1
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Tălăngescu A, Tizu M, Calenic B, Mihăilescu DF, Constantinescu AE, Constantinescu I. HLA Genetic Diversity and Chronic Hepatitis B Virus Infection: Effect of Heterozygosity Advantage. Med Sci (Basel) 2024; 12:44. [PMID: 39311157 PMCID: PMC11417839 DOI: 10.3390/medsci12030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
This research aims to determine whether HLA heterozygosity confers a protective effect against hepatitis B virus infection by analyzing the relationship between HLA diversity and the risk of hepatitis B virus (HBV) infection. A total of 327 hepatitis B patients were selected and categorized based on their clinical status: 284 patients with chronic HBV infection and 43 patients with HBV-related liver cirrhosis (LC). The control group included 304 healthy individuals. HLA genotyping for 11 loci, including HLA class I and class II, was conducted using next-generation sequencing. The results of this study indicate a statistically significant negative correlation between HLA class II heterozygosity and the risk of HBV infection. Specifically, heterozygosity in HLA-DQB1 (OR = 0.49, 95% CI = 0.31-0.76, p = 0.01277) and HLA-DRB1 (OR = 0.42, 95% CI = 0.24-0.77, p = 0.01855) were significantly associated with protection. Subgroup analysis was conducted to explore the effect of HLA diversity among pathological subtypes (chronic hepatitis B and control group, liver cirrhosis and control group). For liver cirrhosis, compared with the control group, a decreased risk of LC was possibly associated with the heterozygosity of HLA class I locus B (OR = 0.24, 95% CI = 0.09-0.65, p = 0.0591), but this hypothesis was not confirmed by other studies. The diversity of HLA, measured by HLA heterozygosity, was associated with a protective effect against HBV infection.
Collapse
Affiliation(s)
- Adriana Tălăngescu
- Immunology and Transplant Immunology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.T.); (B.C.); (A.E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Maria Tizu
- Immunology and Transplant Immunology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.T.); (B.C.); (A.E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.T.); (B.C.); (A.E.C.); (I.C.)
| | - Dan Florin Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei Street, No. 91–95, 050095 Bucharest, Romania;
| | - Alexandra Elena Constantinescu
- Immunology and Transplant Immunology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.T.); (B.C.); (A.E.C.); (I.C.)
- “Emil Palade” Centre of Excellence for Young People in Scientific Research (EP-CEYR), 3 Ilfov Street, Sector 5, 050045 Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.T.); (B.C.); (A.E.C.); (I.C.)
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 258 Fundeni Avenue, 022328 Bucharest, Romania
- “Emil Palade” Centre of Excellence for Young People in Scientific Research (EP-CEYR), 3 Ilfov Street, Sector 5, 050045 Bucharest, Romania
- Academy of Romanian Scientists (AOSR), 3 Ilfov Street, Sector 5, 050045 Bucharest, Romania
| |
Collapse
|
3
|
Minias P. Evolutionary variation in gene conversion at the avian MHC is explained by fluctuating selection, gene copy numbers and life history. Mol Ecol 2024; 33:e17453. [PMID: 38953291 DOI: 10.1111/mec.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Wojczulanis-Jakubas K, Hoover B, Jakubas D, Fort J, Grémillet D, Gavrilo M, Zielińska S, Zagalska-Neubauer M. Diversity of major histocompatibility complex of II B gene and mate choice in a monogamous and long-lived seabird, the Little Auk (Alle alle). PLoS One 2024; 19:e0304275. [PMID: 38865310 PMCID: PMC11168636 DOI: 10.1371/journal.pone.0304275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
The major histocompatibility complex (MHC) plays a key role in the adaptive immune system of vertebrates, and is known to influence mate choice in many species. In birds, the MHC has been extensively examined but mainly in galliforms and passerines while other taxa that represent specific ecological and evolutionary life-histories, like seabirds, are underexamined. Here, we characterized diversity of MHC Class II B exon 2 in a colonial pelagic seabird, the Little Auk (or Dovekie Alle alle). We further examined whether MHC variation could be maintained through balancing selection and disassortative mating. We found high polymorphism at the genotyped MHC fragment, characterizing 99 distinct alleles across 140 individuals from three populations. The alleles frequencies exhibited a similar skewed distribution in both sexes, with the four most commonly occurring alleles representing approximately 35% of allelic variation. The results of a Bayesian site-by-site selection analysis suggest evidence of balancing selection and no direct evidence for MHC-dependent disassortative mating preferences in the Little Auk. The latter result might be attributed to the high overall polymorphism of the examined fragment, which itself may be maintained by the large population size of the species.
Collapse
Affiliation(s)
| | - Brian Hoover
- Farallon Institute, Petaluma, California, United States of America
| | - Dariusz Jakubas
- Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS – La Rochelle University, 17000 La Rochelle, France
| | - David Grémillet
- Excellence Chair Nouvelle Aquitaine - CEBC UMR 7372 CNRS, La Rochelle Université, Villiers-en-Bois, France & FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | | | - Sylwia Zielińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
5
|
Zhang B, Song Y, Luo S, Yin X, Li E, Wang H, He Y, Liu Z, Fan Q, Liang X, Shu Y, Liu Y, Xu N, Zhang S, Zhuang Z, Zhang J, Kou X, Wang F, Zhu X, Zeng S, Wang K, Zhong H, Li S, Bai Y, Yu J, Dou Y, Ma T, Liu Q, Huang J. Pucotenlimab in patients with advanced mismatch repair-deficient or microsatellite instability-high solid tumors: A multicenter phase 2 study. Cell Rep Med 2023; 4:101301. [PMID: 38016482 PMCID: PMC10772321 DOI: 10.1016/j.xcrm.2023.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
We report a multicenter, phase 2 study evaluating the efficacy of pucotenlimab, an anti-PD-1 antibody, in patients with mismatch repair-deficient (dMMR) or microsatellite instability-high (MSI-H) tumors, and potential biomarkers for response. Overall, 100 patients with previously treated, advanced solid tumors centrally confirmed as dMMR or MSI-H received pucotenlimab at 200 mg every 3 weeks. The most common cancer type is colorectal cancer (n = 71). With a median follow-up of 22.5 months, the objective response rate is 49.0% (95% confidence interval 38.86%-59.20%) as assessed by the independent review committee, while the median progression-free survival and overall survival have not been reached. Grade ≥3 treatment-related adverse events were observed in 18 patients. For the biomarker analysis, responders are enriched in patients with mutations in the KMT2D gene. Pucotenlimab is an effective treatment option for previously treated advanced dMMR/MSI-H solid tumors, and the predictive value of KMT2D mutation warrants further research. This study is registered with ClinicalTrials.gov: NCT03704246.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Suxia Luo
- Department of Oncology, Henan Cancer Hospital, Zhengzhou 450003, China
| | - Xianli Yin
- Department of Gastroenterology and Urology, Hunan Cancer Hospital, Changsha 410013, China
| | - Enxiao Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hui Wang
- Department of Oncology, Tianjin People's Hospital, Tianjin 300122, China
| | - Yifu He
- Department of Oncology, Anhui Provincial Cancer Hospital, Hefei 230031, China
| | - Zhihui Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450099, China
| | - Xinjun Liang
- Department of Oncology, Hubei Cancer Hospital, Wuhan 430079, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110002, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shu Zhang
- Department of Medical Oncology, Shandong Cancer Hospital, Jinan 250117, China
| | - Zhixiang Zhuang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital, Shenyang 110801, China
| | - Xiaoge Kou
- Department of Medical Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fen Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen 516473, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ke Wang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Haijun Zhong
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Shengmian Li
- Department of Gastrointestinal Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Junyan Yu
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Yiwei Dou
- Taizhou Hanzhong Biomedical Co., Ltd, Taizhou 225300, China
| | - Taiyang Ma
- Taizhou Hanzhong Biomedical Co., Ltd, Taizhou 225300, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
6
|
Santasusagna S, Zhu S, Jawalagatti V, Carceles-Cordon M, Ertel A, Garcia-Longarte S, Song WM, Fujiwara N, Li P, Mendizabal I, Petrylak DP, Kelly WK, Reddy EP, Wang L, Schiewer MJ, Lujambio A, Karnes J, Knudsen KE, Cordon-Cardo C, Dong H, Huang H, Carracedo A, Hoshida Y, Rodriguez-Bravo V, Domingo-Domenech J. Master Transcription Factor Reprogramming Unleashes Selective Translation Promoting Castration Resistance and Immune Evasion in Lethal Prostate Cancer. Cancer Discov 2023; 13:2584-2609. [PMID: 37676710 PMCID: PMC10714140 DOI: 10.1158/2159-8290.cd-23-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Sandra Santasusagna
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Shijia Zhu
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Vijayakumar Jawalagatti
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | | | - Adam Ertel
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saioa Garcia-Longarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Won-Min Song
- Department of Genetics and Genome Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiyao Li
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Daniel P. Petrylak
- Department of Oncology, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - William Kevin Kelly
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liguo Wang
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Matthew J. Schiewer
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amaia Lujambio
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey Karnes
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Karen E. Knudsen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlos Cordon-Cardo
- Department of Pathology. Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Haidong Dong
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Immunology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Haojie Huang
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
- CIBERONC, Madrid, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Yujin Hoshida
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
7
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
8
|
Pabst L, Lopes S, Bertrand B, Creusot Q, Kotovskaya M, Pencreach E, Beau-Faller M, Mascaux C. Prognostic and Predictive Biomarkers in the Era of Immunotherapy for Lung Cancer. Int J Mol Sci 2023; 24:ijms24087577. [PMID: 37108738 PMCID: PMC10145126 DOI: 10.3390/ijms24087577] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic algorithm of lung cancer has recently been revolutionized by the emergence of immune checkpoint inhibitors. However, an objective and durable response rate remains low with those recent therapies and some patients even experience severe adverse events. Prognostic and predictive biomarkers are therefore needed in order to select patients who will respond. Nowadays, the only validated biomarker is the PD-L1 expression, but its predictive value remains imperfect, and it does not offer any certainty of a sustained response to treatment. With recent progresses in molecular biology, genome sequencing techniques, and the understanding of the immune microenvironment of the tumor and its host, new molecular features have been highlighted. There are evidence in favor of the positive predictive value of the tumor mutational burden, as an example. From the expression of molecular interactions within tumor cells to biomarkers circulating in peripheral blood, many markers have been identified as associated with the response to immunotherapy. In this review, we would like to summarize the latest knowledge about predictive and prognostic biomarkers of immune checkpoint inhibitors efficacy in order to go further in the field of precision immuno-oncology.
