1
|
Galactionova K, Smith TA, Penny MA. Insights from modelling malaria vaccines for policy decisions: the focus on RTS,S. Malar J 2021; 20:439. [PMID: 34794430 PMCID: PMC8600337 DOI: 10.1186/s12936-021-03973-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Mathematical models are increasingly used to inform decisions throughout product development pathways from pre-clinical studies to country implementation of novel health interventions. This review illustrates the utility of simulation approaches by reviewing the literature on malaria vaccine modelling, with a focus on its link to the development of policy guidance for the first licensed product, RTS,S/AS01. The main contributions of modelling studies have been in inferring the mechanism of action and efficacy profile of RTS,S; to predicting the public health impact; and economic modelling mainly comprising cost-effectiveness analysis. The value of both product-specific and generic modelling of vaccines is highlighted.
Collapse
Affiliation(s)
- Katya Galactionova
- Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, 4001, Basel, Switzerland.,European Center of Pharmaceutical Medicine, Brombacherstrasse 5, 4057, Basel, Switzerland
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland. .,University of Basel, 4001, Basel, Switzerland.
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, 4051, Basel, Switzerland.,University of Basel, 4001, Basel, Switzerland
| |
Collapse
|
2
|
Abstract
In the progression of the life cycle of Plasmodium falciparum, a small proportion of asexual parasites differentiate into male or female sexual forms called gametocytes. Just like their asexual counterparts, gametocytes are contained within the infected host's erythrocytes (RBCs). However, unlike their asexual partners, they do not exit the RBC until they are taken up in a blood meal by a mosquito. In the mosquito midgut, they are stimulated to emerge from the RBC, undergo fertilization, and ultimately produce tens of thousands of sporozoites that are infectious to humans. This transmission cycle can be blocked by antibodies targeting proteins exposed on the parasite surface in the mosquito midgut, a process that has led to the development of candidate transmission-blocking vaccines (TBV), including some that are in clinical trials. Here we review the leading TBV antigens and highlight the ongoing search for additional gametocyte/gamete surface antigens, as well as antigens on the surfaces of gametocyte-infected erythrocytes, which can potentially become a new group of TBV candidates.
Collapse
|
3
|
The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi. PLoS Biol 2012; 10:e1001368. [PMID: 22870063 PMCID: PMC3409122 DOI: 10.1371/journal.pbio.1001368] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/19/2012] [Indexed: 02/04/2023] Open
Abstract
A candidate malaria vaccine promoted the evolution of more virulent malaria parasites in mice. Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites. Vaccination can drive the evolution of pathogens. Most obviously, molecules targeted by vaccine-induced immunity can change. Such evolution makes vaccines less effective. A different possibility is that more virulent pathogens are favored in vaccinated hosts. In that case, vaccination would create pathogens that cause more harm to unvaccinated individuals. To test this idea, we studied a rodent malaria parasite in laboratory mice immunized with a component of malaria vaccines currently in human trials. We found that a more virulent parasite clone was less well controlled by vaccine-induced immunity than was its less virulent ancestor. We then passaged parasites through sham- or vaccinated mice to study how the parasites might evolve after multiple rounds of infection of mouse hosts. The parasite molecule targeted by the vaccine did not change during this process. Instead, the parasites became more virulent if they evolved in vaccinated hosts. Our data suggest that some vaccines can drive the evolution of more virulent parasites.
Collapse
|
4
|
Henn MR, Boutwell CL, Charlebois P, Lennon NJ, Power KA, Macalalad AR, Berlin AM, Malboeuf CM, Ryan EM, Gnerre S, Zody MC, Erlich RL, Green LM, Berical A, Wang Y, Casali M, Streeck H, Bloom AK, Dudek T, Tully D, Newman R, Axten KL, Gladden AD, Battis L, Kemper M, Zeng Q, Shea TP, Gujja S, Zedlack C, Gasser O, Brander C, Hess C, Günthard HF, Brumme ZL, Brumme CJ, Bazner S, Rychert J, Tinsley JP, Mayer KH, Rosenberg E, Pereyra F, Levin JZ, Young SK, Jessen H, Altfeld M, Birren BW, Walker BD, Allen TM. Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog 2012; 8:e1002529. [PMID: 22412369 PMCID: PMC3297584 DOI: 10.1371/journal.ppat.1002529] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 12/27/2011] [Indexed: 12/20/2022] Open
Abstract
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia. The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies.
