1
|
Okkels N, Grothe MJ, Taylor JP, Hasselbalch SG, Fedorova TD, Knudsen K, van der Zee S, van Laar T, Bohnen NI, Borghammer P, Horsager J. Cholinergic changes in Lewy body disease: implications for presentation, progression and subtypes. Brain 2024; 147:2308-2324. [PMID: 38437860 DOI: 10.1093/brain/awae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Cholinergic degeneration is significant in Lewy body disease, including Parkinson's disease, dementia with Lewy bodies, and isolated REM sleep behaviour disorder. Extensive research has demonstrated cholinergic alterations in the CNS of these disorders. More recently, studies have revealed cholinergic denervation in organs that receive parasympathetic denervation. This enables a comprehensive review of cholinergic changes in Lewy body disease, encompassing both central and peripheral regions, various disease stages and diagnostic categories. Across studies, brain regions affected in Lewy body dementia show equal or greater levels of cholinergic impairment compared to the brain regions affected in Lewy body disease without dementia. This observation suggests a continuum of cholinergic alterations between these disorders. Patients without dementia exhibit relative sparing of limbic regions, whereas occipital and superior temporal regions appear to be affected to a similar extent in patients with and without dementia. This implies that posterior cholinergic cell groups in the basal forebrain are affected in the early stages of Lewy body disorders, while more anterior regions are typically affected later in the disease progression. The topographical changes observed in patients affected by comorbid Alzheimer pathology may reflect a combination of changes seen in pure forms of Lewy body disease and those seen in Alzheimer's disease. This suggests that Alzheimer co-pathology is important to understand cholinergic degeneration in Lewy body disease. Thalamic cholinergic innervation is more affected in Lewy body patients with dementia compared to those without dementia, and this may contribute to the distinct clinical presentations observed in these groups. In patients with Alzheimer's disease, the thalamus is variably affected, suggesting a different sequential involvement of cholinergic cell groups in Alzheimer's disease compared to Lewy body disease. Patients with isolated REM sleep behaviour disorder demonstrate cholinergic denervation in abdominal organs that receive parasympathetic innervation from the dorsal motor nucleus of the vagus, similar to patients who experienced this sleep disorder in their prodrome. This implies that REM sleep behaviour disorder is important for understanding peripheral cholinergic changes in both prodromal and manifest phases of Lewy body disease. In conclusion, cholinergic changes in Lewy body disease carry implications for understanding phenotypes and the influence of Alzheimer co-pathology, delineating subtypes and pathological spreading routes, and for developing tailored treatments targeting the cholinergic system.
Collapse
Affiliation(s)
- Niels Okkels
- Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Reina Sofia Alzheimer's Centre, CIEN Foundation-ISCIII, 28031 Madrid, Spain
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Department of Neurology, Copenhagen University Hospital, 2100 Copenhagen Ø, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Tatyana D Fedorova
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
2
|
Darvesh S, Banfield S, Dufour M, Forrestall KL, Maillet H, Reid GA, Sands D, Pottie IR. A method for the efficient evaluation of substrate-based cholinesterase imaging probes for Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2225797. [PMID: 38061987 PMCID: PMC10294744 DOI: 10.1080/14756366.2023.2225797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 08/16/2023] Open
Abstract
Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.
Collapse
Affiliation(s)
- Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Geriatric Medicine & Neurology), Halifax, Nova Scotia, Canada
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
| | - Scott Banfield
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maeve Dufour
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katrina L. Forrestall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hillary Maillet
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - G. Andrew Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Dane Sands
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian R. Pottie
- Department of Chemistry and Physics, Mount St. Vincent University, Halifax, Nova Scotia, Canada
- Department of Chemistry, Saint Mary’s University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Chouliaras L, O'Brien JT. The use of neuroimaging techniques in the early and differential diagnosis of dementia. Mol Psychiatry 2023; 28:4084-4097. [PMID: 37608222 PMCID: PMC10827668 DOI: 10.1038/s41380-023-02215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Dementia is a leading cause of disability and death worldwide. At present there is no disease modifying treatment for any of the most common types of dementia such as Alzheimer's disease (AD), Vascular dementia, Lewy Body Dementia (LBD) and Frontotemporal dementia (FTD). Early and accurate diagnosis of dementia subtype is critical to improving clinical care and developing better treatments. Structural and molecular imaging has contributed to a better understanding of the pathophysiology of neurodegenerative dementias and is increasingly being adopted into clinical practice for early and accurate diagnosis. In this review we summarise the contribution imaging has made with particular focus on multimodal magnetic resonance imaging (MRI) and positron emission tomography imaging (PET). Structural MRI is widely used in clinical practice and can help exclude reversible causes of memory problems but has relatively low sensitivity for the early and differential diagnosis of dementia subtypes. 18F-fluorodeoxyglucose PET has high sensitivity and specificity for AD and FTD, while PET with ligands for amyloid and tau can improve the differential diagnosis of AD and non-AD dementias, including recognition at prodromal stages. Dopaminergic imaging can assist with the diagnosis of LBD. The lack of a validated tracer for α-synuclein or TAR DNA-binding protein 43 (TDP-43) imaging remain notable gaps, though work is ongoing. Emerging PET tracers such as 11C-UCB-J for synaptic imaging may be sensitive early markers but overall larger longitudinal multi-centre cross diagnostic imaging studies are needed.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Specialist Dementia and Frailty Service, Essex Partnership University NHS Foundation Trust, St Margaret's Hospital, Epping, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
4
|
Tiepolt S, Meyer PM, Patt M, Deuther-Conrad W, Hesse S, Barthel H, Sabri O. PET Imaging of Cholinergic Neurotransmission in Neurodegenerative Disorders. J Nucl Med 2022; 63:33S-44S. [PMID: 35649648 DOI: 10.2967/jnumed.121.263198] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
As a neuromodulator, the neurotransmitter acetylcholine plays an important role in cognitive, mood, locomotor, sleep/wake, and olfactory functions. In the pathophysiology of most neurodegenerative diseases, such as Alzheimer disease (AD) or Lewy body disorder (LBD), cholinergic receptors, transporters, or enzymes are involved and relevant as imaging targets. The aim of this review is to summarize current knowledge on PET imaging of cholinergic neurotransmission in neurodegenerative diseases. For PET imaging of presynaptic vesicular acetylcholine transporters (VAChT), (-)-18F-fluoroethoxybenzovesamicol (18F-FEOBV) was the first PET ligand that could be successfully translated to clinical application. Since then, the number of 18F-FEOBV PET investigations on patients with AD or LBD has grown rapidly and provided novel, important findings concerning the pathophysiology of AD and LBD. Regarding the α4β2 nicotinic acetylcholine receptors (nAChRs), various second-generation PET ligands, such as 18F-nifene, 18F-AZAN, 18F-XTRA, (-)-18F-flubatine, and (+)-18F-flubatine, were developed and successfully translated to human application. In neurodegenerative diseases such as AD and LBD, PET imaging of α4β2 nAChRs is of special value for monitoring disease progression and drugs directed to α4β2 nAChRs. For PET of α7 nAChR, 18F-ASEM and 11C-MeQAA were successfully applied in mild cognitive impairment and AD, respectively. The highest potential for α7 nAChR PET is seen in staging, in evaluating disease progression, and in therapy monitoring. PET of selective muscarinic acetylcholine receptors (mAChRs) is still in an early stage, as the development of subtype-selective radioligands is complicated. Promising radioligands to image mAChR subtypes M1 (11C-LSN3172176), M2 (18F-FP-TZTP), and M4 (11C-MK-6884) were developed and successfully translated to humans. PET imaging of mAChRs is relevant for the assessment and monitoring of therapies in AD and LBD. PET of acetylcholine esterase activity has been investigated since the 1990s. Many PET studies with 11C-PMP and 11C-MP4A demonstrated cortical cholinergic dysfunction in dementia associated with AD and LBD. Recent studies indicated a solid relationship between subcortical and cortical cholinergic dysfunction and noncognitive dysfunctions such as balance and gait in LBD. Taken together, PET of distinct components of cholinergic neurotransmission is of great interest for diagnosis, disease monitoring, and therapy monitoring and to gain insight into the pathophysiology of different neurodegenerative disorders.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Philipp M Meyer
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany; and
| |
Collapse
|
5
|
Special radionuclide production activities – recent developments at QST and throughout Japan. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
National Institutes for Quantum Science and Technology (QST), formerly known as the National Institute of Radiological Sciences (NIRS), has been engaged in work on radiopharmaceutical science using cyclotrons since 1974. Eight pioneering researchers founded the basis of this field of research at NIRS, and to the present, many researchers and technicians have accumulated both scientific and technical achievements, as well as inherited the spirit of research. Besides, in recent years, we have developed production systems with AVF-930 cyclotron for various ‘non-standard’ radioisotopes applied in both diagnosis and therapy. Here, we review the past 50 years of our activities on radioisotope and radiopharmaceutical development, as well as more recent activities.