Collapse
Affiliation(s)
- Lucile Pabst
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Sébastien Lopes
- Pharmacy Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Basil Bertrand
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Quentin Creusot
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Maria Kotovskaya
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| | - Erwan Pencreach
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Michèle Beau-Faller
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Céline Mascaux
- Pulmonology Department, University Hospital of Strasbourg, 67000 Strasbourg, France
- Laboratory Streinth (STress REsponse and INnovative THerapy against Cancer), Inserm UMR_S 1113, IRFAC, Université de Strasbourg, ITI InnoVec, 67000 Strasbourg, France
| |
Collapse
|
9
|
Zhou K, Li S, Zhao Y, Cheng K. Mechanisms of drug resistance to immune checkpoint inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1127071. [PMID: 36845142 PMCID: PMC9944349 DOI: 10.3389/fimmu.2023.1127071] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) in the form of anti-CTLA-4 and anti-PD-1/PD-L1 have become the frontier of cancer treatment and successfully prolonged the survival of patients with advanced non-small cell lung cancer (NSCLC). But the efficacy varies among different patient population, and many patients succumb to disease progression after an initial response to ICIs. Current research highlights the heterogeneity of resistance mechanisms and the critical role of tumor microenvironment (TME) in ICIs resistance. In this review, we discussed the mechanisms of ICIs resistance in NSCLC, and proposed strategies to overcome resistance.
Collapse
Affiliation(s)
- Kexun Zhou
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital Sichuan University, Chengdu, China
| | - Yi Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Ke Cheng
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center, State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Meissner TB, Schulze HS, Dale SM. Immune Editing: Overcoming Immune Barriers in Stem Cell Transplantation. CURRENT STEM CELL REPORTS 2022; 8:206-218. [PMID: 36406259 PMCID: PMC9643905 DOI: 10.1007/s40778-022-00221-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/10/2022]
Abstract
Purpose of Review Human pluripotent stem cells have the potential to revolutionize the treatment of inborn and degenerative diseases, including aging and autoimmunity. A major barrier to their wider adoption in cell therapies is immune rejection. Genome editing allows for tinkering of the human genome in stem and progenitor cells and raises the prospect for overcoming the immune barriers to transplantation. Recent Findings Initial attempts have focused primarily on the major histocompatibility barrier that is formed by the human leukocyte antigens (HLA). More recently, immune checkpoint inhibitors, such as PD-L1, CD47, or HLA-G, are being explored both, in the presence or absence of HLA, to mitigate immune rejection by the various cellular components of the immune system. Summary In this review, we discuss progress in surmounting immune barriers to cell transplantation, with a particular focus on genetic engineering of human pluripotent stem and progenitor cells and the therapeutic cell types derived from them.
Collapse
Affiliation(s)
- Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA USA
- Department of Surgery, Harvard Medical School, Boston, MA USA
| | - Henrike S. Schulze
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Stanley M. Dale
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
11
|
Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals. Sci Rep 2022; 12:17933. [PMID: 36289307 PMCID: PMC9606363 DOI: 10.1038/s41598-022-21658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity.
Collapse
|
12
|
Regino-Zamarripa NE, Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Gómez-García IA, Ignacio-Cortés S, Márquez-García JE, Pacheco-Hernández LM, Ramírez-Noyola JA, Barquera R, Mendoza-Milla C, Luna-Rivero C, Domínguez-Cherit JG, Ramírez-Rangel R, Rodríguez-Reyna TS, Hernández-Cárdenas CM, Choreño-Parra JA, León-Ávila G, Zúñiga J. Differential Leukocyte Expression of IFITM1 and IFITM3 in Patients with Severe Pandemic Influenza A(H1N1) and COVID-19. J Interferon Cytokine Res 2022; 42:430-443. [PMID: 35708622 PMCID: PMC9422779 DOI: 10.1089/jir.2022.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.
Collapse
Affiliation(s)
- Nora E Regino-Zamarripa
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Programa de Doctorado en Ciencias Quimicobiológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s/n, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Science of Human History, Jena, Germany
| | - Criselda Mendoza-Milla
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Cesar Luna-Rivero
- Deparment of Pathology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - José Guillermo Domínguez-Cherit
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico.,Critical Care Unit, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán, Mexico City, Mexico
| | - Remedios Ramírez-Rangel
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Investigación Científica, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán, Mexico City, Mexico
| | - Carmen M Hernández-Cárdenas
- Respiratory Critical Care Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Gloria León-Ávila
- Zoology Deparment, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s/n, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
13
|
Kuusisalo S, Koivunen JP, Iivanainen S. Association of Rare Immune-Related Adverse Events to Survival in Advanced Cancer Patients Treated with Immune Checkpoint Inhibitors: A Real-World Single-Center Cohort Study. Cancers (Basel) 2022; 14:cancers14092276. [PMID: 35565405 PMCID: PMC9103509 DOI: 10.3390/cancers14092276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are associated with immune-related (ir) adverse events (AEs) resembling autoimmune diseases. In this retrospective cohort study of patients (pts) treated with ICIs at Oulu University Hospital from 2014-2020, we analysed the spectrum of severe irAEs and their prognostic nature, focusing on rare irAEs. Pts (n = 173) with lung cancer (n = 76, 43.9%), melanoma (n = 56, 32.4%), renal and bladder cancers (n = 34, 19.7%), head and neck cancers (n = 4, 2.3%), SCC (n = 2, 1.2%), and CRC (n = 1, 0.6%) receiving single anti-PD-(L)1 (n = 160) or combination (ICI-ICI n = 9, ICI-chemotherapy n = 4) therapy were included. The survival analysis focused on single anti-PD-(L)1-treated patients with melanoma, lung cancer, and renal and bladder cancers (n = 142). Grade ≥ 3 irAEs of multiple aetiology occurred in 29 patients treated with single-PD-L1 therapy (20.4%), which was associated with improved progression-free survival (PFS) (HR 0.50, CI 0.31-0.78) but not overall survival (OS) (HR 0.88, CI 0.52-1.50). Rare grade ≥ 3 events occurred in 10 (7.0%) pts with no association with PFS (HR 0.90, CI 0.42-1.94). Hence, the presence of rare grade ≥ 3 irAEs was associated with a tendency for inferior OS (HR 1.44, CI 0.66-3.11). Pts with rare grade ≥ 3 irAEs had inferior OS, possibly reflecting the delay in diagnostic workflow and the treatment of irAEs. One explanation for the high incidence of irAEs could be the Finnish population-based genetic variation affecting the immune system.
Collapse
|
14
|
Arnocky S, Hodges-Simeon C, Davis AC, Desmarais R, Greenshields A, Liwski R, Quillen EE, Cardenas R, Breedlove SM, Puts D. Heterozygosity of the major histocompatibility complex predicts later self-reported pubertal maturation in men. Sci Rep 2021; 11:19862. [PMID: 34615944 PMCID: PMC8494901 DOI: 10.1038/s41598-021-99334-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Individual variation in the age of pubertal onset is linked to physical and mental health, yet the factors underlying this variation are poorly understood. Life history theory predicts that individuals at higher risk of mortality due to extrinsic causes such as infectious disease should sexually mature and reproduce earlier, whereas those at lower risk can delay puberty and continue to invest resources in somatic growth. We examined relationships between a genetic predictor of infectious disease resistance, heterozygosity of the major histocompatibility complex (MHC), referred to as the human leukocyte antigen (HLA) gene in humans, and self-reported pubertal timing. In a combined sample of men from Canada (n = 137) and the United States (n = 43), MHC heterozygosity predicted later self-reported pubertal development. These findings suggest a genetic trade-off between immunocompetence and sexual maturation in human males.