Collapse
Affiliation(s)
- Matthew R. Henn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christian L. Boutwell
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Patrick Charlebois
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Niall J. Lennon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | | | - Aaron M. Berlin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Christine M. Malboeuf
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Elizabeth M. Ryan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sante Gnerre
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Michael C. Zody
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rachel L. Erlich
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Lisa M. Green
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Andrew Berical
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Yaoyu Wang
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Monica Casali
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Hendrik Streeck
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Allyson K. Bloom
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Tim Dudek
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Damien Tully
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Ruchi Newman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Karen L. Axten
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Adrianne D. Gladden
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Laura Battis
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Michael Kemper
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Terrance P. Shea
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sharvari Gujja
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Olivier Gasser
- Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Christian Brander
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Irsicaixa AIDS Research Institute-HIVACAT, Hospital University Germans Trias I Pujol, Badalona, Spain
| | - Christoph Hess
- Immunobiology Lab, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Zabrina L. Brumme
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Chanson J. Brumme
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Suzane Bazner
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jenna Rychert
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jake P. Tinsley
- The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America
| | - Ken H. Mayer
- The Fenway Institute, Fenway Health, Boston, Massachusetts, United States of America
| | - Eric Rosenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Joshua Z. Levin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sarah K. Young
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Malaria has had a greater impact on world history than any other infectious disease. More than 300 to 500 million individuals worldwide are infected with Plasmodium spp, and 1.5 to 2.7 million people a year, most of whom are children, die from the infection. Malaria is endemic in over 90 countries in which 2400 million people live; this represents 40% of the world's population. Approximately 90% of malaria deaths occur in Africa. Despite continuing efforts in vaccine development, malaria prevention is difficult, and no drug is universally effective. This article examines malaria caused by the 4 most common Plasmodium spp that infect humans, P vivax, P ovale, P malariae, and P falciparum, as well as mixed infections and the simian parasite P knowlesi. A comprehensive review of the microbiology, clinical presentation, pathogenesis, diagnosis, and treatment of these forms of malaria is given.
Collapse
|
6
|
Expression, purification, and characterization of the immunological response to a 40-kilodalton Plasmodium vivax tryptophan-rich antigen. Infect Immun 2008; 76:2576-86. [PMID: 18362136 DOI: 10.1128/iai.00677-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here an approximately 40-kDa Plasmodium vivax tryptophan-rich antigen (PvTRAg40) which contains 321 amino acids and 11.4% tryptophan residues. This protein shows 65% homology (35% identity) with the previously described PvTRAg, besides sharing 23 of 27 positionally conserved tryptophan residues and similar genomic organization. The nucleotide sequence of the entire tryptophan-rich domain of PvTRAg40 was identical among 35 P. vivax clinical isolates. The protein is expressed by ring, trophozoite, and schizont stages of the parasite. The cDNA covering exon 2 of PvTRAg40 was cloned and expressed in the pPROEXHTa vector, and recombinant protein was purified. A high humoral immune response (90.7% seropositivity; n = 43) against this recombinant protein was detected in humans during the course of natural P. vivax infection. Eighty percent of the total of 20 P. vivax-exposed individuals exhibited lymphoproliferative responses against this antigen. The T cells of these individuals produced larger amounts of interleukin-12 (IL-12), IL-4, and IL-10 than gamma interferon and tumor necrosis factor alpha cytokines in response to the recombinant protein. Production of Th2-biased cytokines, conserved T- and B-cell epitopes, and an enhanced humoral immune response indicate that PvTRAg40 could possibly induce antibody-mediated immune protection against infection.
