion despite first-line tyrosine kinase inhibitor treatment. Her blood work indicated leukocytosis with myelocyte bulge and 2% blasts. Analysis of the patient’s bone marrow confirmed the chronic phase of CML. Abdominal ultrasound revealed hepatosplenomegaly with ascites. The fluid investigation of both ascites and pleural effusion revealed a predominance of neutrophils with exudate. However, no acid-fast bacilli or growth was observed after culturing. Although hydroxyurea reduced cell counts, there was no observed effect on ascites or pleural effusion. Repeat investigation of the ascitic and pleural fluid revealed a polymorphous myeloid cell population consisting of myelocytes, metamyelocytes, band forms, neutrophils and a few myeloblasts. Extramedullary blast crisis was suspected, and mutation analysis was performed. We switched the patient to dasatinib. The patient’s symptoms were relieved, and ascites and pleural effusion diminished.
CONCLUSION Serosal membrane involvement in CML is extremely rare. In this case, the patient responded well to dasatinib treatment.
Collapse
Affiliation(s)
- Rashmi Mishra
- Department of General Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Sandeep Garg
- Department of General Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Praveen Bharti
- Department of General Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Deepak Ranjan Malla
- Department of General Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Ishan Rohatgi
- Department of General Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| | - Sachin Gautam
- Department of Internal Medicine, Maulana Azad Medical College, New Delhi 110002, Delhi, India
| |
Collapse
|
40
|
Yuan C, Rayasam A, Moe A, Hayward M, Wells C, Szabo A, Mackenzie A, Salzman N, Drobyski WR. Interleukin-9 production by type 2 innate lymphoid cells induces Paneth cell metaplasia and small intestinal remodeling. Nat Commun 2023; 14:7963. [PMID: 38042840 PMCID: PMC10693577 DOI: 10.1038/s41467-023-43248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/03/2023] [Indexed: 12/04/2023] Open
Abstract
Paneth cell metaplasia (PCM) typically arises in pre-existing gastrointestinal (GI) diseases; however, the mechanistic pathway that induces metaplasia and whether PCM is initiated exclusively by disorders intrinsic to the GI tract is not well known. Here, we describe the development of PCM in a murine model of chronic myelogenous leukemia (CML) that is driven by an inducible bcr-abl oncogene. Mechanistically, CML induces a proinflammatory state within the GI tract that results in the production of epithelial-derived IL-33. The binding of IL-33 to the decoy receptor ST2 leads to IL-9 production by type 2 innate lymphoid cells (ILC2) which is directly responsible for the induction of PCM in the colon and tissue remodeling in the small intestines, characterized by goblet and tuft cell hyperplasia along with expansion of mucosal mast cells. Thus, we demonstrate that an extra-intestinal disease can trigger an ILC2/IL-9 immune circuit, which induces PCM and regulates epithelial cell fate decisions in the GI tract.