Collapse
|
6
|
Albin RL, Kanel P, van Laar T, van der Zee S, Roytman S, Koeppe RA, Scott PJH, Bohnen NI. No Dopamine Agonist Modulation of Brain [ 18F]FEOBV Binding in Parkinson's Disease. Mol Pharm 2022; 19:1176-1182. [PMID: 35289620 PMCID: PMC8983523 DOI: 10.1021/acs.molpharmaceut.1c00961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) ligand targets the vesicular acetylcholine transporter. Recent [18F]FEOBV PET rodent studies suggest that regional brain [18F]FEOBV binding may be modulated by dopamine D2-like receptor agents. We examined associations of regional brain [18F]FEOBV PET binding in Parkinson's disease (PD) subjects without versus with dopamine D2-like receptor agonist drug treatment. PD subjects (n = 108; 84 males, 24 females; mean age 68.0 ± 7.6 [SD] years), mean disease duration of 6.0 ± 4.0 years, and mean Movement Disorder Society-revised Unified PD Rating Scale III 35.5 ± 14.2 completed [18F]FEOBV brain PET imaging. Thirty-eight subjects were taking dopamine D2-like agonists. Vesicular monoamine transporter type 2 [11C]dihydrotetrabenazine (DTBZ) PET was available in a subset of 54 patients. Subjects on dopamine D2-like agonists were younger, had a longer duration of disease, and were taking a higher levodopa equivalent dose (LED) compared to subjects not taking dopamine agonists. A group comparison between subjects with versus without dopamine D2-like agonist use did not yield significant differences in cortical, striatal, thalamic, or cerebellar gray matter [18F]FEOBV binding. Confounder analysis using age, duration of disease, LED, and striatal [11C]DTBZ binding also failed to show significant regional [18F]FEOBV binding differences between these two groups. Chronic D2-like dopamine agonist use in PD subjects is not associated with significant alterations of regional brain [18F]FEOBV binding.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States
| | - Prabesh Kanel
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Teus van Laar
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sygrid van der Zee
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A Koeppe
- University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States.,GRECC & Neurology Service, VAAAHS, Ann Arbor, Michigan 48105, United States.,University of Michigan Udall Center, Ann Arbor, Michigan 48109, United States.,University of Michigan Parkinson's Foundation Research Center of Excellence, Ann Arbor, Michigan 48109, United States.,Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Bao W, Xie F, Zuo C, Guan Y, Huang YH. PET Neuroimaging of Alzheimer's Disease: Radiotracers and Their Utility in Clinical Research. Front Aging Neurosci 2021; 13:624330. [PMID: 34025386 PMCID: PMC8134674 DOI: 10.3389/fnagi.2021.624330] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's Disease (AD), the leading cause of senile dementia, is a progressive neurodegenerative disorder affecting millions of people worldwide and exerting tremendous socioeconomic burden on all societies. Although definitive diagnosis of AD is often made in the presence of clinical manifestations in late stages, it is now universally believed that AD is a continuum of disease commencing from the preclinical stage with typical neuropathological alterations appearing decades prior to its first symptom, to the prodromal stage with slight symptoms of amnesia (amnestic mild cognitive impairment, aMCI), and then to the terminal stage with extensive loss of basic cognitive functions, i.e., AD-dementia. Positron emission tomography (PET) radiotracers have been developed in a search to meet the increasing clinical need of early detection and treatment monitoring for AD, with reference to the pathophysiological targets in Alzheimer's brain. These include the pathological aggregations of misfolded proteins such as β-amyloid (Aβ) plagues and neurofibrillary tangles (NFTs), impaired neurotransmitter system, neuroinflammation, as well as deficient synaptic vesicles and glucose utilization. In this article we survey the various PET radiotracers available for AD imaging and discuss their clinical applications especially in terms of early detection and cognitive relevance.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huanshan Hospital, Fudan University, Shanghai, China
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Abstract
Two pathologically distinct neurodegenerative conditions, progressive supranuclear palsy and corticobasal degeneration, share in common deposits of tau proteins that differ both molecularly and ultrastructurally from the common tau deposits diagnostic of Alzheimer disease. The proteinopathy in these disorders is characterized by fibrillary aggregates of 4R tau proteins. The clinical presentations of progressive supranuclear palsy and of corticobasal degeneration are often confused with more common disorders such as Parkinson disease or subtypes of frontotemporal lobar degeneration. Neither of these 4R tau disorders has effective therapy, and while there are emerging molecular imaging approaches to identify patients earlier in the course of disease, there are as yet no reliably sensitive and specific approaches to diagnoses in life. In this review, aspects of the clinical syndromes, neuropathology, and molecular biomarker imaging studies applicable to progressive supranuclear palsy and to corticobasal degeneration will be presented. Future development of more accurate molecular imaging approaches is proposed.