Collapse
|
7
|
Rodriguez LE, Vera R, Valbuena J, Curtidor H, Garcia J, Puentes A, Ocampo M, Lopez R, Rosas J, Lopez Y, Patarroyo MA, Patarroyo ME. Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion. Biol Chem 2007; 388:15-24. [PMID: 17214545 DOI: 10.1515/bc.2007.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Plasmodium falciparum ring-erythrocyte surface antigen (RESA)-like putative protein was identified and characterised. PCR and RT-PCR assays revealed that the gene encoding this protein was both present and being transcribed in P. falciparum strain FCB-2 16 h after erythrocyte invasion. Indirect immunofluorescence studies detected this protein in infected erythrocyte (IE) cytosol in dense fluorescent granules similar to Maurer's clefts at 16-20 h (parasites in ring and trophozoite stages) and very strongly on IE membranes at 22 h, suggesting that it is synthesised during early ring stages (16 h) and transported to the infected red blood cell (RBC) membrane surface during the trophozoite stage (22 h). Western blotting showed that antisera produced against polymerised synthetic peptides of this protein recognised a 72-kDa band in P. falciparum schizont lysate. P. falciparum RESA-like peptides used in normal RBC binding assays revealed that peptides 30326 ((101)NAEKI LGFDD KNILE ALDLFY(120)), 30334 ((281)RVTWK KLRTK MIKAL KKSLTY(300)) and 30342 ((431)SSPQR LKFTA GGGFC GKLRNY(450)) bind with high activity and saturability, presenting nM affinity constants. These peptides contain alpha-helical structural elements, as determined by circular dichroism, and inhibit P. falciparum in vitro invasion of normal RBCs by up to 91%, suggesting that some RESA-like protein regions are involved in intra-erythrocyte stage P. falciparum invasion.
Collapse
Affiliation(s)
- Luis Eduardo Rodriguez
- Fundación Instituto de Inmunologia de Colombia and Universidad Nacional de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Falciparum Malaria. INFECTIOUS DISEASES IN CRITICAL CARE 2007. [PMCID: PMC7122550 DOI: 10.1007/978-3-540-34406-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria is one of the most common infectious diseases in the world today, being the most important parasitic infection, and Plasmodium falciparum is the organism responsible for most of the mortality [1]. It has been estimated that approximately 300–500 million people contract malaria every year, with approximately 1–2 million deaths, most of these occurring in children [1–5]. Plasmodium falciparum, Mycobacterium tuberculosis and measles currently compete for the title of the single most important pathogen causing human morbidity and mortality [2, 3]. Infection with Plasmodium falciparum has a wide variety of potential clinical consequences [4, 6, 7].
Collapse
|
9
|
Rogier C, Orlandi-Pradines E, Fusaï T, Pradines B, Briolant S, Almeras L. [Malaria vaccines: prospects and reality]. Med Mal Infect 2006; 36:414-22. [PMID: 16949781 DOI: 10.1016/j.medmal.2006.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/15/2022]
Abstract
The development of a malaria vaccine has been accelerating in the last ten years. The number of clinical trials has increased and some malaria antigens have been tested in endemic areas. No potential vaccine has yet shown sufficient and lasting efficacy to justify its inclusion in a public health program. However, trials have unambiguously shown that some level of anti-malaria clinical immunity can be achieved by vaccination, both in experimental and in field conditions. Advances in malaria vaccine development are presented.
Collapse
Affiliation(s)
- C Rogier
- Unité de recherche en biologie et épidémiologie parasitaires, institut de médecine tropicale du service de santé des armées, Le Pharo, BP 46, 13998 Marseille-Armées, France.
| | | | | | | | | | | |
Collapse
|
10
|
Caro-Aguilar I, Lapp S, Pohl J, Galinski MR, Moreno A. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes Infect 2005; 7:1324-37. [PMID: 16253535 DOI: 10.1016/j.micinf.2005.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/21/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
Polymeric linear peptide chimeras (LPCs) that incorporate Plasmodium vivax promiscuous T cell epitopes and the P. falciparum circumsporozoite protein B cell epitope have been shown to induce a high level of immunogenicity and overcome genetic restriction when tested as vaccine immunogens in BALB/c mice. The present study evaluates the biological relevance of several LPCs using a well characterized rodent malaria model. Polymeric peptide constructs based on P. berghei and P. yoelii sequences, and orthologous to the human malaria sequences included in the original LPCs, were designed and tested for immunogenicity in mice of different H-2 haplotypes. We demonstrate that robust immune responses are induced and that peptides containing the orthologous rodent Plasmodium sequences exhibited similar immunogenic capabilities. Unique to this report, we show that LPCs can also prime MHC class I-restricted cytotoxic T lymphocytes (CTLs) and, most relevantly, that a peptide construct prototype incorporating single B, T and CTL epitopes induced protection against an experimental challenge with P. berghei or P. yoelii sporozoites. Collectively, these results suggest that polymeric polypeptide chimeras can be used as a platform to deliver subunit vaccines.