Collapse
Affiliation(s)
- Chengyin Yuan
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aditya Rayasam
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alison Moe
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael Hayward
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Clive Wells
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Nita Salzman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William R Drobyski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
41
|
Cha SH, Kim K, Song YK. Comparison of cutaneous adverse events between second-generation tyrosine kinase inhibitors and imatinib for chronic myeloid leukemia: a systematic review and meta-analysis. Acta Oncol 2023; 62:1767-1774. [PMID: 37787749 DOI: 10.1080/0284186x.2023.2263152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Patients with chronic myeloid leukemia (CML) treated with tyrosine kinase inhibitors (TKIs) often experience cutaneous adverse events, such as rashes and pruritus. In this study, we aimed to compare the risks of cutaneous adverse events between imatinib- and second-generation TKI-treated patients with CML. MATERIAL AND METHODS Paired reviewers independently obtained studies from PubMed, Embase, and Cochrane Library published until 15 March 2022. The following terms were searched: (Leukemia, Myelogenous, Chronic and BCR-ABL Positive), chronic myeloid leukemia, tyrosine kinase inhibitor, TKI, imatinib, dasatinib, nilotinib, bosutinib, and radotinib. Two independent reviewers screened the results and selected articles on cutaneous adverse events. RevMan 5.4 and the Cochrane Collaboration tool were used to perform the meta-analysis and risk of bias assessment. RESULTS AND CONCLUSION Eleven trials involving 4502 patients were analyzed in this study. Patients treated with second-generation TKIs were significantly more likely to experience cutaneous adverse events than those treated with imatinib with a relative risk (RR) of 1.62 (95% confidence interval [CI], [1.25-2.09]). Except dasatinib (RR [95% CI], 1.39 [0.75-2.56]), the risk of adverse events was more with second-generation TKIs than with imatinib as follows: nilotinib (2.11 [1.53-2.90]), bosutinib (1.41 [1.07-1.86]), and radotinib (1.87 [1.33-2.63]). Rash was the most common cutaneous adverse event that was observed in 21.6% of cases across all grades, followed by pruritus (5.7%) and alopecia (4.3%). In conclusion, our findings suggest that cutaneous adverse events occur more frequently with second-generation TKIs than with imatinib. Therefore, effective management of the cutaneous outcome is necessary to achieve high patient adherence to medication and successful treatment with TKIs.
Collapse
Affiliation(s)
- Seung-Hyeon Cha
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Yun-Kyoung Song
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, Republic of Korea
| |
Collapse
|
42
|
Yang Y, Zhong F, Jiang J, Li M, Yao F, Liu J, Cheng Y, Xu S, Chen S, Zhang H, Xu Y, Huang B. Bioinformatic analysis of the expression profile and identification of RhoGDI2 as a biomarker in imatinib-resistant K562 cells. Hematology 2023; 28:2244856. [PMID: 37594290 DOI: 10.1080/16078454.2023.2244856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/26/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is an aggressive malignancy originating from hematopoietic stem cells. Imatinib (IM), the first-generation tyrosine kinase inhibitor, has greatly improved theliving quality of CML patients. However, owing to the recurrence and treatment failure coming from tyrosine kinase inhibitor (TKIs) resistance, some CML patients still bear poor prognosis. Therefore, we aimed to seek potential signaling pathways and specific biomarkers for imatinib resistance. METHODS We performed mRNA and miRNA expression profiling in imatinib-sensitive K562 cells (IS-K562) and imatinib-resistant K562 cells (IR-K562). Differentially expressed genes (DEGs) were identified and pathway enrichment analyses were performed to explore the potential mechanism. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network were constructed to explore potential relationships among these genes. RT-qPCR, western blot and CCK8 were used for further experiments. RESULTS A total of 623 DEGs and 61 differentially expressed miRNAs were identified. GO revealed that DEGs were mainly involved in cell adhesion, cell migration, differentiation, and inflammatory response. KEGG revealed that DEGs were typically enriched in the Rap1 signaling pathway, focal adhesion, proteoglycans and transcriptional misregulation in cancer, signaling pathways regulating pluripotency of stem cells and some immune-related pathways. The protein-protein interaction (PPI) network and miRNA-mRNA regulatory network revealed a web of diverse connections among genes. Finally, we proved that RHoGDI2 played a critical role in imatinib resistance. CONCLUSION The dynamic interplay between genes and signaling pathways is associated with TKIs resistance and RHoGDI2 is identified as a biomarker in IR-K562.
Collapse
Affiliation(s)
- Yulin Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Meiyong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Song Chen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
- School of Public Health, Nanchang University, Nanchang, People's Republic of China
| | - Haibin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yanmei Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
43
|
Lahlil R, Aries A, Scrofani M, Zanetti C, Hennequin D, Drénou B. Stem Cell Responsiveness to Imatinib in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 24:16671. [PMID: 38068992 PMCID: PMC10706348 DOI: 10.3390/ijms242316671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.