Collapse
Affiliation(s)
- Kirk A Frey
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The University of Michigan Health System, Ann Arbor, MI.
| |
Collapse
|
9
|
Fu R, Zhou J, Wang Y, Liu Y, Liu H, Yang Q, Zhao Q, Jiao B, He Y. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H 2O 2-Supported Multicolor Colorimetric Assay: Application in the Detection of Acetylcholinesterase Activity and Its Inhibitors. ACS APPLIED BIO MATERIALS 2021; 4:3539-3546. [PMID: 35014439 DOI: 10.1021/acsabm.1c00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient, fast, and colorful colorimetric platform with high resolution for acetylcholinesterase (AChE) activity and its inhibitors detection based on the regulation of oxidase-like nanozyme-mediated etching of gold nanorods (AuNRs) has been proposed in this work. MnO2 nanosheets are selected as the nanozyme. Their excellent oxidase-like activity enables the etching process to proceed smoothly without the usage of unstable H2O2. When AChE is present, it catalytically hydrolyzes acetylthiocholine (ATCh) to thiocholine (TCh). With high reducing ability, TCh induces the decomposition of MnO2 nanosheets, causing them to lose their oxidase-like activity. Thus, the etching of AuNRs is hampered. Consequently, with the increasing concentration of AChE, an apparent change in the AuNRs solution color is observed. The proposed platform achieves high-sensitivity detection of AChE (limit of detection = 0.18 mU/mL). Furthermore, the proposed platform also has been demonstrated its applicability for its inhibitors detection. Benefiting from the advantages of convenient and high resolution of visual readout, the proposed platform holds great potential for the detection of AChE and its inhibitors in clinical diagnosis.
Collapse
Affiliation(s)
- Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qin Yang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| |
Collapse
|
10
|
The effect of wavelength on the variability of the flash visual evoked potential P2: A potential biomarker for mild cognitive impairment and Alzheimer's dementia. Int J Psychophysiol 2021; 164:23-29. [PMID: 33610644 DOI: 10.1016/j.ijpsycho.2021.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/20/2022]
Abstract
As the number of individuals diagnosed with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD) increases, a need exists for early detection and treatment of the disorders. A recent review of the literature conducted by Arruda et al. (2020) revealed that the latency of the flash visual-evoked potential-P2 (FVEP-P2) may possess pathognomic information that may assist in the early detection and treatment of each disease. Unfortunately, while group differences in latency are robust, the ability to discriminate between individuals remains difficult due to the natural variability associated with the FVEP-P2 latency. In the current investigation, we examine the role of wavelength of light in the production of the FVEP-P2, with the goal of reducing the variability associated with the FVEP-P2 latency and improving the diagnostic accuracy of the FVEP-P2 evaluation. METHOD Twenty-four healthy individuals (11 males and 13 females), ages 18 to 36 years (M = 25.00, SD = 5.60), participated in this investigation. Each participant experienced five blocks of 100 strobe flashes (or trials) under two different light conditions (blue filtered light and polychromatic white light) with their eyes closed. The FVEP-P2 associated with each trial was identified and the latency and amplitude of each component was calculated. RESULT The results of several repeated measures analysis of variance revealed no statistically significant differences in intra- and inter-individual variability associated with the P2 latency or amplitude. However, there was a significant difference in the amplitude of the P2 produced by the two lights, with blue filtered light producing significantly lower amplitudes than the polychromatic white light. CONCLUSION The results of the present investigation suggest that while imperfect, the current practice of employing polychromatic white light in the production of the FVEP-P2 remains the gold standard and that additional methods of reducing the natural variability of the P2 need to be developed if the FVEP-P2 latency is to be used as a biomarker.
Collapse
|
11
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Ramzaoui H, Faure S, Spotorno S. Alzheimer's Disease, Visual Search, and Instrumental Activities of Daily Living: A Review and a New Perspective on Attention and Eye Movements. J Alzheimers Dis 2019; 66:901-925. [PMID: 30400086 DOI: 10.3233/jad-180043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many instrumental activities of daily living (IADLs), like cooking and managing finances and medications, involve finding efficiently and in a timely manner one or several objects within complex environments. They may thus be disrupted by visual search deficits. These deficits, present in Alzheimer's disease (AD) from its early stages, arise from impairments in multiple attentional and memory mechanisms. A growing body of research on visual search in AD has examined several factors underlying search impairments in simple arrays. Little is known about how AD patients search in real-world scenes and in real settings, and about how such impairments affect patients' functional autonomy. Here, we review studies on visuospatial attention and visual search in AD. We then consider why analysis of patients' oculomotor behavior is promising to improve understanding of the specific search deficits in AD, and of their role in impairing IADL performance. We also highlight why paradigms developed in research on real-world scenes and real settings in healthy individuals are valuable to investigate visual search in AD. Finally, we indicate future research directions that may offer new insights to improve visual search abilities and autonomy in AD patients.
Collapse
Affiliation(s)
- Hanane Ramzaoui
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Université Côte d'Azur, France
| | - Sylvane Faure
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Université Côte d'Azur, France
| | - Sara Spotorno
- School of Psychology, University of Aberdeen, UK.,Institute of Neuroscience and Psychology, University of Glasgow, UK
| |
Collapse
|
14
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
15
|
Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury: A PET Study. J Head Trauma Rehabil 2019; 33:25-32. [PMID: 28060207 DOI: 10.1097/htr.0000000000000279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate quantitative positron emission tomography (PET) findings and to study whether the cholinergic function differs between respondents to cholinergic medication versus nonrespondents. SETTING Outpatient clinic and university PET imaging center. PARTICIPANTS We studied 17 subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity of the acetylcholinesterase (AChE) enzyme. The subjects were PET scanned twice: without medication and after a 4-week treatment with rivastigmine 1.5 mg twice a day. MEASURES Regional cerebral AChE activity was measured with PET. RESULTS At baseline Statistical Parametric Mapping analyses showed significantly lower AChE activity in respondents bilaterally in the frontal cortex as compared with nonrespondents. Region of interest (ROI) analysis revealed that the difference was most pronounced in the lateral frontal cortex (-9.4%, P = .034) and anterior cingulate (-6.0%, P = .049). After rivastigmine treatment, AChE activity was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury.