Collapse
Affiliation(s)
- Ivette Caro-Aguilar
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
11
|
John CC, O'Donnell RA, Sumba PO, Moormann AM, de Koning-Ward TF, King CL, Kazura JW, Crabb BS. Evidence That Invasion-Inhibitory Antibodies Specific for the 19-kDa Fragment of Merozoite Surface Protein-1 (MSP-119) Can Play a Protective Role against Blood-StagePlasmodium falciparumInfection in Individuals in a Malaria Endemic Area of Africa. THE JOURNAL OF IMMUNOLOGY 2004; 173:666-72. [PMID: 15210830 DOI: 10.4049/jimmunol.173.1.666] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.
Collapse
Affiliation(s)
- Chandy C John
- Center for Global Health and Diseases, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pinder M, Reece WHH, Plebanski M, Akinwunmi P, Flanagan KL, Lee EAM, Doherty T, Milligan P, Jaye A, Tornieporth N, Ballou R, McAdam KPMJ, Cohen J, Hill AVS. Cellular immunity induced by the recombinant Plasmodium falciparum malaria vaccine, RTS,S/AS02, in semi-immune adults in The Gambia. Clin Exp Immunol 2004; 135:286-93. [PMID: 14738458 PMCID: PMC1808944 DOI: 10.1111/j.1365-2249.2004.02371.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Vaccination of malaria-naive humans with recombinant RTS,S/AS02, which includes the C-terminus of the circumsporozoite protein (CS), has been shown to induce strong T cell responses to both the whole protein antigen and to peptides from CS. Here we show that strong T cell responses were also observed in a semi-immune population in The Gambia, West Africa. In a Phase I study, 20 adult male volunteers, lifelong residents in a malaria-endemic region, were given three doses of RTS,S/AS02 at 0, 1 and 6 months. Responses to RTS,S, hepatitis B surface antigen and peptides from CS were tested using lymphocyte proliferation, interferon (IFN)-gamma production in microcultures, and IFN-gamma ex vivo and cultured ELISPOT, before and after vaccination. Cytotoxic responses were tested only after vaccination and none were detected. Before vaccination, the majority of the volunteers (15/20) had detectable responses in at least one of the tests. After vaccination, responses increased in all assays except cytotoxicity. The increase was most marked for proliferation; all donors responded to RTS,S after the third dose and all except one donor responded to at least one peptide after the second or third dose. There was a lack of close association of peptide responses detected by the different assays, although in microcultures IFN-gamma responses were found only when proliferative responses were high, and responses by cultured ELISPOT and proliferation were found together more frequently after vaccination. We have therefore identified several peptide-specific T cell responses induced by RTS,S/AS02 which provides a mechanism to investigate potentially protective immune responses in the field.
Collapse
Affiliation(s)
- M Pinder
- Medical Research Council Laboratories, Banjul, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Curtidor H, Ocampo M, Tovar D, López R, García J, Valbuena J, Vera R, Suárez J, Rodríguez LE, Puentes A, Guzmán F, Torres E, Patarroyo ME. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum-derived rhoptry-associated protein 1 peptides. Vaccine 2004; 22:1054-62. [PMID: 15161083 DOI: 10.1016/j.vaccine.2003.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 07/27/2003] [Indexed: 10/27/2022]
Abstract
Rhoptry-associated protein 1 (RAP1) is a merozoite antigen within Plasmodium falciparum rhoptries as yet having no specific function described for it. Synthetic peptides spanning the RAP1 sequence were tested in erythrocyte binding assays to identify possible RAP1 functional regions. Five high activity binding peptides (HABPs) were identified; 26201, 26202, 26203 and 26204 spanned residues 461C-K540 within RAP1 Cys region, whilst 26188 (201T-Y220) was located in p67 amino terminal. The results showed that peptide binding was saturable, some HABPs inhibited in vitro merozoite invasion and specifically bound to a 72 kDa protein in red blood cell membrane. HABP possible function in merozoite invasion of erythrocytes is also discussed.
Collapse
Affiliation(s)
- Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia and Universidad Nacional de Colombia, Cra 50 No. 26-00, Bogota 571, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Large gains in the reduction of malaria mortality in the early 20th century were lost in subsequent decades. Malaria now kills 2-3 million people yearly. Implementation of malaria control technologies such as insecticide-treated bednets and chemotherapy could reduce mortality substantially, but an effective malaria vaccine is also needed. Advances in vaccine technology and immunology are being used to develop malaria subunit vaccines. Novel approaches that might yield effective vaccines for other diseases are being evaluated first in malaria. We describe progress in malaria vaccine development in the past 5 years: reasons for cautious optimism, the type of vaccine that might realistically be expected, and how the process could be hastened. Although exact predictions are not possible, if sufficient funding were mobilised, a deployable, effective malaria vaccine is a realistic medium-term to long-term goal.