Collapse
MESH Headings
- Adult
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/metabolism
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- MicroRNAs/metabolism
- Apoptosis
- Stem Cells/metabolism
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Anne Aries
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Maurice Scrofani
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Desline Hennequin
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
| | - Bernard Drénou
- Institut de Recherche en Hématologie et Transplantation (IRHT), Hôpital du Hasenrain, 87 Avenue d’Altkirch, 68100 Mulhouse, France; (A.A.); (B.D.)
- Laboratoire d’Hématologie, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, Hôpital E. Muller, 20 Avenue de Dr. Laennec, 68100 Mulhouse, France
| |
Collapse
|
44
|
Park H, Kim HJ, Sohn SK, Baik Y, Kim D, Lee SY, Kong JH, Kim H, Shin DY, Ahn JS, Park J, Park S, Kim I. Effect of BCR::ABL1 transcript type and droplet digital polymerase chain reaction on successful treatment-free remission in chronic myeloid leukemia patients who discontinued tyrosine kinase inhibitor. Ther Adv Hematol 2023; 14:20406207231205637. [PMID: 37929079 PMCID: PMC10624046 DOI: 10.1177/20406207231205637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/05/2023] [Indexed: 11/07/2023] Open
Abstract
Background Droplet digital polymerase chain reaction (ddPCR) is an exact method of measurement. Objectives We conducted this study to identify the prognostic factors for successful treatment-free remission in patients with chronic-phase chronic myeloid leukemia who discontinued tyrosine kinase inhibitors (TKIs). We also aimed to validate ddPCR for predicting molecular relapse. Design This is a prospective, multicenter study. Methods We enrolled patients treated with TKIs for at least 3 years with a confirmed sustained deep molecular response (DMR) for at least 1 year. TKI was re-administered in patients who experienced the loss of major molecular response (MMR). Results A total of 66 patients from five institutions in South Korea were enrolled. During a median follow-up period of 16.5 months, 29/66 (43.9%) patients experienced molecular relapse; the probability of molecular relapse-free survival (RFS) at 6 or 12 months after TKI discontinuation was 65.6% or 57.8%, respectively, with most molecular relapses occurring within the first 7 months. All patients who lost MMR were re-treated with TKI, and all re-achieved MMR at a median of 2.8 months. E14a2 transcript type (p = 0.005) and longer DMR duration (⩾48 months) prior to TKI discontinuation (p = 0.002) were associated with prolonged molecular RFS and with sustained DMR. Patients with both e13a2 transcript type and detectable BCR::ABL1 (⩾MR5.0) by ddPCR at the time of TKI discontinuation showed shorter duration of molecular RFS (p = 0.015). Conclusion Our data suggest that transcript type and BCR::ABL1 transcript levels on ddPCR should be taken into consideration when deciding whether to discontinue TKI therapy.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Internal Medicine, Seoul National University–Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Hyeong-Joon Kim
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea
| | - Sang-Kyun Sohn
- Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | | | | | | | - Jee Hyun Kong
- Department of Internal Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Hawk Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Sook Ahn
- Department of Internal Medicine, Chonnam National University, Hwasun Hospital, Hwasun, South Korea
| | - Jinny Park
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seonyang Park
- Department of Internal Medicine, Inje University, Haeundae Paik Hospital, Busan, South Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul 03080, South Korea
| |
Collapse
|
45
|