Collapse
Affiliation(s)
| | | | | | | | - Anna Greenshields
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | - Robert Liwski
- Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Canada
| | | | | | | | - David Puts
- Pennsylvania State University, State College, USA
| |
Collapse
|
15
|
Féray C, Taupin JL, Sebagh M, Allain V, Demir Z, Allard MA, Desterke C, Coilly A, Saliba F, Vibert E, Azoulay D, Guettier C, Chatton A, Debray D, Caillat-Zucman S, Samuel D. Donor HLA Class 1 Evolutionary Divergence Is a Major Predictor of Liver Allograft Rejection : A Retrospective Cohort Study. Ann Intern Med 2021; 174:1385-1394. [PMID: 34424731 DOI: 10.7326/m20-7957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The HLA evolutionary divergence (HED), a continuous metric quantifying the peptidic differences between 2 homologous HLA alleles, reflects the breadth of the immunopeptidome presented to T lymphocytes. OBJECTIVE To assess the potential effect of donor or recipient HED on liver transplant rejection. DESIGN Retrospective cohort study. SETTING Liver transplant units. PATIENTS 1154 adults and 113 children who had a liver transplant between 2004 and 2018. MEASUREMENTS Liver biopsies were done 1, 2, 5, and 10 years after the transplant and in case of liver dysfunction. Donor-specific anti-HLA antibodies (DSAs) were measured in children at the time of biopsy. The HED was calculated using the physicochemical Grantham distance for class I (HLA-A or HLA-B) and class II (HLA-DRB1 or HLA-DQB1) alleles. The influence of HED on the incidence of liver lesions was analyzed through the inverse probability weighting approach based on covariate balancing, generalized propensity scores. RESULTS In adults, class I HED of the donor was associated with acute rejection (hazard ratio [HR], 1.09 [95% CI, 1.03 to 1.16]), chronic rejection (HR, 1.20 [CI, 1.10 to 1.31]), and ductopenia of 50% or more (HR, 1.33 [CI, 1.09 to 1.62]) but not with other histologic lesions. In children, class I HED of the donor was also associated with acute rejection (HR, 1.16 [CI, 1.03 to 1.30]) independent of the presence of DSAs. There was no effect of either donor class II HED or recipient class I or class II HED on the incidence of liver lesions in adults and children. LIMITATION The DSAs were measured only in children. CONCLUSION Class I HED of the donor predicts acute or chronic rejection of liver transplant. This novel and accessible prognostic marker could orientate donor selection and guide immunosuppression. PRIMARY FUNDING SOURCE Institut National de la Santé et de la Recherche Médicale.
Collapse
Affiliation(s)
- Cyrille Féray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Jean-Luc Taupin
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, and unité Institut National de la Santé et de la Recherche Médicale 976, Université de Paris, Paris, France (J.T., S.C.)
| | - Mylène Sebagh
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale, Physiopathogénèse et traitement des maladies du Foie, and FHU Hepatinov, Villejuif, France (M.S., C.G.)
| | - Vincent Allain
- Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, Laboratoire d'Immunologie et Histocompatibilité, and Institut National de la Santé et de la Recherche Médicale, Paris, France (V.A.)
| | - Zeynep Demir
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, and Unité d'Hépatologie pédiatrique, Paris, France (Z.D., D.D.)
| | - Marc-Antoine Allard
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Christophe Desterke
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Audrey Coilly
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Eric Vibert
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| | - Catherine Guettier
- Laboratoire d'Anatomopathologie, Assistance Publique-Hôpitaux de Paris, Hôpital Paul-Brousse, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale, Physiopathogénèse et traitement des maladies du Foie, and FHU Hepatinov, Villejuif, France (M.S., C.G.)
| | - Arthur Chatton
- Institut National de la Santé et de la Recherche Médicale UMR 1246-SPHERE, Nantes University, Tours University, Nantes, and IDBC, Pacé, France (A.C.)
| | - Dominique Debray
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université de Paris, and Unité d'Hépatologie pédiatrique, Paris, France (Z.D., D.D.)
| | - Sophie Caillat-Zucman
- Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, and unité Institut National de la Santé et de la Recherche Médicale 976, Université de Paris, Paris, France (J.T., S.C.)
| | - Didier Samuel
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Université Paris-Saclay, unité Institut National de la Santé et de la Recherche Médicale 1193, Villejuif, France (C.F., M.A., C.D., A.C., F.S., E.V., D.A., D.S.)
| |
Collapse
|
16
|
Lee D, Park J, Choi H, Gim G, Cho S, Kim L, Oh Y, Kang CY, Kim Y, Tan D, de Viveiros PAH, Chae YK. Association of HLA class I homozygosity with unfavorable clinical outcomes in patients with non-small cell lung cancer treated with chemo-immunotherapy or immunotherapy as first-line therapy. Heliyon 2021; 7:e07916. [PMID: 34568594 PMCID: PMC8449023 DOI: 10.1016/j.heliyon.2021.e07916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022] Open
Abstract
Background Homozygosity at HLA-I locus has been reported to be an unfavorable predictive biomarker of second-line or beyond immunotherapy in patients with different types of cancer. The linkage between HLA-I zygosity and survival in NSCLC patients treated with first-line immunotherapy with or without chemotherapy has not been reported. Methods Next generation sequencing with HLA genotyping was performed on patients with advanced NSCLC treated with immune checkpoint inhibitors with or without chemotherapy as first-line (N = 29). Progression free survival was compared between HLA-I homozygous (defined as homozygosity in at least one locus A, B, or C) and heterozygous patients. Kaplan-Meier curves were built, and log-rank test was used. Results Among 29 enrollees, 25 patients (86.2%) were HLA-I heterozygous and four patients (13.8%) were HLA-I homozygous. Treatment response was not available in five patients with HLA-I heterozygosity. Among 20 patients with HLA-I heterozygosity, five patients (20.0%) had partial response, 10 patients (50.0%) had stable disease, two patients (8.0%) had non-complete response/non-progressive disease, and three patients (12.0%) had progressive disease. Among four patients with HLA-I heterozygosity, one patient (25.0%) had partial response, one patient (25.0%) had stable disease, and two patients (50.0%) had progressive disease. The median progression free survival was not reached in heterozygous group and was 2.97 months in homozygous group (Log-rank p = 0.68). Conclusions We observed a trend toward an inverse association between HLA-I homozygosity and survival outcomes in patients with NSCLC treated with first-line therapy in conjunction with immunotherapy. Further prospective studies to validate aforementioned relationship are warranted.
Collapse
Affiliation(s)
- Dongyup Lee
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Geisinger Health System, Danville, PA, USA
| | - Jonghanne Park
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Horyun Choi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- University of Hawaii, Honolulu, HI, USA
| | - Gahyun Gim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Sukjoo Cho
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Youjin Oh
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cyra Y. Kang
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, USA
| | - Yeseul Kim
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dean Tan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Young Kwang Chae
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Corresponding author.
| |
Collapse
|
17
|
Brill SA, Thamm DH. There and back again: Translating adoptive cell therapy to canine cancer and improving human treatment. Vet Comp Oncol 2021; 19:420-427. [PMID: 34169631 PMCID: PMC9310446 DOI: 10.1111/vco.12744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
Adoptive cell transfer (ACT) is a burgeoning therapeutic modality within human immuno-oncology. Novel approaches towards ACT are being developed in the pre-clinical setting faster than they can be evaluated in human clinical trials. Many of the therapeutic approaches used in human medicine have already been evaluated to some degree in canine patients. While this form of immunotherapy in veterinary medicine is still in its infancy, as these approaches develop, canine ACT will become a tool for both the veterinary oncologist and the translational researcher. This review details canine ACT trials to date, with attention given to the precedents provided by human oncology.
Collapse
Affiliation(s)
- Samuel A Brill
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado, USA.,Developmental Therapeutics Program, University of Colorado Comprehensive Cancer Center, Fort Collins, Colorado, USA
| |
Collapse
|
18
|
Di D, Nunes JM, Jiang W, Sanchez-Mazas A. Like Wings of a Bird: Functional Divergence and Complementarity between HLA-A and HLA-B Molecules. Mol Biol Evol 2021; 38:1580-1594. [PMID: 33320202 PMCID: PMC8355449 DOI: 10.1093/molbev/msaa325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA) genes are among the most polymorphic of our genome, as a likely consequence of balancing selection related to their central role in adaptive immunity. HLA-A and HLA-B genes were recently suggested to evolve through a model of joint divergent asymmetric selection conferring all human populations, including those with severe loss of diversity, an equivalent immune potential. However, the mechanisms by which these two genes might undergo joint evolution while displaying very distinct allelic profiles in populations are still unknown. To address this issue, we carried out extensive data analyses (among which factorial correspondence analysis and linear modeling) on 2,909 common and rare HLA-A, HLA-B, and HLA-C alleles and 200,000 simulated pathogenic peptides by taking into account sequence variation, predicted peptide-binding affinity and HLA allele frequencies in 123 populations worldwide. Our results show that HLA-A and HLA-B (but not HLA-C) molecules maintain considerable functional divergence in almost all populations, which likely plays an instrumental role in their immune defense. We also provide robust evidence of functional complementarity between HLA-A and HLA-B molecules, which display asymmetric relationships in terms of amino acid diversity at both inter- and intraprotein levels and in terms of promiscuous or fastidious peptide-binding specificities. Like two wings of a flying bird, the functional complementarity of HLA-A and HLA-B is a perfect example, in our genome, of duplicated genes sharing their capacity of assuming common vital functions while being submitted to complex and sometimes distinct environmental pressures.
Collapse
Affiliation(s)
- Da Di
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Jose Manuel Nunes
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| | - Wei Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alicia Sanchez-Mazas
- Laboratory of Anthropology, Genetics and Peopling History (AGP Lab), Department of Genetics and Evolution-Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva Medical Centre (CMU), Geneva, Switzerland
| |
Collapse
|
19
|
Jota Baptista CV, Faustino-Rocha AI, Oliveira PA. Animal Models in Pharmacology: A Brief History Awarding the Nobel Prizes for Physiology or Medicine. Pharmacology 2021; 106:356-368. [PMID: 34023819 DOI: 10.1159/000516240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Nobel Prize of Physiology or Medicine (NPPM) has recognized the work of 222 scientists from different nationalities, from 1901 until 2020. From the total, 186 award researchers used animal models in their projects, and 21 were attributed to scientists and projects directly related to Pharmacology. In the most recent years, genetics is a dominant scientific area, while at the beginning of the 20th century, most of the studies were more related to anatomy, cytology, and physiology. SUMMARY Mammalian models were used in 144 NPPM projects, being rodents the most used group of species. Moreover, 92 researchers included domestic species in their work. The criteria used to choose the species, the number of animals used and the experimental protocol is always debatable and dependent on the scientific area of the study; however, the 3R's principle can be applied to most scientific fields. Independently of the species, the animal model can be classified in different types and criteria, depending on their ecology, genetics, and mode of action. Key-Messages: The use of animal models in NPPM awarded projects, namely in Pharmacology, illustrates their importance, need and benefit to improve scientific knowledge and create solutions. In the future, with the contribute of technology, it might be possible to refine the use of animal models in pharmacology studies.