Collapse
|
15
|
Smooker PM, Rainczuk A, Kennedy N, Spithill TW. DNA vaccines and their application against parasites--promise, limitations and potential solutions. BIOTECHNOLOGY ANNUAL REVIEW 2004; 10:189-236. [PMID: 15504707 DOI: 10.1016/s1387-2656(04)10007-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA or nucleic acid vaccines are being evaluated for efficacy against a range of parasitic diseases. Data from studies in rodent model systems have provided proof of principle that DNA vaccines are effective at inducing both humoral and T cell responses to a variety of candidate vaccine antigens. In particular, the induction of potent cellular responses often gives DNA vaccination an immunological advantage over subunit protein vaccination. Protection against parasite challenge has been demonstrated in a number of systems. However, application of parasite DNA vaccines in large animals including ruminants, primates and humans has been compromised by the relative lack of immune responsiveness to the vaccines, but the reasons for this hyporesponsiveness are not clear. Here, we review DNA vaccines against protozoan parasites, in particular vaccines for malaria, and the use of genomic approaches such as expression library immunization to generate novel vaccines. The application of DNA vaccines in ruminants is reviewed. We discuss some of the approaches being evaluated to improve responsiveness in large animals including the use of cytokines as adjuvants, targeting molecules as delivery ligands, electroporation and CpG oligonucleotides.
Collapse
Affiliation(s)
- Peter M Smooker
- Department of Biotechnology and Environmental Biology, RMIT University, Bundoora 3083, Australia
| | | | | | | |
Collapse
|
16
|
Mahanty S, Saul A, Miller LH. Progress in the development of recombinant and synthetic blood-stage malaria vaccines. J Exp Biol 2003; 206:3781-8. [PMID: 14506213 DOI: 10.1242/jeb.00646] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe use of asexual blood-stage proteins as malaria vaccines is strongly supported by experimental data directly implicating antibodies induced by these antigens in parasite clearance and protection from re-challenge. The selection of blood-stage antigens is based on their ability to interfere with the pathogenesis of clinical malaria by reducing parasitemias. These vaccines could complement other vaccines aimed at preventing infection, such as those targeted at pre-erythrocytic or mosquito stages of the parasite. Asexual blood-stage vaccines may reduce disease by blockade of red blood cell invasion, inhibition of parasite growth in red cells or interference in cytoadherence of infected red cells. Clearance of blood-stage parasites is dependent primarily on antibody-mediated mechanisms, but CD4 T cells may also play an important role in help for B cells and probably have a direct effector function in the clearance of blood-stage parasites. Since asexual blood-stage parasites reside within erythrocytes, they are accessible to immune clearance mechanisms only for a short time, which imposes special requirements on vaccines. For example, immunity that induces high titers of antibody will be required. Antigenic variation and extensive polymorphism of malarial proteins also needs to be addressed. Several recombinant antigens derived from blood-stage proteins have moved beyond basic research and are now poised for phase I trials in endemic countries. In this review we discuss the state of asexual blood-stage vaccines, focusing on recombinant antigens from Plasmodium falciparum. The significance of polymorphism and antigenic variation, the relevance of parasite immune evasion mechanisms, the need for reliable measures of successful intervention and new adjuvants are reviewed. Results from trials of asexual blood stage vaccine that support the continued effort to develop these antigens as key ingredients of multicomponent,multistage malaria vaccines are documented.