Collapse
|
16
|
Hirano S, Shinotoh H, Shimada H, Ota T, Sato K, Tanaka N, Zhang MR, Higuchi M, Fukushi K, Irie T, Kuwabara S, Suhara T. Voxel-Based Acetylcholinesterase PET Study in Early and Late Onset Alzheimer's Disease. J Alzheimers Dis 2019; 62:1539-1548. [PMID: 29562505 DOI: 10.3233/jad-170749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by chronic progressive cognitive decline and displays underlying brain cholinergic dysfunction, providing a rationale for treatment with cholinomimetic medication. The clinical presentations and courses of AD patients may differ by age of onset. OBJECTIVE The objective of the present study was to illustrate the regional differences of brain acetylcholinesterase (AChE) activity as quantified by N-[11C]methylpiperidinyl-4-acetate ([11C]MP4A) and PET using parametric whole brain analysis and clarify those differences as a function of age. METHODS 22 early onset AD (EOAD) with age at onset under 65, the remaining 26 as late onset AD (LOAD), and 16 healthy controls (HC) were enrolled. Voxel-based AChE activity estimation of [11C]MP4A PET images was conducted by arterial input and unconstrained nonlinear least-squares method with subsequent parametrical analyses. Statistical threshold was set as Family Wise Error corrected, p-value <0.05 on cluster-level and cluster extent over 30 voxels. RESULTS Voxel-based group comparison showed that, compared to HC, both EOAD and LOAD showed cortical AChE decrement in parietal, temporal, and occipital cortices, with wider and stringent cortical involvement in the EOAD group, most prominently demonstrated in the temporal region. There was no significant correlation between age and regional cerebral AChE activity except for a small left superior temporal region in the AD group (Brodmann's area 22, Zmax = 5.13, 396 voxels), whereas no significant cluster was found in the HC counterpart. CONCLUSION Difference in cortical cholinergic dysfunction between EOAD and LOAD may shed some light on the cholinomimetic drug efficacy in AD.
Collapse
Affiliation(s)
- Shigeki Hirano
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Neurology Clinic Chiba, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tsuneyoshi Ota
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichi Sato
- Department of Psychiatry, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Noriko Tanaka
- Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Tokyo, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kiyoshi Fukushi
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toshiaki Irie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
17
|
Meena VK, Chaturvedi S, Sharma RK, Mishra AK, Hazari PP. Potent Acetylcholinesterase Selective and Reversible Homodimeric Agent Based on Tacrine for Theranostics. Mol Pharm 2019; 16:2296-2308. [DOI: 10.1021/acs.molpharmaceut.8b01058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Virendra Kumar Meena
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | | | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
18
|
Albin RL, Bohnen NI, Muller MLTM, Dauer WT, Sarter M, Frey KA, Koeppe RA. Regional vesicular acetylcholine transporter distribution in human brain: A [ 18 F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol 2018; 526:2884-2897. [PMID: 30255936 DOI: 10.1002/cne.24541] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18 F]fluoroethoxybenzovesamicol ([18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18 F]FEOBV binding in some cortical regions and the striatum.
Collapse
Affiliation(s)
- Roger L Albin
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Michigan Alzheimer Disease Center, Ann Arbor, Michigan
| | - Nicolaas I Bohnen
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Martijn L T M Muller
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - William T Dauer
- Neurology Service & GRECC, VAAAHS, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan.,University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Martin Sarter
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Kirk A Frey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Robert A Koeppe
- University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson's Disease, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Komersová A, Kovářová M, Komers K, Lochař V, Čegan A. Why is the hydrolytic activity of acetylcholinesterase pH dependent? Kinetic study of acetylcholine and acetylthiocholine hydrolysis catalyzed by acetylcholinesterase from electric eel. Z NATURFORSCH C 2018; 73:345-351. [PMID: 29936491 DOI: 10.1515/znc-2017-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/16/2018] [Indexed: 11/15/2022]
Abstract
Abstract
The dependence of the activity of acetylcholinesterase from electric eel at a pH value range of 4.8–9.8 (phosphate buffer), regarding acetylcholine and acetylthiocholine hydrolysis, was determined at 25 °C, ionic strength of 0.11 M, and initial substrate concentration of 4 mM. At a pH range of 4.8–9.8, the dependences A(pH) form a sigmoid increasing curve with the maximum catalytic activity at a pH range 8–9.5. For acetylcholine hydrolysis, the kinetic reason for such an increase in A consists mainly of an increase in the rate constant k
2 (Michaelis-Menten) model with increasing pH of the reaction mixture. For acetylthiocholine hydrolysis, the kinetic explication of the determined dependence A(pH) is more complicated.
Collapse
Affiliation(s)
- Alena Komersová
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Markéta Kovářová
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Karel Komers
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Václav Lochař
- Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic, Fax: +420-466-037-068
| | - Alexander Čegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 523 10 Pardubice, Czech Republic
| |
Collapse
|
20
|
Molecular Imaging of the Cholinergic System in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 141:211-250. [PMID: 30314597 DOI: 10.1016/bs.irn.2018.07.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the first identified neurotransmitters in the brain, acetylcholine, is an important modulator that drives changes in neuronal and glial activity. For more than two decades, the main focus of molecular imaging of the cholinergic system in Parkinson's disease (PD) has been on cognitive changes. Imaging studies have confirmed that degeneration of the cholinergic system is a major determinant of dementia in PD. Within the last decade, the focus is expanding to studying cholinergic correlates of mobility impairments, dyskinesias, olfaction, sleep, visual hallucinations and risk taking behavior in this disorder. These studies increasingly recognize that the regional topography of cholinergic brain areas associates with specific functions. In parallel with this trend, more recent molecular cholinergic imaging approaches are investigating cholinergic modulatory functions and contributions to large-scale brain network functions. A novel area of research is imaging cholinergic innervation functions of peripheral autonomic organs that may have the potential of future prodromal diagnosis of PD. Finally, emerging evidence of hypercholinergic activity in prodromal and symptomatic leucine-rich repeat kinase 2 PD may reflect neuronal cholinergic compensation versus a response to neuro-inflammation. Molecular imaging of the cholinergic system has led to many new insights in the etiology of dopamine non-responsive symptoms of PD (more "malignant" hypocholinergic disease phenotype) and is poised to guide and evaluate future cholinergic drug development in this disorder.
Collapse
|
21
|
Ultra sensitive quantification of Hg 2+ sorption by functionalized nanoparticles using radioactive tracker spectroscopy. Microchem J 2018. [DOI: 10.1016/j.microc.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Abstract
Purpose of Review To review the current status of positron emission tomography (PET) molecular imaging research of levodopa-induced dyskinesias (LIDs) in Parkinson’s disease (PD). Recent Findings Recent PET studies have provided robust evidence that LIDs in PD are associated with elevated and fluctuating striatal dopamine synaptic levels, which is a consequence of the imbalance between dopaminergic and serotonergic terminals, with the latter playing a key role in mishandling presynaptic dopamine release. Long-term exposure to levodopa is no longer believed to solely induce LIDs, as studies have highlighted that PD patients who go on to develop LIDs exhibit elevated putaminal dopamine release before the initiation of levodopa treatment, suggesting the involvement of other mechanisms, including altered neuronal firing and abnormal levels of phosphodiesterase 10A. Summary Dopaminergic, serotonergic, glutamatergic, adenosinergic and opioid systems and phosphodiesterase 10A levels have been shown to be implicated in the development of LIDs in PD. However, no system may be considered sufficient on its own for the development of LIDs, and the mechanisms underlying LIDs in PD may have a multisystem origin. In line with this notion, future studies should use multimodal PET molecular imaging in the same individuals to shed further light on the different mechanisms underlying the development of LIDs in PD.