Collapse
Affiliation(s)
- Catarina V Jota Baptista
- Departament de Medicina i Cirurgia Animals, Edifici V. Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana I Faustino-Rocha
- Department of Zootechnics, School of Sciences and Technology, Évora, Portugal.,Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Paula A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.,Department of Veterinary Sciences, UTAD, Vila Real, Portugal
| |
Collapse
|
20
|
Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, Bos KI, Forrest S, Hernández-Zaragoza DI, Sauter J, Solloch U, Schmidt AH, Schuenemann VJ, Reiter E, Kairies MS, Weiß R, Arnold S, Wahl J, Hollenbach JA, Kohlbacher O, Herbig A, Norman PJ, Krause J. Analysis of genomic DNA from medieval plague victims suggests long-term effect of Yersinia pestis on human immunity genes. Mol Biol Evol 2021; 38:4059-4076. [PMID: 34002224 PMCID: PMC8476174 DOI: 10.1093/molbev/msab147] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggests that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.
Collapse
Affiliation(s)
- Alexander Immel
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - András Szolek
- Applied Bioinformatics, Dept. for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Madeline K Robinson
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Rosalind-Franklin-Strasse 12, 24105 Kiel, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Stephen Forrest
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Diana I Hernández-Zaragoza
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | | | | | | | - Verena J Schuenemann
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ella Reiter
- Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Madita S Kairies
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Rainer Weiß
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Susanne Arnold
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Joachim Wahl
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,State Office for Cultural Heritage Management, Stuttgart Regional Council, Berliner Strasse 12, 73728 Esslingen, Germany
| | - Jill A Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, USA
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany.,Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.,Translational Bioinformatics, University Hospital Tübingen, Sand 14, 72076 Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, CO 80045, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany.,Institute of Archaeological Sciences, University of Tübingen, Rümelinstrasse 23, 72070 Tübingen, Germany.,Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Greenspan NS. A Disquisition on MHC Restriction and T Cell Recognition in Five Acts. Viral Immunol 2021; 33:153-159. [PMID: 32286186 PMCID: PMC7185361 DOI: 10.1089/vim.2019.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The seminal discovery in the early 1970s, credited to Peter Doherty and Rolf Zinkernagel, of major histocompatibility complex (MHC) restriction exhibited by cytotoxic T cells represented a major conceptual advance in understanding antigen recognition by conventional T cells. This advance also led to other major new insights into the ontogeny and immunobiology of T cells and catalyzed a renaissance in viral immunology. In this commentary in honor of Peter Doherty, I offer five brief reflections on different aspects of the phenomenon of MHC restriction and the process by which it was discovered and explained. In the first of these sections, I offer a reinterpretation of MHC restriction that reframes the constraints on self-MHC recognition in terms of the probabilities of recognizing a given nominal antigen peptide in the context of an MHC molecule that is nonself on the basis of differing in amino acid sequence from the self-restriction element at one or more positions. Subsequent sections address: (i) the ways in which general ideas, developed subsequent to the discovery of MHC restriction, about the intricacies of antigen recognition by antibodies apply to T cell receptors binding to MHC/peptide complexes; (ii) how to reconcile the existence of MHC restriction with the impressive magnitude of T cell responses to nonself MHC antigens; (iii) the possible relevance to MHC restriction and immune system function of ideas from mathematical logic that relate to the consequences of self-reference; and (iv) the implications for the philosophy of science of MHC restriction and the processes of its discovery and acceptance within the immunology research community.
Collapse
Affiliation(s)
- Neil S Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
22
|
Iafolla MAJ, Yang C, Chandran V, Pintilie M, Li Q, Bedard PL, Hansen A, Lheureux S, Spreafico A, Razak AA, Hakgor S, Giesler A, Pugh TJ, Siu LL. Predicting Toxicity and Response to Pembrolizumab Through Germline Genomic HLA Class 1 Analysis. JNCI Cancer Spectr 2021; 5:pkaa115. [PMID: 33554038 PMCID: PMC7853183 DOI: 10.1093/jncics/pkaa115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/05/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Human leukocyte antigen class 1 (HLA-1)–dependent immune activity is linked to autoimmune diseases. HLA-1–dependent CD8+ T cells are required for immune checkpoint blockade antitumor activity. It is unknown if HLA-1 genotype is predictive of toxicity to immune checkpoint blockade. Methods Patients with advanced solid tumors stratified into 5 cohorts received single agent pembrolizumab (anti-programmed cell death-1) 200 mg intravenously every 3 weeks in an investigator-initiated phase II trial (Investigator-Initiated Phase II Study of Pembrolizumab Immunological Response Evaluation study, NCT02644369). Germline whole-exome sequencing of peripheral blood mononuclear cells was performed using the Illumina HiSeq2500 platform. HLA-1 haplotypes were predicted from whole-exome sequencing using HLAminer and HLAVBSeq. Heterozygosity of HLA-A, -B, and -C, individual HLA-1 alleles, and HLA haplotype dimorphism at positions −21 M and −21 T of the HLA-A and -B leader sequence were analyzed as predictors of toxicity defined as grade 2 or greater immune-related adverse events and clinical benefit defined as complete or partial response, or stable disease for 6 or more cycles of pembrolizumab. Statistical significance tests were 2-sided. Results In the overall cohort of 101 patients, the frequency of toxicity and clinical benefit from pembrolizumab was 22.8% and 25.7%, respectively. There was no association between any of the HLA-1 loci or alleles with toxicity. HLA-C heterozygosity had an association with decreased clinical benefit relative to HLA-C homozygosity when controlling for cohort (odds ratio = 0.28, 95% confidence interval = 0.09 to 0.91, P = .04). HLA-A and -B haplotype −21 M/T dimorphism and heterozygosity of HLA-A, -B, and -C were not predictive of outcomes. Conclusions HLA-C heterozygosity may predict decreased response to pembrolizumab. Prospective validation is required.
Collapse
Affiliation(s)
- Marco A J Iafolla
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cindy Yang
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Melania Pintilie
- Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Albiruni A Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sevan Hakgor
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amanda Giesler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Smallbone W, Ellison A, Poulton S, van Oosterhout C, Cable J. Depletion of MHC supertype during domestication can compromise immunocompetence. Mol Ecol 2020; 30:736-746. [PMID: 33274493 PMCID: PMC7898906 DOI: 10.1111/mec.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in infectious disease resistance. The presence of certain MHC alleles and functionally similar groups of MHC alleles (i.e., supertypes) has been associated with resistance to particular parasite species. Farmed and domesticated fish stocks are often depleted in their MHC alleles and supertype diversity, possibly as a consequence of artificial selection for desirable traits, inbreeding (loss of heterozygosity), genetic drift (loss of allelic diversity) and/or reduced parasite biodiversity. Here we quantify the effects of depletion of MHC class II genotype and supertype variation on resistance to the parasite Gyrodactylus turnbulli in guppies (Poecilia reticulata). Compared to the descendants of wild‐caught guppies, ornamental fish had a significantly reduced MHC variation (i.e., the numbers of MHC alleles and supertypes per individual, and per population). In addition, ornamental fish were significantly more susceptible to G. turnbulli infections, accumulating peak intensity 10 times higher than that of their wildtype counterparts. Four out of 13 supertypes were associated with a significantly reduced parasite load, and the presence of some supertypes had a dramatic effect on the intensity of infection. Remarkably, the ornamental and wildtype fish differed in the supertypes that were associated with parasite resistance. Analysis with a genetic algorithm showed that resistance‐conferring supertypes of the wildtype and ornamental fish shared two unique amino acids in the peptide‐binding region of the MHC that were not found in any other alleles. These data show that the supertype demarcation captures some, but not all, of the variation in the immune function of the alleles. This study highlights the importance of managing functional MHC diversity in livestock, and suggests there might be some immunological redundancy among MHC supertypes.
Collapse
Affiliation(s)
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon Poulton
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
24
|
Farquharson KA, Hogg CJ, Belov K, Grueber CE. Deciphering genetic mate choice: Not so simple in group-housed conservation breeding programs. Evol Appl 2020; 13:2179-2189. [PMID: 33005217 PMCID: PMC7513713 DOI: 10.1111/eva.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/19/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Incorporating mate choice into conservation breeding programs can improve reproduction and the retention of natural behaviors. However, different types of genetic-based mate choice can have varied consequences for genetic diversity management. As a result, it is important to examine mechanisms of mate choice in captivity to assess its costs and benefits. Most research in this area has focused on experimental pairing trials; however, this resource-intensive approach is not always feasible in captive settings and can interfere with other management constraints. We used generalized linear mixed models and permutation approaches to investigate overall breeding success in group-housed Tasmanian devils at three nonmutually exclusive mate choice hypotheses: (a) advantage of heterozygous individuals, (b) advantage of dissimilar mates, and (c) optimum genetic distance, using both 1,948 genome-wide SNPs and 12 MHC-linked microsatellites. The managed devil insurance population is the largest such breeding program in Australia and is known to have high variance in reproductive success. We found that nongenetic factors such as age were the best predictors of breeding success in a competitive breeding scenario, with younger females and older males being more successful. We found no evidence of mate choice under the hypotheses tested. Mate choice varies among species and across environments, so we advocate for more studies in realistic captive management contexts as experimental or wild studies may not apply. Conservation managers must weigh up the need to wait for adequate sample sizes to detect mate choice with the risk that genetic changes may occur during this time in captivity. Our study shows that examining and integrating mate choice into the captive management of species housed in realistic, semi-natural group-based contexts may be more difficult than previously considered.