Collapse
Affiliation(s)
- Siddhartha Mahanty
- Malaria Vaccine Development Unit, NIAID, NIH, Twin Brook I, 5640 Fishers Lane, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
17
|
Flanagan KL, Lee EA, Gravenor MB, Reece WH, Urban BC, Doherty T, Bojang KA, Pinder M, Hill AV, Plebanski M. Unique T cell effector functions elicited by Plasmodium falciparum epitopes in malaria-exposed Africans tested by three T cell assays. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4729-37. [PMID: 11591804 DOI: 10.4049/jimmunol.167.8.4729] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Natural immunity to malaria is characterized by low level CD4 T cell reactivity detected by either lymphoproliferation or IFN-gamma secretion. Here we show a doubling in the detection rate of responders to the carboxyl terminus of circumsporozoite protein (CS) of Plasmodium falciparum by employing three T cell assays simultaneously: rapid IFN-gamma secretion (ex vivo ELISPOT), IFN-gamma secretion after reactivation of memory T cells and expansion in vitro (cultured ELISPOT), and lymphoproliferation. Remarkably, for no individual peptide did a positive response for one T cell effector function correlate with any other. Thus these CS epitopes elicited unique T cell response patterns in malaria-exposed donors. Novel or important epitope responses may therefore be missed if only one T cell assay is employed. A borderline correlation was found between anti-CS Ab levels and proliferative responses, but no correlation was found with ex vivo or cultured IFN-gamma responses. This suggested that the proliferating population, but not the IFN-gamma-secreting cells, contained cells that provide help for Ab production. The data suggest that natural immunity to malaria is a complex function of T cell subgroups with different effector functions and has important implications for future studies of natural T cell immunity.
Collapse
Affiliation(s)
- K L Flanagan
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blum PG, Stephens D. Severe falciparum malaria in five soldiers from East Timor: a case series and literature review. Anaesth Intensive Care 2001; 29:426-34. [PMID: 11512657 DOI: 10.1177/0310057x0102900417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite chemoprophylaxis, malaria remains a serious threat for large numbers of non-immune soldiers deployed in endemic areas. Five adult cases of severe falciparum malaria are reported. Three cases were complicated by multiorgan failure and one of these patients died from cerebral malaria. These cases serve to highlight issues, in an Australian intensive care unit, associated with the management of severe malaria, an uncommon disease in our country. The need for rapid diagnosis and commencement of appropriate treatment is paramount in preventing further morbidity and mortality. Understanding and management of malaria continues to evolve rapidly. The pathophysiology of acute lung injury, shock and brain injury associated with malaria are examined in light of recent research. This article discusses the current controversies of exchange blood transfusion and the use of the new artemisinin derivatives.
Collapse
Affiliation(s)
- P G Blum
- Intensive Care Unit, Royal Darwin Hospital, Northern Territory
| | | |
Collapse
|
19
|
Daubersies P, Thomas AW, Millet P, Brahimi K, Langermans JA, Ollomo B, BenMohamed L, Slierendregt B, Eling W, Van Belkum A, Dubreuil G, Meis JF, Guérin-Marchand C, Cayphas S, Cohen J, Gras-Masse H, Druilhe P, Mohamed LB. Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat Med 2000; 6:1258-63. [PMID: 11062538 DOI: 10.1038/81366] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In humans, sterile immunity against malaria can be consistently induced through exposure to the bites of thousands of irradiated infected mosquitoes. The same level of protection has yet to be achieved using subunit vaccines. Recent studies have indicated an essential function for intrahepatic parasites, the stage after the mosquito bite, and thus for antigens expressed during this stage. We report here the identification of liver-stage antigen 3, which is expressed both in the mosquito and liver-stage parasites. This Plasmodium falciparum 200-kilodalton protein is highly conserved, and showed promising antigenic and immunogenic properties. In chimpanzees (Pan troglodytes), the primates most closely related to humans and that share a similar susceptibility to P. falciparum liver-stage infection, immunization with LSA-3 induced protection against successive heterologous challenges with large numbers of P. falciparum sporozoites.
Collapse
Affiliation(s)
- P Daubersies
- Unité de Parasitologie Biomédicale, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Theisen M, Soe S, Jessing SG, Okkels LM, Danielsen S, Oeuvray C, Druilhe P, Jepsen S. Identification of a major B-cell epitope of the Plasmodium falciparum glutamate-rich protein (GLURP), targeted by human antibodies mediating parasite killing. Vaccine 2000; 19:204-12. [PMID: 10930674 DOI: 10.1016/s0264-410x(00)00181-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The antigenicity of the glutamate-rich protein (GLURP) of Plasmodium falciparum was comprehensively evaluated in epitope-mapping studies utilizing a phage display library, synthetic peptides and anti-GLURP IgG preparations previously shown to promote strong antibody-dependent cellular inhibition (ADCI) effects. We identified six major B-cell epitopes within the nonrepetitive region R0, corresponding to amino acid residues 173 to 187 (P1), 193 to 207 (P3), 216 to 229 (P4), 264 to 288 (P11), 343 to 357 (P10), and 407 to 434 (S3). Of these, four (P1, P3, P4, and S3) were frequently recognized by high-titered IgG antibodies in plasma samples from immune Liberian adults (prevalence: 29.1-45.0%). The three epitopes P1, P3, and P4 contained a common motif (seven out of nine positions are identical) and may thus constitute a family of structurally related epitopes. This leaves two distinct epitopes, one (P3) representing this new epitope family and S3 as targets for biologically active antibodies. Human IgG antibodies from single plasma samples were affinity-purified against these peptides. P3-specific IgG preparations were consistently more effective in ADCI than S3-specific IgG. Among the different GLURP epitopes, we therefore suggest that the P3 epitope is potentially the most important epitope in GLURP for the development of clinical immunity to malaria in man.