Cheng F, Cui Z, Li Q, Wang L, Li W. Adherence to tyrosine kinase inhibitor and clinical outcomes in patients with chronic myeloid leukemia. Int Immunopharmacol 2023; 124:110847. [PMID: 37639851 DOI: 10.1016/j.intimp.2023.110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE To ensure optimal care for patients with chronic myeloid leukemia (CML), adherence to tyrosine kinase inhibitors (TKIs) has emerged as a critical component. The objective of this study was to assess the impact of TKIs adherence on clinical outcomes in a cohort of Chinese CML patients who received treatment with TKIs. METHODS This retrospective study employed a cross-sectional design utilizing questionnaires to assess adherence to TKIs in a sample of 398 patients diagnosed with CML. Adherence was measured using the Morisky Medication Adherence Scale (MMAS-8), which dichotomizes patients into low, medium, and high adherence groups. RESULTS Of the patients included in this study, 34.2% were classified as highly adherent, with 43.2% and 22.6% of patients categorized as having medium and low adherence, respectively. Compared to the low-adherence group, patients in the medium- and high-adherence groups exhibited significantly higher rates of achieving major molecular response (MMR) and lower rates of switching TKIs. Moreover, patients who failed to adhere to TKIs treatment demonstrated significantly lower event-free survival and failure-free survival compared to those in the high-adherence group. Notably, regular molecular monitoring and utilization of the "CML Academy" mobile application were positively associated with increased TKI adherence. On the other hand, patients receiving third-generation or above first-line TKIs treatment displayed reduced adherence. CONCLUSION The findings suggest that high adherence to TKIs treatment confers clinical benefits to patients with CML. Accordingly, the implementation of effective guidance and intervention measures aimed at promoting adherence to TKIs therapy in real-world settings is imperative.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, Hubei Province 430022, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, Hubei Province 430022, China
| | - Qiang Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, Hubei Province 430022, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, Hubei Province 430022, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
46
|
Antunes MB, Cardeal SP, Magalhães M, Vale-Fernandes E, Barreiro M, Sá R, Sousa M. Preservation of fertility in female patients with hematologic diseases. Blood Rev 2023; 62:101115. [PMID: 37562987 DOI: 10.1016/j.blre.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Recent developments of assisted reproduction techniques turned possible to avoid the infertility consequences of oncologic treatments, but fertility preservation (FP) has been somewhat neglected in women with hematologic diseases undergoing gonadotoxic treatments. For these specific cases, the current options for FP include the cryopreservation of embryos, mature oocytes and ovarian tissue, and oocyte in-vitro maturation. We intend to make patients and clinicians aware of this important and relevant issue, and provide hematologists, assisted reproduction physicians and patients, with updated tools to guide decisions for FP. The physicians of the units responsible for female FP should always be available to decide on the best-individualized FP option in strict collaboration with hematologists. With a wide range of options for FP tailored to each case, a greater level of training and information is needed among clinicians, so that patients proposed to gonadotoxic treatments can be previously advised for FP techniques in hematological conditions. ABBREVIATED ABSTRACT: Recent developments of assisted reproduction techniques turned possible to preserve the fertility of women with hematologic diseases undergoing gonadotoxic treatments. Current options for fertility preservation in women with hematologic diseases are presented. It is imperative to offer fertility preservation to all women before starting any gonadotoxic treatment and in some cases after treatment. Fertility preservation methods enable to later achieve the desired pregnancy.
Collapse
Affiliation(s)
- Marika Bini Antunes
- Department of Clinical Hematology, Centro Hospitalar Universitário do Porto, Largo do Professor Abel Salazar, 4099-001 Porto, Portugal; UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| | - Sara Pinto Cardeal
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Manuel Magalhães
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Department of Oncology, Centro Hospitalar Universitário do Porto, Largo do Professor Abel Salazar, 4099-001 Porto, Portugal
| | - Emídio Vale-Fernandes
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Centro de Procriação Medicamente Assistida, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Largo da Maternidade, 4050-371, Porto, Portugal
| | - Márcia Barreiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Centro de Procriação Medicamente Assistida, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto, Largo da Maternidade, 4050-371, Porto, Portugal.