Collapse
Affiliation(s)
- Katherine A Farquharson
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney Australia
| | - Katherine Belov
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences Faculty of Science The University of Sydney Sydney Australia
- San Diego Zoo Global San Diego USA
| |
Collapse
|
25
|
Krishna C, Chowell D, Gönen M, Elhanati Y, Chan TA. Genetic and environmental determinants of human TCR repertoire diversity. Immun Ageing 2020; 17:26. [PMID: 32944053 PMCID: PMC7487954 DOI: 10.1186/s12979-020-00195-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
T cell discrimination of self and non-self is the foundation of the adaptive immune response, and is orchestrated by the interaction between T cell receptors (TCRs) and their cognate ligands presented by major histocompatibility (MHC) molecules. However, the impact of host immunogenetic variation on the diversity of the TCR repertoire remains unclear. Here, we analyzed a cohort of 666 individuals with TCR repertoire sequencing. We show that TCR repertoire diversity is positively associated with polymorphism at the human leukocyte antigen class I (HLA-I) loci, and diminishes with age and cytomegalovirus (CMV) infection. Moreover, our analysis revealed that HLA-I polymorphism and age independently shape the repertoire in healthy individuals. Our data elucidate key determinants of human TCR repertoire diversity, and suggest a mechanism underlying the evolutionary fitness advantage of HLA-I heterozygosity.
Collapse
Affiliation(s)
- Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, NY 10065 USA
| | - Yuval Elhanati
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Timothy A. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
- Weill Cornell School of Medicine, New York, NY 10065 USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195 USA
| |
Collapse
|
26
|
Méndez-Sánchez N, Valencia-Rodríguez A, Qi X, Yoshida EM, Romero-Gómez M, George J, Eslam M, Abenavoli L, Xie W, Teschke R, Carrion AF, Keaveny AP. What Has the COVID-19 Pandemic Taught Us so Far? Addressing the Problem from a Hepatologist's Perspective. J Clin Transl Hepatol 2020; 8:0024. [PMID: 32309152 PMCID: PMC7163687 DOI: 10.14218/jcth.2020.00024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (Formerly General Hospital of Shenyang Military Area), Shenyang, China
| | - Eric M. Yoshida
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and CIBERehd, Institute of Biomedicine of Seville (IBiS), SeLiver Group, Virgen del Rocío University Hospital, University of Seville, Seville, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - Weifen Xie
- Department of Gastroenterology, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Hanau, Germany
| | - Andres F. Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andrew P. Keaveny
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
27
|
Murray DR, Moran JB, Prokosch ML, Kerry N. No evidence for a relationship between MHC heterozygosity and life history strategy in a sample of North American undergraduates. Sci Rep 2020; 10:10140. [PMID: 32576939 PMCID: PMC7311407 DOI: 10.1038/s41598-020-67406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/08/2020] [Indexed: 12/05/2022] Open
Abstract
Although allelic diversity at the major histocompatibility complex (MHC) has implications for adaptive immunity, mate choice, and social signalling, how diversity at the MHC influences the calibration of life history strategies remains largely uninvestigated. The current study investigated whether greater MHC heterozygosity was associated with markers of slower life history strategies in a sample of 789 North American undergraduates. Contrary to preregistered predictions and to previously published findings, MHC heterozygosity was not related to any of the psychological life history-relevant variables measured (including short- vs. long-term sexual strategy, temporal discounting, the Arizona life history battery, past and current health, disgust sensitivity, and Big Five personality traits). Further, no meaningful effects emerged when analysing women and men separately. Possible reasons for why the current results are inconsistent with previous work are discussed.
Collapse
Affiliation(s)
- Damian R Murray
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA.
| | - James B Moran
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Marjorie L Prokosch
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| | - Nicholas Kerry
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
28
|
Natsch A, Emter R. The specific biochemistry of human axilla odour formation viewed in an evolutionary context. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190269. [PMID: 32306870 PMCID: PMC7209930 DOI: 10.1098/rstb.2019.0269] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the axillary microbiome. Key biochemical steps for the release of highly odouriferous carboxylic acids and sulfur compounds have been elucidated over the past 15 years. Based on the profound molecular understanding and specific analytical methods developed, evolutionary questions could be asked for the first time with small population studies: (i) a genetic basis for body odour could be shown with a twin study, (ii) no effect of genes in the human leukocyte antigen complex on the pattern of odourant carboxylic acid was found, and (iii) loss of odour precursor secretion by a mutation in the ABCC11 gene could explain why a large fraction of the population in the Far East lack body odour formation. This review summarizes what is currently known at the molecular level on the biochemistry of the formation of key odourants in the human axilla. At the same time, we present for the first time the crystal structure of the Nα-acyl-aminoacylase, a key human odour-releasing enzyme, thus describing at the molecular level how bacteria on the skin surface have adapted their enzyme to the specific substrates secreted by the human host. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.
Collapse
Affiliation(s)
- Andreas Natsch
- Givaudan Schweiz AG, Kemptpark 50, CH-8310 Kemptthal, Switzerland
| | | |
Collapse
|
29
|
Huemer F, Leisch M, Geisberger R, Melchardt T, Rinnerthaler G, Zaborsky N, Greil R. Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence. Int J Mol Sci 2020; 21:E2856. [PMID: 32325898 PMCID: PMC7215892 DOI: 10.3390/ijms21082856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
The therapeutic concept of unleashing a pre-existing immune response against the tumor by the application of immune-checkpoint inhibitors (ICI) has resulted in long-term survival in advanced cancer patient subgroups. However, the majority of patients do not benefit from single-agent ICI and therefore new combination strategies are eagerly necessitated. In addition to conventional chemotherapy, kinase inhibitors as well as tumor-specific vaccinations are extensively investigated in combination with ICI to augment therapy responses. An unprecedented clinical outcome with chimeric antigen receptor (CAR-)T cell therapy has led to the approval for relapsed/refractory diffuse large B cell lymphoma and B cell acute lymphoblastic leukemia whereas response rates in solid tumors are unsatisfactory. Immune-checkpoints negatively impact CAR-T cell therapy in hematologic and solid malignancies and as a consequence provide a therapeutic target to overcome resistance. Established biomarkers such as programmed death ligand 1 (PD-L1) and tumor mutational burden (TMB) help to select patients who will benefit most from ICI, however, biomarker negativity does not exclude responses. Investigating alterations in the antigen presenting pathway as well as radiomics have the potential to determine tumor immunogenicity and response to ICI. Within this review we summarize the literature about specific combination partners for ICI and the applicability of artificial intelligence to predict ICI therapy responses.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Roland Geisberger
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
| | - Thomas Melchardt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (M.L.); (T.M.); (G.R.)
- Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), 5020 Salzburg, Austria; (R.G.); (N.Z.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
30
|
Tran L, Theodorescu D. Determinants of Resistance to Checkpoint Inhibitors. Int J Mol Sci 2020; 21:ijms21051594. [PMID: 32111080 PMCID: PMC7084564 DOI: 10.3390/ijms21051594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
The development of immune checkpoint inhibitors (ICIs) has drastically altered the landscape of cancer treatment. Since approval of the first ICI for the treatment of advanced melanoma in 2011, several therapeutic agents have been Food and Drug Administration (FDA)-approved for multiple cancers, and hundreds of clinical trials are currently ongoing. These antibodies disrupt T-cell inhibitory pathways established by tumor cells and thus re-activate the host’s antitumor immune response. While successful in many cancers, several types remain relatively refractory to treatment or patients develop early recurrence. Hence, there is a great need to further elucidate mechanisms of resistant disease and determine novel, effective, and tolerable combination therapies to enhance efficacy of ICIs.
Collapse
Affiliation(s)
- Linda Tran
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Dan Theodorescu
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cedars-Sinai Health System, 8700 Beverly Blvd., OCC Mezz C2002, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-310-423-8431
| |
Collapse
|
31
|
Barquera R, Zuniga J, Flores-Rivera J, Corona T, Penman BS, Hernández-Zaragoza DI, Soler M, Jonapá-Gómez L, Mallempati KC, Yescas P, Ochoa-Morales A, Barsakis K, Aguilar-Vázquez JA, García-Lechuga M, Mindrinos M, Yunis M, Jiménez-Alvarez L, Mena-Hernández L, Ortega E, Cruz-Lagunas A, Tovar-Méndez VH, Granados J, Fernández-Viña M, Yunis E. Diversity of HLA Class I and Class II blocks and conserved extended haplotypes in Lacandon Mayans. Sci Rep 2020; 10:3248. [PMID: 32094421 PMCID: PMC7039995 DOI: 10.1038/s41598-020-58897-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Here we studied HLA blocks and haplotypes in a group of 218 Lacandon Maya Native American using a high-resolution next generation sequencing (NGS) method. We assessed the genetic diversity of HLA class I and class II in this population, and determined the most probable ancestry of Lacandon Maya HLA class I and class II haplotypes. Importantly, this Native American group showed a high degree of both HLA homozygosity and linkage disequilibrium across the HLA region and also lower class II HLA allelic diversity than most previously reported populations (including other Native American groups). Distinctive alleles present in the Lacandon population include HLA-A*24:14 and HLA-B*40:08. Furthermore, in Lacandons we observed a high frequency of haplotypes containing the allele HLA-DRB1*04:11, a relatively frequent allele in comparison with other neighboring indigenous groups. The specific demographic history of the Lacandon population including inbreeding, as well as pathogen selection, may have elevated the frequencies of a small number of HLA class II alleles and DNA blocks. To assess the possible role of different selective pressures in determining Native American HLA diversity, we evaluated the relationship between genetic diversity at HLA-A, HLA-B and HLA-DRB1 and pathogen richness for a global dataset and for Native American populations alone. In keeping with previous studies of such relationships we included distance from Africa as a covariate. After correction for multiple comparisons we did not find any significant relationship between pathogen diversity and HLA genetic diversity (as measured by polymorphism information content) in either our global dataset or the Native American subset of the dataset. We found the expected negative relationship between genetic diversity and distance from Africa in the global dataset, but no relationship between HLA genetic diversity and distance from Africa when Native American populations were considered alone.