Collapse
Affiliation(s)
- M Theisen
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Smooker PM, Setiady YY, Rainczuk A, Spithill TW. Expression library immunization protects mice against a challenge with virulent rodent malaria. Vaccine 2000; 18:2533-40. [PMID: 10775787 DOI: 10.1016/s0264-410x(00)00018-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although several candidate vaccine antigens have been developed for malaria, there is as yet no effective single vaccine available. There is a growing consensus that the ultimate malaria vaccine will be multivalent, requiring the identification of a suitable cocktail of antigens. However, evaluation of the multitude of potential malaria vaccine antigens in suitable combinations is a daunting task. Here we describe the validation of expression library immunization (ELI) as a tool for the discovery of sequences protective against malaria infection. A genomic Plasmodium chabaudi expression library was constructed comprising ten separate pools of 3000 plasmids. Over three vaccine trials using biolistic delivery of pools composed of 616 to 30,000 plasmids we report up to 63% protection of mice from a challenge with P. chabaudi adami DS, a highly virulent strain. Overall, ELI protected 36% of vaccinated mice against virulent challenge compared with only 3.2% survival of control mice. These results demonstrate that ELI is a suitable approach for screening the malaria genome to identify the components of multivalent vaccines.
Collapse
Affiliation(s)
- P M Smooker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia.
| | | | | | | |
Collapse
|
22
|
Kedees MH, Gerold P, Azzouz N, Blaschke T, Shams-Eldin H, Mühlberger E, Holder AA, Klenk HD, Schwarz RT, Eckert V. Processing and localisation of a GPI-anchored Plasmodium falciparum surface protein expressed by the baculovirus system. Eur J Cell Biol 2000; 79:52-61. [PMID: 10711426 DOI: 10.1078/s0171-9335(04)70007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the expression, in insect cells using the baculovirus system, of two protein fragments derived from the C-terminus of merozoite surface protein 1(MSP-1) of the human malaria parasite Plasmodium falciparum, and their glycosylation and intracellular location. The transport and intracellular localisation of the intact C-terminal MSP-1 fragment, modified by addition of a signal sequence for secretion, was compared with that of a similar control protein in which translation of the GPI-cleavage/attachment site was abolished by insertion of a stop codon into the DNA sequence. Both proteins could only be detected intracellularly, most likely in the endoplasmic reticulum. This lack of transport to the cell surface or beyond, was confirmed for both proteins by immunofluorescence with a specific antibody and characterisation of their N-glycans. The N-glycans had not been processed by enzymes localised in post-endoplasmic reticulum compartments. In contrast to MSP-1, the surface antigen SAG-1 of Toxoplasma gondii was efficiently transported out of the endoplasmic reticulum of insect cells and was located, at least in part, on the cell surface. No GPI-anchor could be detected for either of the MSP-1 constructs or SAG-1, showing that the difference in transport is a property of the individual proteins and cannot be attributed to the lack of a GPI-anchor. The different intracellular location and post-translational modification of recombinant proteins expressed in insect cells, as compared to the native proteins expressed in parasites, and the possible implications for vaccine development are discussed.