| | - Rosália Sá
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Mário Sousa
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal; Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
47
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
48
|
Zhang B, Zhao D, Chen F, Frankhouser D, Wang H, Pathak KV, Dong L, Torres A, Garcia-Mansfield K, Zhang Y, Hoang DH, Chen MH, Tao S, Cho H, Liang Y, Perrotti D, Branciamore S, Rockne R, Wu X, Ghoda L, Li L, Jin J, Chen J, Yu J, Caligiuri MA, Kuo YH, Boldin M, Su R, Swiderski P, Kortylewski M, Pirrotte P, Nguyen LXT, Marcucci G. Acquired miR-142 deficit in leukemic stem cells suffices to drive chronic myeloid leukemia into blast crisis. Nat Commun 2023; 14:5325. [PMID: 37658085 PMCID: PMC10474062 DOI: 10.1038/s41467-023-41167-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
The mechanisms underlying the transformation of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC) are not fully elucidated. Here, we show lower levels of miR-142 in CD34+CD38- blasts from BC CML patients than in those from CP CML patients, suggesting that miR-142 deficit is implicated in BC evolution. Thus, we create miR-142 knockout CML (i.e., miR-142-/-BCR-ABL) mice, which develop BC and die sooner than miR-142 wt CML (i.e., miR-142+/+BCR-ABL) mice, which instead remain in CP CML. Leukemic stem cells (LSCs) from miR-142-/-BCR-ABL mice recapitulate the BC phenotype in congenic recipients, supporting LSC transformation by miR-142 deficit. State-transition and mutual information analyses of "bulk" and single cell RNA-seq data, metabolomic profiling and functional metabolic assays identify enhanced fatty acid β-oxidation, oxidative phosphorylation and mitochondrial fusion in LSCs as key steps in miR-142-driven BC evolution. A synthetic CpG-miR-142 mimic oligodeoxynucleotide rescues the BC phenotype in miR-142-/-BCR-ABL mice and patient-derived xenografts.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| | - Dandan Zhao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Fang Chen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - David Frankhouser
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Huafeng Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Khyatiben V Pathak
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Anakaren Torres
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Krystine Garcia-Mansfield
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Yi Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Dinh Hoa Hoang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Min-Hsuan Chen
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Shu Tao
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Hyejin Cho
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Yong Liang
- DNA/RNA Peptide Shared Resources, Beckman Research Institute, Duarte, CA, USA
| | - Danilo Perrotti
- Department of Medicine and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine Baltimore, Baltimore, MD, USA
- Department of Immunology and Inflammation, Centre of Hematology, Imperial College of London, London, UK
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Russell Rockne
- Department of Computational and Quantitative Medicine, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Xiwei Wu
- City of Hope National Medical Center, Integrative Genomics Core, Department of Computational and Quantitative Medicine, Beckman Research Institute, Duarte, CA, USA
| | - Lucy Ghoda
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Mark Boldin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, USA
| | - Piotr Swiderski
- DNA/RNA Peptide Shared Resources, Beckman Research Institute, Duarte, CA, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute, Duarte, CA, USA
| | - Patrick Pirrotte
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA.