Collapse
Affiliation(s)
- Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, Germany
- Laboratory of Molecular Genetics, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Joaquin Zuniga
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Flores-Rivera
- Clinical Laboratory of Neurodegenerative Diseases, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Teresa Corona
- Clinical Laboratory of Neurodegenerative Diseases, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Bridget S Penman
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Diana Iraíz Hernández-Zaragoza
- Laboratory of Molecular Genetics, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
- Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Manuel Soler
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | | | - Kalyan C Mallempati
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
- Biology Department, University of Crete, Heraklion, Greece
| | - Petra Yescas
- Department of Neurogenetics and Molecular Biology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Adriana Ochoa-Morales
- Department of Neurogenetics and Molecular Biology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City, Mexico
| | - Konstantinos Barsakis
- Histocompatibility, Immunogenetics and Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
- Department of Pathology, Stanford University, CA, USA
| | - José Artemio Aguilar-Vázquez
- Clinical Analysis Laboratory, Unidad Médica Familiar (UMF) No. 23, Instituto Mexicano del Seguro Social (IMSS), Tuxtla Gutiérrez, Chiapas, Mexico
| | - Maricela García-Lechuga
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | | | - María Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Luis Jiménez-Alvarez
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Lourdes Mena-Hernández
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | - Esteban Ortega
- The William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Alfredo Cruz-Lagunas
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico City, Mexico
| | - Víctor Hugo Tovar-Méndez
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico
| | - Julio Granados
- Department of Transplantation, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMSZ), Mexico City, Mexico.
| | | | - Edmond Yunis
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Wei W, Ren Y, Shen N, Song H, Xu J, Hua R, Zhang H, Angel C, Gu X, Kuang L, Xie Y, Peng X, Xie X, Yang G. Comparative analysis of host resistance to Sarcoptes scabiei var. cuniculi in two different rabbit breeds. Parasit Vectors 2019; 12:530. [PMID: 31703721 PMCID: PMC6842134 DOI: 10.1186/s13071-019-3764-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Scabies, caused by infestation of the mite Sarcoptes scabiei, is one of the most severe ectoparasitic diseases in rabbits. Scabies seriously affects the commercial rabbit breeding, causing severe economic losses. Host resistance to S. scabiei is an important factor in further development of the rabbit industry. In the present study, we compared the host resistance to S. scabiei var. cuniculi of a new breed of domestic rabbit propagated by the Sichuan Animal Sciences Academy (QiXing rabbit, QX) compared with that of a traditional rabbit breed in the domestic rabbit industry (IRA rabbit, IRA). METHODS Both QX and IRA rabbits were experimentally infested with live S. scabiei var. cuniculi mites for 48 h. Then, during the course of four-week experimental infestation period, the body weight of rabbits was recorded every two weeks for calculating body-weight variations in comparison to the non-infested control rabbits. Skin lesions in the foot area were assessed on weekly basis and serum samples were tested weekly for the estimation of changes in the total antibody levels (IgG, IgE and IgM). Moreover, DNA extracted from the blood samples was amplified for analysis of the genetic diversity in the major histocompatibility complex, class II, DQ Alpha (MHC-DQA) gene. RESULTS Compared to the IRA rabbits, the QX rabbits showed a significantly higher (P < 0.05) relative body weight gain compared to the non-infested control rabbits and significantly lower (P < 0.05) scores for foot skin lesions and higher levels of IgG, IgE and IgM at weeks 1 to 4, week 2 and week 1 post-infestation, respectively. Furthermore, a polymorphism site at position 103 bp of exon two of MHC-DQA gene and a different gene frequency were found between two rabbit breeds, suggesting the genetic basis for the differential host resistance to the S. scabiei var. cuniculi between two rabbit breeds. CONCLUSIONS The QX rabbits showed higher host resistance to S. scabiei var. cuniculi compared to the IRA rabbits at the clinical, immunological and genetic levels. These results provide a reference for the breeding of rabbits with adequately improved and sustained host resistance to scabies in the domestic rabbit industry.
Collapse
Affiliation(s)
- Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Haojie Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Christiana Angel
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
- Department of Veterinary Parasitology, Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210 Sindh Pakistan
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Liangde Kuang
- Sichuan Animal Sciences Academy, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xiaohong Xie
- Sichuan Animal Sciences Academy, Chengdu, 610066 Sichuan China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 Sichuan China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| |
Collapse
|
33
|
Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, Morris LGT, Riaz N, Lenz TL, Chan TA. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med 2019; 25:1715-1720. [PMID: 31700181 DOI: 10.1038/s41591-019-0639-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
Abstract
Functional diversity of the highly polymorphic human leukocyte antigen class I (HLA-I) genes underlies successful immunologic control of both infectious disease and cancer. The divergent allele advantage hypothesis dictates that an HLA-I genotype with two alleles with sequences that are more divergent enables presentation of more diverse immunopeptidomes1-3. However, the effect of sequence divergence between HLA-I alleles-a quantifiable measure of HLA-I evolution-on the efficacy of immune checkpoint inhibitor (ICI) treatment for cancer remains unknown. In the present study the germline HLA-I evolutionary divergence (HED) of patients with cancer treated with ICIs was determined by quantifying the physiochemical sequence divergence between HLA-I alleles of each patient's genotype. HED was a strong determinant of survival after treatment with ICIs. Even among patients fully heterozygous at HLA-I, patients with an HED in the upper quartile respond better to ICIs than patients with a low HED. Furthermore, HED strongly impacts the diversity of tumor, viral and self-immunopeptidomes and intratumoral T cell receptor clonality. Similar to tumor mutation burden, HED is a fundamental metric of diversity at the major histocompatibility complex-peptide complex, which dictates ICI efficacy. The data link divergent HLA allele advantage to immunotherapy efficacy and unveil how ICI response relies on the evolved efficiency of HLA-mediated immunity.
Collapse
Affiliation(s)
- Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federica Pierini
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naiyer A Rizvi
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Fengshen Kuo
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Fürst D, Neuchel C, Tsamadou C, Schrezenmeier H, Mytilineos J. HLA Matching in Unrelated Stem Cell Transplantation up to Date. Transfus Med Hemother 2019; 46:326-336. [PMID: 31832058 DOI: 10.1159/000502263] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/13/2019] [Indexed: 12/27/2022] Open
Abstract
Unrelated hematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in certain disease instances. Factors enabling this transformation were the optimization of treatment protocols and supportive care as well as the availability of a large number of donors worldwide along with the higher quality and reliability of HLA typing. The main criterion for donor selection is HLA compatibility. In this review we discuss the current clinical evidence of HLA matching in unrelated HSCT. In this context, we address methodical aspects of transplantation immunobiology research and discuss the impact of locus and resolution of HLA differences. Furthermore, we address special constellations such as unidirectional mismatches or the presence of nonexpressed alleles as well as HLA alloimmunization and describe the perspective for HLA typing and matching strategies in the future, given the implementation of novel complete or near-complete gene typing approaches using next-generation sequencing short read technology, which are now entering the standard of clinical care.
Collapse
Affiliation(s)
- Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
35
|
Cohen LJ, Cho JH, Gevers D, Chu H. Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology 2019; 156:2174-2189. [PMID: 30880022 PMCID: PMC6568267 DOI: 10.1053/j.gastro.2019.03.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
The intestinal microbiota is a dynamic community of bacteria, fungi, and viruses that mediates mucosal homeostasis and physiology. Imbalances in the microbiome and aberrant immune responses to gut bacteria can disrupt homeostasis and are associated with inflammatory bowel diseases (IBDs) in humans and colitis in mice. We review genetic variants associated with IBD and their effects on the intestinal microbiome, the immune response, and disease pathogenesis. The intestinal microbiome, which includes microbial antigens, adjuvants, and metabolic products, affects the development and function of the intestinal mucosa, influencing inflammatory responses in the gut. Therefore, strategies to manipulate the microbiome might be used in treatment of IBD. We review microbe-based therapies for IBD and the potential to engineer patients' intestinal microbiota. We discuss how studies of patients with IBD and mouse models have advanced our understanding of the interactions between genetic factors and the gut microbiome, and challenges to the development of microbe-based therapies for IBD.