Collapse
|
23
|
Kimura Y, Sato N, Ota M, Maikusa N, Maekawa T, Sone D, Enokizono M, Sugiyama A, Imabayashi E, Matsuda H, Okamoto T, Yamamura T, Sugimoto H. A structural MRI study of cholinergic pathways and cognition in multiple sclerosis. eNeurologicalSci 2017; 8:11-16. [PMID: 29260029 PMCID: PMC5730909 DOI: 10.1016/j.ensci.2017.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 11/17/2022] Open
Abstract
Background White matter hyperintensities (WMH) in the cholinergic pathways are associated with cognitive performance in Alzheimer's disease. This study aimed to evaluate the relationship between the volume reduction of cholinergic pathways and cognitive function in patients with multiple sclerosis (MS). Methods Thirty-two MS patients underwent a brain MRI and cognitive measurements including the Mini-Mental State Examination (MMSE) and the Japanese version of the Montreal Cognitive Assessment (MoCA-J). The extent of WMH within the cholinergic pathways was assessed using the Cholinergic Pathways Hyperintensities Scale (CHIPS). Computerized WMH volumes were also obtained. FreeSurfer was used to measure regional volumes including the cortical and subcortical volumes. The correlations among the CHIPS, the WMH volume, and the clinical data were assessed, in addition to the correlations between the cognitive scores and regional volumes measured by FreeSurfer. Results The CHIPS score and the WMH volume were strongly positively correlated with each other (r = 0.87, P < 0.001). The CHIPS score had significantly negative correlations with the MMSE (r = - 0.49, P = 0.003) and the MoCA-J (r = - 0.47, P = 0.005) results. The WMH volume had significantly negative correlations with the MMSE (r = - 0.54, P = 0.001) and the MoCA-J (r = - 0.57, P < 0.001) results. In the analysis by FreeSurfer, both the MMSE and MoCA-J scores had significant positive correlations only with the volume of the corpus callosum. Conclusions The CHIPS score tended to be less sensitive to the WMH volume in cognitive function evaluation, although the difference did not reach the level of statistical significance. Thus the CHIPS method may not be as effective in MS patients.
Collapse
Affiliation(s)
- Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Daichi Sone
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Etsuko Imabayashi
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hideharu Sugimoto
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
24
|
Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH. PET Imaging for Early Detection of Alzheimer's Disease: From Pathologic to Physiologic Biomarkers. PET Clin 2017; 12:329-350. [PMID: 28576171 DOI: 10.1016/j.cpet.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article describes the application of various PET imaging agents in the investigation and diagnosis of Alzheimer's disease (AD), including radiotracers for pathologic biomarkers of AD such as β-amyloid deposits and tau protein aggregates, and the neuroinflammation biomarker 18 kDa translocator protein, as well as physiologic biomarkers, such as cholinergic receptors, glucose metabolism, and the synaptic density biomarker synaptic vesicle glycoprotein 2A. Potential of these biomarkers for early AD diagnosis is also assessed.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, No. 518, East Wuzhong Road, Xuhui District, Shanghai 200235, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 10075, China
| | - Sjoerd Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA.
| |
Collapse
|
25
|
Reeta KH, Singh D, Gupta YK. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats. Eur J Neurosci 2017; 45:987-997. [DOI: 10.1111/ejn.13543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- K. H. Reeta
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| | - Devendra Singh
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| | - Yogendra K. Gupta
- Department of Pharmacology; All India Institute of Medical Sciences; Ansari Nagar, New Delhi 110029 India
| |
Collapse
|
26
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Roy R, Niccolini F, Pagano G, Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging 2016; 43:1376-86. [PMID: 26984612 PMCID: PMC4865532 DOI: 10.1007/s00259-016-3349-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022]
Abstract
The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [(11)C]MP4A and [(11)C]PMP PET for acetylcholinesterase (AChE), [(123)I]5IA SPECT for the α4β2 nicotinic acetylcholine receptor and [(123)I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders.
Collapse
Affiliation(s)
- Roman Roy
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
28
|
Sawatzky E, Al-Momani E, Kobayashi R, Higuchi T, Samnick S, Decker M. A Novel Way To Radiolabel Human Butyrylcholinesterase for Positron Emission Tomography through Irreversible Transfer of the Radiolabeled Moiety. ChemMedChem 2016; 11:1540-50. [DOI: 10.1002/cmdc.201600223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Edgar Sawatzky
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University Würzburg; Am Hubland 97074 Würzburg Germany
| | - Ehab Al-Momani
- Experimental Nuclear Medicine; Center of Inner Medicine; University Hospital Würzburg; OberdürrbacherStrasse 6 97080 Würzburg Germany
| | - Ryohei Kobayashi
- Experimental Nuclear Medicine; Center of Inner Medicine; University Hospital Würzburg; OberdürrbacherStrasse 6 97080 Würzburg Germany
| | - Takahiro Higuchi
- Experimental Nuclear Medicine; Center of Inner Medicine; University Hospital Würzburg; OberdürrbacherStrasse 6 97080 Würzburg Germany
| | - Samuel Samnick
- Experimental Nuclear Medicine; Center of Inner Medicine; University Hospital Würzburg; OberdürrbacherStrasse 6 97080 Würzburg Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry; Institute of Pharmacy and Food Chemistry; Julius Maximilian University Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
29
|
Meng X, Li C, Xiu C, Zhang J, Li J, Huang L, Zhang Y, Liu Z. Identification and Biochemical Properties of Two New Acetylcholinesterases in the Pond Wolf Spider (Pardosa pseudoannulata). PLoS One 2016; 11:e0158011. [PMID: 27337188 PMCID: PMC4919072 DOI: 10.1371/journal.pone.0158011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/08/2016] [Indexed: 01/17/2023] Open
Abstract
Acetylcholinesterase (AChE), an important neurotransmitter hydrolase in both invertebrates and vertebrates, is targeted by organophosphorus and carbamate insecticides. In this study, two new AChEs were identified in the pond wolf spider Pardosa pseudoannulata, an important predatory natural enemy of several insect pests. In total, four AChEs were found in P. pseudoannulata (including two AChEs previously identified in our laboratory). The new putative AChEs PpAChE3 and PpAChE4 contain most of the common features of the AChE family, including cysteine residues, choline binding sites, the conserved sequence 'FGESAG' and conserved aromatic residues but with a catalytic triad of 'SDH' rather than 'SEH'. Recombinant enzymes expressed in Sf9 cells showed significant differences in biochemical properties compared to other AChEs, such as the optimal pH, substrate specificity, and catalytic efficiency. Among three test substrates, PpAChE1, PpAChE3 and PpAChE4 showed the highest catalytic efficiency (Vmax/KM) for ATC (acetylthiocholine iodide), with PpAChE3 exhibiting a clear preference for ATC based on the VmaxATC/VmaxBTC ratio. In addition, the four PpAChEs were more sensitive to the AChE-specific inhibitor BW284C51, which acts against ATC hydrolysis, than to the BChE-specific inhibitor ISO-OMPA, which acts against BTC hydrolysis, with at least a 8.5-fold difference in IC50 values for each PpAChE. PpAChE3, PpAChE4, and PpAChE1 were more sensitive than PpAChE2 to the tested Carb insecticides, and PpAChE3 was more sensitive than the other three AChEs to the tested OP insecticides. Based on all the results, two new functional AChEs were identified from P. pseudoannulata. The differences in AChE sequence between this spider and insects enrich our knowledge of invertebrate AChE diversity, and our findings will be helpful for understanding the selectivity of insecticides between insects and natural enemy spiders.