| |
Collapse
|
49
|
Kronick O, Chen X, Mehra N, Varmeziar A, Fisher R, Kartchner D, Kota V, Mitchell CS. Hematological Adverse Events with Tyrosine Kinase Inhibitors for Chronic Myeloid Leukemia: A Systematic Review with Meta-Analysis. Cancers (Basel) 2023; 15:4354. [PMID: 37686630 PMCID: PMC10486908 DOI: 10.3390/cancers15174354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Chronic myeloid leukemia (CML) is treated with tyrosine kinase inhibitors (TKI) that target the pathological BCR-ABL1 fusion oncogene. The objective of this statistical meta-analysis was to assess the prevalence of other hematological adverse events (AEs) that occur during or after predominantly first-line treatment with TKIs. Data from seventy peer-reviewed, published studies were included in the analysis. Hematological AEs were assessed as a function of TKI drug type (dasatinib, imatinib, bosutinib, nilotinib) and CML phase (chronic, accelerated, blast). AE prevalence aggregated across all severities and phases was significantly different between each TKI (p < 0.05) for anemia-dasatinib (54.5%), bosutinib (44.0%), imatinib (32.8%), nilotinib (11.2%); neutropenia-dasatinib (51.2%), imatinib (29.8%), bosutinib (14.1%), nilotinib (14.1%); thrombocytopenia-dasatinib (62.2%), imatinib (30.4%), bosutinib (35.3%), nilotinib (22.3%). AE prevalence aggregated across all severities and TKIs was significantly (p < 0.05) different between CML phases for anemia-chronic (28.4%), accelerated (66.9%), blast (55.8%); neutropenia-chronic (26.7%), accelerated (63.8%), blast (36.4%); thrombocytopenia-chronic (33.3%), accelerated (65.6%), blast (37.9%). An odds ratio (OR) with 95% confidence interval was used to compare hematological AE prevalence of each TKI compared to the most common first-line TKI therapy, imatinib. For anemia, dasatinib OR = 1.65, [1.51, 1.83]; bosutinib OR = 1.34, [1.16, 1.54]; nilotinib OR = 0.34, [0.30, 0.39]. For neutropenia, dasatinib OR = 1.72, [1.53, 1.92]; bosutinib OR = 0.47, [0.38, 0.58]; nilotinib OR = 0.47, [0.42, 0.54]. For thrombocytopenia, dasatinib OR = 2.04, [1.82, 2.30]; bosutinib OR = 1.16, [0.97, 1.39]; nilotinib OR = 0.73, [0.65, 0.82]. Nilotinib had the greatest fraction of severe (grade 3/4) hematological AEs (30%). In conclusion, the overall prevalence of hematological AEs by TKI type was: dasatinib > bosutinib > imatinib > nilotinib. Study limitations include inability to normalize for dosage and treatment duration.
Collapse
Affiliation(s)
- Olivia Kronick
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Xinyu Chen
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Nidhi Mehra
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Armon Varmeziar
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Rachel Fisher
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - David Kartchner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Vamsi Kota
- Department of Medicine, Hematology and Oncology, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA;
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- The Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
50
|
Blanco Sánchez A, Gil Manso R, Carreño-Tarragona G, Paredes Ruiz D, González Olmedo J, Martínez-López J, Díaz Pedroche C, Ayala R. Multidisciplinary management in chronic myeloid leukemia improves cardiovascular risk measured by SCORE. Front Pharmacol 2023; 14:1206893. [PMID: 37538175 PMCID: PMC10394626 DOI: 10.3389/fphar.2023.1206893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Cardiovascular events are one of the main long-term complications in patients with chronic myeloid leukemia (CML) receiving treatment with tyrosine kinase inhibitors (TKIs). The proper choice of TKI and the adequate management of risk factors may reduce cardiovascular comorbidity in this population. Methods: This study evaluated the cardiovascular risk of a cohort of patients with CML at diagnosis and after follow-up in a specialized cardiovascular risk consultation. In order to do this, we performed data analysis from 35 patients who received TKIs and were referred to the aforementioned consultation between 2015 and 2018 at our center. Cardiovascular risk factors were analyzed separately, as well as integrated into the cardiovascular SCORE, both at diagnosis and at the last visit to the specialized consultation. Results: At the time of diagnosis, 60% had some type of risk factor, 20% had a high or very high risk SCORE, 40% had an intermediate risk, and 40% belonged to the low risk category. During follow-up, the main cardiovascular adverse event observed was hypertension (diagnosed in 8 patients, 23%). 66% of patients quit smoking, achieving control of blood pressure in 95%, diabetes in 50%, weight in 76%, and dyslipidemia in 92%. 5.7% of patients suffered a thrombotic event and a significant percentage of patients showed a reduction in their SCORE. Conclusion: Our study shows the benefit of controlling cardiovascular risk factors through follow-up in a specialized consultation for patients with CML treated with TKI.
Collapse
Affiliation(s)
| | - Rodrigo Gil Manso
- Department of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Diana Paredes Ruiz
- Department of Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | - Rosa Ayala
- Department of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|