Collapse
Affiliation(s)
- Louis J. Cohen
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Correspondence:
(L.J.C.),
(H.C.)
| | - Judy H. Cho
- Division of Gastroenterology, Department of Medicine, Icahn
School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School
of Medicine at Mount Sinai; The Charles Bronfman Institute for Personalized
Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029,
USA
| | - Dirk Gevers
- Janssen Human Microbiome Institute, Janssen Research &
Development, Cambridge, MA, 02142, USA
| | - Hiutung Chu
- Department of Pathology, University of California-San Diego, La Jolla, California; Chiba University and University of California-San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, California.
| |
Collapse
|
36
|
Manlik O, Krützen M, Kopps AM, Mann J, Bejder L, Allen SJ, Frère C, Connor RC, Sherwin WB. Is MHC diversity a better marker for conservation than neutral genetic diversity? A case study of two contrasting dolphin populations. Ecol Evol 2019; 9:6986-6998. [PMID: 31380027 PMCID: PMC6662329 DOI: 10.1002/ece3.5265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity is essential for populations to adapt to changing environments. Measures of genetic diversity are often based on selectively neutral markers, such as microsatellites. Genetic diversity to guide conservation management, however, is better reflected by adaptive markers, including genes of the major histocompatibility complex (MHC). Our aim was to assess MHC and neutral genetic diversity in two contrasting bottlenose dolphin (Tursiops aduncus) populations in Western Australia-one apparently viable population with high reproductive output (Shark Bay) and one with lower reproductive output that was forecast to decline (Bunbury). We assessed genetic variation in the two populations by sequencing the MHC class II DQB, which encompasses the functionally important peptide binding regions (PBR). Neutral genetic diversity was assessed by genotyping twenty-three microsatellite loci. We confirmed that MHC is an adaptive marker in both populations. Overall, the Shark Bay population exhibited greater MHC diversity than the Bunbury population-for example, it displayed greater MHC nucleotide diversity. In contrast, the difference in microsatellite diversity between the two populations was comparatively low. Our findings are consistent with the hypothesis that viable populations typically display greater genetic diversity than less viable populations. The results also suggest that MHC variation is more closely associated with population viability than neutral genetic variation. Although the inferences from our findings are limited, because we only compared two populations, our results add to a growing number of studies that highlight the usefulness of MHC as a potentially suitable genetic marker for animal conservation. The Shark Bay population, which carries greater adaptive genetic diversity than the Bunbury population, is thus likely more robust to natural or human-induced changes to the coastal ecosystem it inhabits.
Collapse
Affiliation(s)
- Oliver Manlik
- Biology Department, College of ScienceUnited Arab Emirates UniversityAl AinUnited Arab Emirates
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Michael Krützen
- Department of AnthropologyUniversity of ZurichZurichSwitzerland
| | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Janet Mann
- Department of Biology and Department of PsychologyGeorgetown UniversityWashingtonDistrict of Columbia
| | - Lars Bejder
- Marine Mammal Research Program, Hawai'i Institute of Marine BiologyUniversity of Hawai'i at ManoaKaneoheHonolulu
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Simon J. Allen
- School of Biological SciencesUniversity of BristolBristolUnited Kingdom
| | - Celine Frère
- Faculty of Science, Health, Education and EngineeringUniversity of the Sunshine CoastSippy DownsQueenslandAustralia
| | | | - William B. Sherwin
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Aquatic Megafauna Research Unit, School of Veterinary and Life SciencesMurdoch UniversityMurdochWestern AustraliaAustralia
| |
Collapse
|
37
|
Stefan T, Matthews L, Prada JM, Mair C, Reeve R, Stear MJ. Divergent Allele Advantage Provides a Quantitative Model for Maintaining Alleles with a Wide Range of Intrinsic Merits. Genetics 2019; 212:553-564. [PMID: 30952668 PMCID: PMC6553829 DOI: 10.1534/genetics.119.302022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/30/2019] [Indexed: 01/28/2023] Open
Abstract
The Major Histocompatibility Complex (MHC) is the most genetically diverse region of the genome in most vertebrates. Some form of balancing selection is necessary to account for the extreme diversity, but the precise mechanism of balancing selection is unknown. Due to the way MHC molecules determine immune recognition, overdominance (also referred to as heterozygote advantage) has been suggested as the main driving force behind this unrivalled diversity. However, both theoretical results and simulation models have shown that overdominance in its classical form cannot maintain large numbers of alleles unless all alleles confer unrealistically similar levels of fitness. There is increasing evidence that heterozygotes containing genetically divergent alleles allow for broader antigen presentation to immune cells, providing a selective mechanism for MHC polymorphism. By framing competing models of overdominance within a general framework, we show that a model based on Divergent Allele Advantage (DAA) provides a superior mechanism for maintaining alleles with a wide range of intrinsic merits, as intrinsically less-fit MHC alleles that are more divergent can survive under DAA. Specifically, our results demonstrate that a quantitative mechanism built from the DAA hypothesis is able to maintain polymorphism in the MHC. Applying such a model to both livestock breeding and conservation could provide a better way of identifying superior heterozygotes, and quantifying the advantages of genetic diversity at the MHC.
Collapse
Affiliation(s)
- Thorsten Stefan
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
- Institute of Applied Mathematics and Statistics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Louise Matthews
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - Joaquin M Prada
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - Colette Mair
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| | - Michael J Stear
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
38
|
Zhang J, Caruso FP, Sa JK, Justesen S, Nam DH, Sims P, Ceccarelli M, Lasorella A, Iavarone A. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol 2019; 2:135. [PMID: 31044160 PMCID: PMC6478916 DOI: 10.1038/s42003-019-0369-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is resistant to multimodality therapeutic approaches. A high burden of tumor-specific mutant peptides (neoantigens) correlates with better survival and response to immunotherapies in selected solid tumors but how neoantigens impact clinical outcome in GBM remains unclear. Here, we exploit the similarity between tumor neoantigens and infectious disease-derived immune epitopes and apply a neoantigen fitness model for identifying high-quality neoantigens in a human pan-glioma dataset. We find that the neoantigen quality fitness model stratifies GBM patients with more favorable clinical outcome and, together with CD8+ T lymphocytes tumor infiltration, identifies a GBM subgroup with the longest survival, which displays distinct genomic and transcriptomic features. Conversely, neither tumor neoantigen burden from a quantitative model nor the isolated enrichment of CD8+ T lymphocytes were able to predict survival of GBM patients. This approach may guide optimal stratification of GBM patients for maximum response to immunotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
| | - Francesca P. Caruso
- Department of Science and Technology, Universita’ degli Studi del Sannio, 82100 Benevento, Italy
- BIOGEM Istituto di Ricerche Genetiche ‘G. Salvatore’, Campo Reale, 83031 Ariano Irpino, Italy
| | - Jason K. Sa
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Sune Justesen
- Immunitrack Aps, Rønnegade 4, 2100 Copenhagen East, Denmark
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Peter Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Michele Ceccarelli
- Department of Science and Technology, Universita’ degli Studi del Sannio, 82100 Benevento, Italy
- ABBVIE, Redwood City (CA), Redwood City, CA 94063 USA
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032 USA
- Department of Neurology, Columbia University Medical Center, New York, NY 10032 USA
| |
Collapse
|
39
|
Tarasyan KK, Sorokin PA, Kashinina NV, Kholodova MV. High Allelic Diversity of the DRB3 Gene (MHC Class II) in Saiga (Saiga tatarica) L., 1766), Obtained by Next Generation Sequencing Method. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
41
|
Hoover B, Alcaide M, Jennings S, Sin SYW, Edwards SV, Nevitt GA. Ecology can inform genetics: Disassortative mating contributes to MHC polymorphism in Leach's storm-petrels (Oceanodroma leucorhoa). Mol Ecol 2018; 27:3371-3385. [PMID: 30010226 DOI: 10.1111/mec.14801] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023]
Abstract
Studies of MHC-based mate choice in wild populations often test hypotheses on species exhibiting female choice and male-male competition, which reflects the general prevalence of females as the choosy sex in natural systems. Here, we examined mutual mate-choice patterns in a small burrow-nesting seabird, the Leach's storm-petrel (Oceanodroma leucorhoa), using the major histocompatibility complex (MHC). The life history and ecology of this species are extreme: both partners work together to fledge a single chick during the breeding season, a task that requires regularly travelling hundreds of kilometres to and from foraging grounds over a 6- to 8-week provisioning period. Using a 5-year data set unprecedented for this species (n = 1078 adults and 925 chicks), we found a positive relationship between variation in the likelihood of female reproductive success and heterozygosity at Ocle-DAB2, a MHC class IIB locus. Contrary to previous reports rejecting disassortative mating as a mechanism for maintaining genetic polymorphism in this species, here we show that males make significant disassortative mate-choice decisions. Variability in female reproductive success suggests that the most common homozygous females (Ocle-DAB2*01/Ocle-DAB2*01) may be physiologically disadvantaged and, therefore, less preferred as lifelong partners for choosy males. The results from this study support the role of mate choice in maintaining high levels of MHC variability in a wild seabird species and highlight the need to incorporate a broader ecological framework and sufficient sample sizes into studies of MHC-based mating patterns in wild populations in general.
Collapse
Affiliation(s)
- Brian Hoover
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Miguel Alcaide
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sarah Jennings
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Gabrielle A Nevitt
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
42
|
Rosado MM, Simkó M, Mattsson MO, Pioli C. Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity. Front Public Health 2018; 6:85. [PMID: 29632855 PMCID: PMC5879099 DOI: 10.3389/fpubh.2018.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 12/21/2022] Open
Abstract
In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.