Collapse
Affiliation(s)
- Xiangkun Meng
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Chunrui Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Chunli Xiu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jianhua Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Lixin Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
- * E-mail: (ZWL); (YXZ)
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
- * E-mail: (ZWL); (YXZ)
| |
Collapse
|
30
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
31
|
Eisenmenger LB, Huo EJ, Hoffman JM, Minoshima S, Matesan MC, Lewis DH, Lopresti BJ, Mathis CA, Okonkwo DO, Mountz JM. Advances in PET Imaging of Degenerative, Cerebrovascular, and Traumatic Causes of Dementia. Semin Nucl Med 2016; 46:57-87. [DOI: 10.1053/j.semnuclmed.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Monteiro-Cardoso VF, Castro M, Oliveira MM, Moreira PI, Peixoto F, Videira RA. Age-dependent biochemical dysfunction in skeletal muscle of triple-transgenic mouse model of Alzheimer`s disease. Curr Alzheimer Res 2015; 12:100-15. [PMID: 25654504 PMCID: PMC4428479 DOI: 10.2174/1567205012666150204124852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/21/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022]
Abstract
The emergence of Alzheimer`s disease as a systemic pathology shifted the research paradigm toward a better
understanding of the molecular basis of the disease considering the pathophysiological changes in both brain and peripheral
tissues. In the present study, we evaluated the impact of disease progression on physiological relevant features of
skeletal muscle obtained from 3, 6 and 12 month-old 3xTg-AD mice, a model of Alzheimer`s disease, and respective agematched
nonTg mice. Our results showed that skeletal muscle functionality is already affected in 3-month-old 3xTg-AD
mice as evidenced by deficient acetylcholinesterase and catalase activities as well as by alterations in fatty acid composition
of mitochondrial membranes. Additionally, an age-dependent accumulation of amyloid-β1-40 peptide occurred in
skeletal muscle of 3xTg-AD mice, an effect that preceded bioenergetics mitochondrial dysfunction, which was only detected
at 12 months of age, characterized by decreased respiratory control ratio and ADP/O index and by an impairment of
complex I activity. HPLC-MS/MS analyses revealed significant changes in phospholipid composition of skeletal muscle
tissues from 3xTg-AD mice with 12 months of age when compared with age-matched nonTg mice. Increased levels of
lyso-phosphatidylcholine associated with a decrease of phosphatidylcholine molecular species containing arachidonic acid
were detected in 3xTg-AD mice, indicating an enhancement of phospholipase A2 activity and skeletal muscle inflammation.
Additionally, a decrease of phosphatidylethanolamine plasmalogens content and an increase in phosphatidylinositol
levels was observed in 3xTg-AD mice when compared with age-matched nonTg mice. Altogether, these observations
suggest that the skeletal muscle of 3xTg-AD mice are more prone to oxidative and inflammatory events.
Collapse
Affiliation(s)
| | | | | | | | | | - Romeu A Videira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Tras-os-Montes e Alto Douro, UTAD, P.O. Box 1013; 5001-801 Vila Real, Portugal.
| |
Collapse
|
33
|
|
34
|
Ehret MJ, Chamberlin KW. Current Practices in the Treatment of Alzheimer Disease: Where is the Evidence After the Phase III Trials? Clin Ther 2015; 37:1604-16. [PMID: 26122885 DOI: 10.1016/j.clinthera.2015.05.510] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE The purpose of this systematic review was to review the current place in therapy of the 4 medications, donepezil, rivastigmine, galantamine, and memantine, approved for the treatment of Alzheimer disease (AD) since the publication of Phase III trials. METHODS A systematic literature search of MEDLINE and EMBASE was conducted for articles published in the past 10 years. The search was performed using the following Medical Subject Headings and text key words: Alzheimer's disease, treatment, donepezil, galantamine, rivastigmine, memantine, dementia of the Alzheimer's type, and dementia. FINDINGS Studies that evaluated new doses, indications, and dose formulations remain a large part of the current literature. Donepezil gained approval for the treatment of severe AD and became available in a 23-mg/d dose formulation. Rivastigmine became available in a patch formulation. Memantine became available as an extended-release capsule. Use of a combination product formulation was recently approved, memantine extended release/donepezil. Controversy among clinicians remains regarding when to initiate therapy, appropriate duration of therapy, and how and when to discontinue the treatment of AD. IMPLICATIONS Only drugs that affect cholinergic function have shown consistent, but modest, clinical effects, even in late-phase trials. There is a need for a better appreciation of the various risk factors and drug targets for the treatment of AD. The wide range of targets makes it unlikely that affecting only 1 of those targets (eg, cholinergic function or N-methyl-d-aspartate) will lead to a more than minimally effective treatment option, regardless of when a treatment is started and discontinued. There is substantial opportunity for the continued growth and development of drugs and clinical trial expansion for the treatment of AD.
Collapse
Affiliation(s)
- Megan J Ehret
- Pharmacy Practice, University of Connecticut, Storrs, Connecticut.
| | | |
Collapse
|
35
|
Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, Linderoth B, Andreasen N, Blennow K, Wall A, Westman E, Ferreira D, Kristoffersen Wiberg M, Wahlund LO, Seiger Å, Nordberg A, Wahlberg L, Darreh-Shori T, Eriksdotter M. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer's disease. Alzheimers Dement 2015; 11:1316-28. [PMID: 25676388 DOI: 10.1016/j.jalz.2014.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The extensive loss of central cholinergic functions in Alzheimer's disease (AD) brain is linked to impaired nerve growth factor (NGF) signaling. The cardinal cholinergic biomarker is the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), which has recently been found in cerebrospinal fluid (CSF). The purpose of this study was to see if EC-NGF therapy will alter CSF levels of cholinergic biomarkers, ChAT, and acetylcholinesterase. METHOD Encapsulated cell implants releasing NGF (EC-NGF) were surgically implanted bilaterally in the basal forebrain of six AD patients for 12 months and cholinergic markers in CSF were analyzed. RESULTS Activities of both enzymes were altered after 12 months. In particular, the activity of soluble ChAT showed high correlation with cognition, CSF tau and amyloid-β, in vivo cerebral glucose utilization and nicotinic binding sites, and morphometric and volumetric magnetic resonance imaging measures. DISCUSSION A clear pattern of association is demonstrated showing a proof-of-principle effect on CSF cholinergic markers, suggestive of a beneficial EC-NGF implant therapy.