Collapse
Affiliation(s)
- M H Kedees
- Zentrum für Hygiene und Medizinische Mikrobiologie, Philips-Universität Marburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Flanagan KL, Plebanski M, Akinwunmi P, Lee EA, Reece WH, Robson KJ, Hill AV, Pinder M. Broadly distributed T cell reactivity, with no immunodominant loci, to the pre-erythrocytic antigen thrombospondin-related adhesive protein of Plasmodium falciparum in West Africans. Eur J Immunol 1999; 29:1943-54. [PMID: 10382757 DOI: 10.1002/(sici)1521-4141(199906)29:06<1943::aid-immu1943>3.0.co;2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protective immunity to malaria has been achieved in human volunteers utilizing the pre-erythrocytic Plasmodium falciparum antigen, the circumsporozoite protein (CS). However, T cell reactivity to CS is focused on several highly polymorphic T cell epitope regions, potentially limiting the efficacy of any vaccine to specific malaria strains. Another important pre-erythrocytic malaria antigen, the thrombospondin-related adhesive protein (TRAP), can induce protection in animal models of malaria, but knowledge of human T cell responses is limited to the identification of CD8 T cell epitopes, with no CD4 epitopes identified to date. This comprehensive study assessed reactivity to overlapping peptides spanning almost the whole of P. falciparum TRAP (PfTRAP), as well as peptides selected on the basis of HLA class II-binding motifs. A total of 50 naturally exposed Gambian adults were assessed to define 26 T cell epitopes in PfTRAP capable of inducing rapid IFN-gamma or IL-4 production, as assessed by enzyme-linked immunospot assays. In contrast to the CS protein, this reactivity was broadly distributed along the length of TRAP. Moreover, of the 26 epitopes identified, 10 were found to be conserved in West Africa.
Collapse
Affiliation(s)
- K L Flanagan
- Institute of Molecular Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, GB
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Pang XL, Mitamura T, Horii T. Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites and schizonts. Infect Immun 1999; 67:1821-7. [PMID: 10085023 PMCID: PMC96533 DOI: 10.1128/iai.67.4.1821-1827.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1998] [Accepted: 01/05/1999] [Indexed: 11/20/2022] Open
Abstract
The serine repeat antigen (SERA) is a vaccine candidate antigen of Plasmodium falciparum. Immunization of mice with Escherichia coli-produced recombinant protein of the SERA N-terminal domain (SE47') induced an antiserum that was inhibitory to parasite growth in vitro. Affinity-purified mouse antibodies specific to the recombinant protein inhibited parasite growth between the schizont and ring stages but not between the ring and schizont stages. When Percoll-purified schizonts were cultured with the affinity-purified SE47'-specific antibodies, schizonts and merozoites were agglutinated. Indirect-immunofluorescence assays with unfixed parasite cells showed that SE47'-specific immunoglobulin G (IgG) bound to SERA molecules on rupturing schizonts and merozoites but the IgG did not react with the schizont-infected erythrocytes (RBC). Furthermore, double-fluorescence staining against SE47'-specific IgG and anti-human RBC membrane IgG showed that the RBC membrane disappeared from SE47'-specific-IgG-bound schizonts after cultivation. These observations suggest that the SE47'-specific antibodies inhibit parasite growth by cross-linking SERA molecules that are associated with merozoites in rupturing schizonts with partly broken RBC and parasitophorous vacuole membranes, blocking merozoite release.
Collapse
Affiliation(s)
- X L Pang
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita Osaka 565-0871, Japan
| | | | | |
Collapse
|
25
|
Abstract
Malaria still kills some 0.5-2.5 million people per year in the tropics. Resistance to the cheap, most commonly used antimalarials continues to spread alarmingly and could outpace drug development. The artemisinin derivatives have had an important clinical impact both on the treatment of resistant falciparum malaria and on the incidence of disease in low-transmission areas. A few promising new antimalarials are being tested clinically but there is an imperative need for cheap, well-tolerated drugs that can be used in short courses, and for strategies to delay the onset of drug resistance. Bed nets have been shown to reduce the incidence of severe malaria in many areas but an effective vaccine is urgently needed.
Collapse
Affiliation(s)
- P Newton
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
26
|
Abstract
Atherosclerosis is the predominant underlying pathology responsible for coronary heart disease (CHD). It bears all the hallmarks of a chronic inflammatory disease and typical atherosclerotic lesions contain activated macrophages and T-cells. There have been several reports of possible associations between prior exposure to a number of specific micro-organisms and subsequent CHD, and prospective epidemiological studies have reported that elevated plasma levels of particular acute phase reactants (APRs) are predictors of future cardiac events. Investigators have also shown that immunisations exacerbate atherosclerosis in experimental animal models. These data raise the possibility that immunostimulation associated with natural infection by certain organisms, or vaccination, may promote atherosclerosis. A hypothesis which may explain all these findings, is that the cellular--and perhaps humoral--responses associated with immune stimulation may enhance atherogenesis.
Collapse
Affiliation(s)
- D J Lamb
- Centre for Clinical Science and Measurement, School of Biological Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|