Collapse
Affiliation(s)
| | | | - Mats-Olof Mattsson
- AIT Austrian Institute of Technology, Center for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Claudio Pioli
- Laboratory of Biomedical Technologies, Division of Health Protection Technologies, ENEA, Rome, Italy
| |
Collapse
|
43
|
Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, Kuo F, Kendall SM, Requena D, Riaz N, Greenbaum B, Carroll J, Garon E, Hyman DM, Zehir A, Solit D, Berger M, Zhou R, Rizvi NA, Chan TA. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018; 359:582-587. [PMID: 29217585 PMCID: PMC6057471 DOI: 10.1126/science.aao4572] [Citation(s) in RCA: 748] [Impact Index Per Article: 124.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
CD8+ T cell-dependent killing of cancer cells requires efficient presentation of tumor antigens by human leukocyte antigen class I (HLA-I) molecules. However, the extent to which patient-specific HLA-I genotype influences response to anti-programmed cell death protein 1 or anti-cytotoxic T lymphocyte-associated protein 4 is currently unknown. We determined the HLA-I genotype of 1535 advanced cancer patients treated with immune checkpoint blockade (ICB). Maximal heterozygosity at HLA-I loci ("A," "B," and "C") improved overall survival after ICB compared with patients who were homozygous for at least one HLA locus. In two independent melanoma cohorts, patients with the HLA-B44 supertype had extended survival, whereas the HLA-B62 supertype (including HLA-B*15:01) or somatic loss of heterozygosity at HLA-I was associated with poor outcome. Molecular dynamics simulations of HLA-B*15:01 revealed different elements that may impair CD8+ T cell recognition of neoantigens. Our results have important implications for predicting response to ICB and for the design of neoantigen-based therapeutic vaccines.
Collapse
Affiliation(s)
- Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luc G T Morris
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Claud M Grigg
- NewYork-Presbyterian/Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY 10032, USA
| | - Jeffrey K Weber
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Robert M Samstein
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sviatoslav M Kendall
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Nadeem Riaz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Benjamin Greenbaum
- Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Carroll
- David Geffen School of Medicine, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA
| | - Edward Garon
- David Geffen School of Medicine, University of California, Los Angeles, 2825 Santa Monica Boulevard, Suite 200, Santa Monica, CA 90404, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell School of Medicine, New York, NY 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Berger
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Naiyer A Rizvi
- NewYork-Presbyterian/Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY 10032, USA.
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell School of Medicine, New York, NY 10065, USA
| |
Collapse
|
44
|
Eisenbrey AB, Moore WS. EVOLUTION OF HISTOCOMPATIBILITY DIVERSITY IN AN ASEXUAL VERTEBRATE,
POECILIOPSIS 2 MONACHA‐LUCIDA
(PISCES: POECILIIDAE). Evolution 2017; 35:1180-1191. [DOI: 10.1111/j.1558-5646.1981.tb04988.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/1980] [Revised: 02/04/1981] [Indexed: 11/30/2022]
Affiliation(s)
| | - William S. Moore
- Department of Biological Sciences Wayne State University Detroit Michigan 48202
| |
Collapse
|
45
|
Moore WS, Eisenbrey AB. THE POPULATION STRUCTURE OF AN ASEXUAL VERTEBRATE,
POECILIOPSIS 2 MONACHA‐LUCIDA
(PISCES: POECILIIDAE). Evolution 2017; 33:563-578. [DOI: 10.1111/j.1558-5646.1979.tb04710.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/1978] [Revised: 10/20/1978] [Indexed: 11/29/2022]
Affiliation(s)
- William S. Moore
- Department of Biology Wayne State University Detroit Michigan 48202
| | | |
Collapse
|
46
|
Abstract
The association between thymoma and autoimmunity is well known. Besides myasthenia gravis, which is found in 15 to 20% of patients with thymoma, other autoimmune diseases have been reported: erythroblastopenia, systemic lupus erythematosus, inflammatory myopathies, thyroid disorders, Isaac's syndrome or Good's syndrome. More anecdotally, Morvan's syndrome, limbic encephalitis, other autoimmune cytopenias, autoimmune hepatitis, and bullous skin diseases (pemphigus, lichen) have been reported. Autoimmune diseases occur most often before thymectomy, but they can be discovered at the time of surgery or later. Two situations require the systematic investigation of a thymoma: the occurrence of myasthenia gravis or autoimmune erythroblastopenia. Nevertheless, the late onset of systemic lupus erythematosus or the association of several autoimmune manifestations should lead to look for a thymoma. Neither the characteristics of the patients nor the pathological data can predict the occurrence of an autoimmune disease after thymectomy. Thus, thymectomy usefulness in the course of the autoimmune disease, except myasthenia gravis, has not been demonstrated. This seems to indicate the preponderant role of self-reactive T lymphocytes distributed in the peripheral immune system prior to surgery. Given the high infectious morbidity in patients with thymoma, immunoglobulin replacement therapy should be considered in patients with hypogammaglobulinemia who receive immunosuppressive therapy, even in the absence of prior infection.
Collapse
|
47
|
Sallaberry‐Pincheira N, González‐Acuña D, Padilla P, Dantas GPM, Luna‐Jorquera G, Frere E, Valdés‐Velásquez A, Vianna JA. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins. Ecol Evol 2016; 6:7498-7510. [PMID: 28725416 PMCID: PMC5513272 DOI: 10.1002/ece3.2502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/28/2016] [Indexed: 12/21/2022] Open
Abstract
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Collapse
Affiliation(s)
- Nicole Sallaberry‐Pincheira
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina VeterinariaFacultad Ecología y Recursos NaturalesUniversidad Andrés BelloSantiagoChile
| | | | - Pamela Padilla
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| | | | - Guillermo Luna‐Jorquera
- Universidad Católica del NorteMillenium Nucleus of Ecology and Sustainable Management of Oceanic Islands ESMOICentro de Estudios Avanzados en Zonas Áridas CEAZACoquimboChile
| | - Esteban Frere
- Centro de Investigaciones de Puerto DeseadoUniversidad Nacional de la Patagonia AustralPuerto DeseadoArgentina
| | - Armando Valdés‐Velásquez
- Laboratorio de Estudios en BiodiversidadFacultad de Ciencias Biológicas y FisiológicasUniversidad Peruana Cayetano HerediaLimaPeru
| | - Juliana A. Vianna
- Laboratorio de Biodiversidad MolecularDepartamento de Ecosistemas y Medio AmbienteFacultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
48
|
Laville V, Clerc SL, Ezzedine K, Jdid R, Taing L, Labib T, Coulonges C, Ulveling D, Carpentier W, Galan P, Hercberg S, Morizot F, Latreille J, Malvy D, Tschachler E, Zagury JF. A genome-wide association study in Caucasian women suggests the involvement ofHLAgenes in the severity of facial solar lentigines. Pigment Cell Melanoma Res 2016; 29:550-8. [DOI: 10.1111/pcmr.12502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Vincent Laville
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Sigrid Le Clerc
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Khaled Ezzedine
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Dermatology; Hôpital Saint-André; Bordeaux France
| | - Randa Jdid
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Lieng Taing
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Taoufik Labib
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Cedric Coulonges
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | - Damien Ulveling
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| | | | - Pilar Galan
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
| | - Serge Hercberg
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Public Health; Hôpital Avicenne; Bobigny France
| | - Frederique Morizot
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Julie Latreille
- Department of Skin Knowledge and Women Beauty; Chanel R&T; Pantin France
| | - Denis Malvy
- UMR U557, INSERM/U1125 INRA/CNAM; University Paris 13/Centre de Recherche en Nutrition Humaine Ile-de-France; Bobigny France
- Department of Internal Medicine and Tropical Diseases; Hôpital Saint-André; Bordeaux France
| | - Erwin Tschachler
- Department of Dermatology; University of Vienna Medical School; Vienna Austria
| | - Jean-François Zagury
- Équipe Génomique, Bioinformatique et Applications; Chaire de Bioinformatique; Conservatoire National des Arts et Métiers; Paris France
| |
Collapse
|
49
|
Buczek M, Okarma H, Demiaszkiewicz AW, Radwan J. MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. J Evol Biol 2016; 29:617-32. [PMID: 26687843 DOI: 10.1111/jeb.12811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Abstract
The Hamilton-Zuk hypothesis proposes that the genetic benefits of preferences for elaborated secondary sexual traits have their origins in the arms race between hosts and parasites, which maintains genetic variance in parasite resistance. Infection, in turn, can be reflected in the expression of costly sexual ornaments. However, the link between immune genes, infection and the expression of secondary sexual traits has rarely been investigated. Here, we explored whether the presence and identity of functional variants (supertypes) of the highly polymorphic major histocompatibility complex (MHC), which is responsible for the recognition of parasites, predict the load of lung and gut parasites and antler development in the red deer (Cervus elaphus). While we found MHC supertypes to be associated with infection by a number of parasite species, including debilitating lung nematodes, we did not find support for the Hamilton-Zuk hypothesis. On the contrary, we found that lung nematode load was positively associated with antler development. We also found that the supertypes that were associated with resistance to certain parasites at the same time cause susceptibility to others. Such trade-offs may undermine the potential genetic benefits of mate choice for resistant partners.
Collapse
Affiliation(s)
- M Buczek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - H Okarma
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | | | - J Radwan
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland.,Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
50
|
Snelling WM, Bennett GL, Keele JW, Kuehn LA, McDaneld TG, Smith TP, Thallman RM, Kalbfleisch TS, Pollak EJ. A survey of polymorphisms detected from sequences of popular beef breeds1,2,3. J Anim Sci 2015; 93:5128-43. [DOI: 10.2527/jas.2015-9356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|