Collapse
Affiliation(s)
- Azadeh Karami
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Helga Eyjolfsdottir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Swetha Vijayaraghavan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Clinical Neuroscience, Clinical Neurochemistry Laboratory, University of Göteborg, Göteborg, Sweden
| | - Anders Wall
- Nuclear medicine and PET, Department of Surgical Sciences, Uppsala University, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kristoffersen Wiberg
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Schilling LP, Leuzy A, Zimmer ER, Gauthier S, Rosa-Neto P. Nonamyloid PET biomarkers and Alzheimer's disease: current and future perspectives. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Recent advances in neurobiology and PET have helped redefine Alzheimer's disease (AD) as a dynamic pathophysiological process, clinically characterized by preclinical, mild cognitive impairment due to AD and dementia stages. Though a majority of PET studies conducted within these populations have to date focused on β-amyloid, various ‘nonamyloid’ radiopharmaceuticals exist for evaluating neurodegeneration, neuroinflammation and perturbations in neurotransmission across the spectrum of AD. Importantly, findings using such tracers have been shown to correlate with various clinical, cognitive and behavioral measures. In the context of a growing shift toward early diagnosis and symptomatic and disease-modifying clinical trials, nonamyloid PET radiotracers will prove of use, and, potentially, contribute to improved therapeutic prospects for AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Eduardo Rigon Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
37
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
38
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
39
|
Logan J, Kim SW, Pareto D, Telang F, Wang GJ, Fowler JS, Biegon A. Kinetic Analysis of [11C]Vorozole Binding in the Human Brain with Positron Emission Tomography. Mol Imaging 2014. [DOI: 10.2310/7290.2014.00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jean Logan
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Sung Won Kim
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Deborah Pareto
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Frank Telang
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Gene-Jack Wang
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Joanna S. Fowler
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Anat Biegon
- From the Biosciences Department, Brookhaven National Laboratory, Upton, NY; National Institute on Alcoholism and Alcohol Abuse, Bethesda, MD; Magnetic Resonance Unit Hospital Vall Hebron, Psg Vall Hebron 119–129, Barcelona, Spain; CIBER BBN, Zaragoza, Spain; Department of Psychiatry, Mount Sinai School of Medicine, New York, NY; Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY; and Department of Neurology, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|
40
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Acetylcholinesterase Protein Level Is Preserved in the Alzheimer's Brain. J Mol Neurosci 2013; 53:446-53. [DOI: 10.1007/s12031-013-0183-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/12/2013] [Indexed: 01/15/2023]
|
42
|
Teipel S, Heinsen H, Amaro E, Grinberg LT, Krause B, Grothe M. Cholinergic basal forebrain atrophy predicts amyloid burden in Alzheimer's disease. Neurobiol Aging 2013; 35:482-91. [PMID: 24176625 DOI: 10.1016/j.neurobiolaging.2013.09.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 01/24/2023]
Abstract
We compared accuracy of hippocampus and basal forebrain cholinergic system (BFCS) atrophy to predict cortical amyloid burden in 179 cognitively normal subjects (CN), 269 subjects with early stages of mild cognitive impairment (MCI), 136 subjects with late stages of MCI, and 86 subjects with Alzheimer's disease (AD) dementia retrieved from the Alzheimer's Disease Neuroimaging Initiative database. Hippocampus and BFCS volumes were determined from structural magnetic resonance imaging scans at 3 Tesla, and cortical amyloid load from AV45 (florbetapir) positron emission tomography scans. In receiver operating characteristics analyses, BFCS volume provided significantly more accurate classification into amyloid-negative and -positive categories than hippocampus volume. In contrast, hippocampus volume more accurately identified the diagnostic categories of AD, late and early MCI, and CN compared with whole and anterior BFCS volume, whereas posterior BFCS and hippocampus volumes yielded similar diagnostic accuracy. In logistic regression analysis, hippocampus and posterior BFCS volumes contributed significantly to discriminate MCI and AD from CN, but only BFCS volume predicted amyloid status. Our findings suggest that BFCS atrophy is more closely associated with cortical amyloid burden than hippocampus atrophy in predementia AD.
Collapse
Affiliation(s)
- Stefan Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany; DZNE, German Center for Neurodegenerative Disorders, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Distribution of monoamine oxidase proteins in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab 2013; 33:863-71. [PMID: 23403377 PMCID: PMC3677103 DOI: 10.1038/jcbfm.2013.19] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography (PET) imaging of monoamine oxidases (MAO-A: [(11)C]harmine, [(11)C]clorgyline, and [(11)C]befloxatone; MAO-B: [(11)C]deprenyl-D2) has been actively pursued given clinical importance of MAOs in human neuropsychiatric disorders. However, it is unknown how well PET outcome measures for the different radiotracers are quantitatively related to actual MAO protein levels. We measured regional distribution (n=38) and developmental/aging changes (21 hours to 99 years) of both MAOs by quantitative immunoblotting in autopsied normal human brain. MAO-A was more abundant than MAO-B in infants, which was reversed as MAO-B levels increased faster before 1 year and, unlike MAO-A, kept increasing steadily to senescence. In adults, regional protein levels of both MAOs were positively and proportionally correlated with literature postmortem data of MAO activities and binding densities. With the exception of [(11)C]befloxatone (binding potential (BP), r=0.61, P=0.15), correlations between regional PET outcome measures of binding in the literature and MAO protein levels were good (P<0.01) for [(11)C]harmine (distribution volume, r=0.86), [(11)C]clorgyline (λk3, r=0.82), and [(11)C]deprenyl-D2 (λk3 or modified Patlak slope, r=0.78 to 0.87), supporting validity of the latter imaging measures. However, compared with in vitro data, the latter PET measures underestimated regional contrast by ∼2-fold. Further studies are needed to address cause of the in vivo vs. in vitro nonproportionality.
Collapse
|
44
|
Kikuchi T, Okamura T, Zhang MR, Irie T. PET probes for imaging brain acetylcholinesterase. J Labelled Comp Radiopharm 2013; 56:172-9. [DOI: 10.1002/jlcr.3002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Tatsuya Kikuchi
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Toshimitsu Okamura
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Ming-Rong Zhang
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| | - Toshiaki Irie
- Probe Research Team, Molecular Probe Program, Molecular Imaging Center; National Institute of Radiological Sciences; Chiba; 263-8555; Japan
| |
Collapse
|
45
|
Rizzo G, Turkheimer FE, Bertoldo A. Multi-scale hierarchical approach for parametric mapping: Assessment on multi-compartmental models. Neuroimage 2013; 67:344-53. [DOI: 10.1016/j.neuroimage.2012.11.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/03/2012] [Accepted: 11/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- G Rizzo
- Department of Information Engineering, University of Padova, via Gradenigo 6/b, 35131, Padova, Italy
| | | | | |
Collapse
|
46
|
Karakaya T, Fußer F, Schröder J, Pantel J. Pharmacological Treatment of Mild Cognitive Impairment as a Prodromal Syndrome of Alzheimer´s Disease. Curr Neuropharmacol 2013; 11:102-8. [PMID: 23814542 PMCID: PMC3580783 DOI: 10.2174/157015913804999487] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/24/2012] [Accepted: 08/06/2012] [Indexed: 01/08/2023] Open
Abstract
Mild cognitive impairment (MCI) is a syndrome which, depending on various neurobiological, psychological and social factors, carries a high risk of developing into dementia. As far as diagnostic uncertainty and the heterogeneous underlying pathophysiological mechanisms are concerned, only limited therapeutic options are currently available. Clinical trials involving a wide range of substances have failed to show efficacy on primary and secondary outcome parameters. Most results reflect not only a lack of effectiveness of drug therapy but also methodological constraints in true prodromal Alzheimer´s disease (AD) based on clinical criteria. Biomarkers may help to identify MCI as a prodromal phase of dementia, so it is important to use them to improve specificity of case selection in future studies. For MCI as a prodromal syndrome of AD, clinical trials with disease modifying drugs that target underlying pathological mechanisms such as amyloid-beta accumulation and neurofibrillary tangle formation may help develop effective treatment options in the future. Alternative pharmacological approaches are currently being evaluated in ongoing phase 1 and phase 2 studies. Nevertheless, a lack of approved pharmacotherapeutic options has led to specific interventions that focus on patient education and life-style related factors receiving increasing attention.
Collapse
Affiliation(s)
- Tarik Karakaya
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt am Main, Germany
| | - Fabian Fußer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University, Frankfurt am Main, Germany
| | - Johannes Schröder
- Department of Psychiatry, Section of Geriatric Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Johannes Pantel
- Institute of General Practice, Geriatric Medicine, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
47
|
Abstract
The precise role of nicotinic acetylcholine receptors (nAChRs) in central cognitive processes still remains incompletely understood almost 150 years after its initial discovery. Central nAChRs are activated by acetylcholine, which functions in the extracellular space as a nonsynaptic messenger. Recently, a novel concept in the nAChR mode of operation has been described as a fast-type nonsynaptic transmission. In this review, we attempt to summarise the experimental findings that support the role of one of the most distributed receptor subtypes, the α7 nAChRs, and particularly focus on its procognitive effects following receptor activation. The basic characteristics of α7 nAChRs are discussed, from receptor homology to cellular-level functions. Synaptic plasticity is often implicated with α7 nAChRs on the basis of several diverse studies. Here, we provide a summary of the plastic features of the α7 receptor subtype and its role in higher level cognitive function. Finally, recent clinical evidence is reviewed, which demonstrates with increasing confidence the promise α7 nAChRs as a molecular target in future pharmacotherapy to prevent cognitive decline in various types of dementia, specifically, via the development of positive allosteric modulator compounds.
Collapse
Affiliation(s)
- Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Gyömrői u, 19-21, Hungary.
| | | | | | | |
Collapse
|
48
|
Hall H, Cuellar-Baena S, Denisov V, Kirik D. Development of NMR spectroscopic methods for dynamic detection of acetylcholine synthesis by choline acetyltransferase in hippocampal tissue. J Neurochem 2012; 124:336-46. [DOI: 10.1111/jnc.12025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Hélène Hall
- Brain Repair And Imaging in Neural Systems (B.R.A.I.N.S); BMC D11; Department of Experimental Medical Science; Lund University; Lund Sweden
| | - Sandra Cuellar-Baena
- Brain Repair And Imaging in Neural Systems (B.R.A.I.N.S); BMC D11; Department of Experimental Medical Science; Lund University; Lund Sweden
| | - Vladimir Denisov
- Lund University BioImaging Center; BMC D11; Lund University; Lund Sweden
| | - Deniz Kirik
- Brain Repair And Imaging in Neural Systems (B.R.A.I.N.S); BMC D11; Department of Experimental Medical Science; Lund University; Lund Sweden
- Lund University BioImaging Center; BMC D11; Lund University; Lund Sweden
| |
Collapse
|
49
|
Abstract
Diagnosis and treatment strategies for dementia are based on the sensitive and specific detection of the incipient neuropathological characteristics, combined with emerging treatments that counteract molecular processes in its pathogenesis. Positron emission tomography (PET) is used for diverse clinical and basic studies on dementia with a wide range of radiotracers. Approaches to visualize amyloid deposition in human brains non-invasively with PET depend on imaging agents reacting with amyloid fibrils. The most widely used tracer is [(11) C]-6-OH-BTA-1, also known as Pittsburgh Compound-B, which has a high affinity to amyloid β peptide (Aβ) aggregates. Some (18) F-labeled amyloid ligands with a longer radioactive half-life have also been developed for broader clinical applications. In addition, there have been demonstrated advantages of tracers with high specific radioactivity in the sensitive detection of amyloid, which have indicated the significance of Aβ-N3-pyroglutamate as a new diagnostic and therapeutic target. Furthermore, beneficial outcomes of Aβ and tau immunization in humans and mouse models have highlighted crucial roles of immunocompetent glia in the protection of neurons against amyloid toxicities. The utility of PET with a radioligand for translocator protein as a biomarker for tau-triggered toxicity, and as a complement to amyloid and tau imaging for diagnostic assessment of tauopathies with and without Aβ pathologies, has also been demonstrated. Meanwhile, brain cholinergic function can be estimated by measuring acetylcholinesterase activity in the brain with PET and radiolabeled acetylcholine analogues. It has been reported that patients with early Parkinson's disease exhibit a reduction in acetylcholinesterase activity in the cerebral cortex, and this decline is more profound in patients with Parkinson's disease with dementia and dementia with Lewy bodies than in patients with Parkinson's disease without dementia. The Alzheimer's Disease Neuroimaging Initiative was a multicentre research project conducted over 6 years that studied changes in cognition, brain structure, and biomarkers in healthy elderly controls and subjects with mild cognitive impairment and Alzheimer's disease. An international workgroup of the National Institute on Aging-Alzheimer's Association has suggested that Alzheimer's disease would be optimally treated before significant cognitive impairment, defined as a 'presymptomatic' or 'preclinical' stage. Therefore, PET will be of technical importance for both clinical and basic research aimed at prodromal pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Takaaki Mori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Liu D, Chen W, Tian Y, He S, Zheng W, Sun J, Wang Z, Jiang X. A highly sensitive gold-nanoparticle-based assay for acetylcholinesterase in cerebrospinal fluid of transgenic mice with Alzheimer's disease. Adv Healthc Mater 2012. [PMID: 23184691 DOI: 10.1002/adhm.201100002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A highly sensitive, selective, and dual-readout (colorimetric and fluorometric) assay for acetylcholinesterase (AChE) based on Rhodamine B-modified gold nanoparticle is reported. Due to its good sensitivity and selectivity, the assay can be used for monitoring AChE levels in the cerebrospinal fluid of transgenic mice with Alzheimer's disease.
Collapse
Affiliation(s)
- Dingbin Liu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 Beiyitiao, Zhongguancun, Beijing, 100190, PR China
| | | | | | | | | | | | | | | |
Collapse
|