1
|
Thakur P, Mukherjee G. Utilization of Agro-waste in Pectinase Production and Its Industrial Applications. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
2
|
Dong Z, Luo M, Wang Z. An Exo-Polygalacturonase Pgc4 Regulates Aerial Hyphal Growth and Virulence in Fusarium oxysporum f. sp. cubense race 4. Int J Mol Sci 2020; 21:ijms21165886. [PMID: 32824317 PMCID: PMC7461583 DOI: 10.3390/ijms21165886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022] Open
Abstract
Fusarium oxysporum f. sp. cubense race 4 (Foc4) causes Fusarium wilt that affects banana plants, and hence, the molecular mechanisms of its virulence need to be investigated. We purified an exo-polygalacturonase (exo-PG), Pgc4, from Foc4. Pgc4 has an apparent molecular weight of 50.87 kDa based on sodium dodecyl sulphate–polyacrylamide gel electrophoresis. We further performed its sequence analysis and biochemical characterization. The two pgc4 genes encoding Pgc4 from Foc4 and Foc1 were 1434 bp in length and encoded 477 amino acids with differences, due to some nucleotide differences between the two. The Km and Vmax values of Pgc4 purified from Foc4 were determined to be 0.45 mg/mL and 105.26 Units·mg·protein−1 ·min−1, respectively. The recombinant proteins, r-Foc1-Pgc4 and r-Foc4-Pgc4, were expressed and purified from Pichia pastoris and showed optimal Pgc4 activity at 55 °C and pH 4.0; both could induce tissue maceration and necrosis in the “Guangfen-1” and “Baxi” varieties of banana but to a different extent. Phenotypic assays and complementation analyses revealed that, compared to the wild-type, the generated Foc4Δpgc4 mutant strain showed a lower aerial hyphal growth, grew slower, and had a reduced virulence. Therefore, our results demonstrate the function of Pgc4 as a pathogenicity factor of Foc4.
Collapse
Affiliation(s)
- Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Correspondence: ; Tel.: +86-20-89003192
| | - Mei Luo
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
3
|
Dittoe DK, Barabote RD, Rothrock MJ, Ricke SC. Assessment of a Potential Role of Dickeya dadantii DSM 18020 as a Pectinase Producer for Utilization in Poultry Diets Based on in silico Analyses. Front Microbiol 2020; 11:751. [PMID: 32390987 PMCID: PMC7191031 DOI: 10.3389/fmicb.2020.00751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/30/2020] [Indexed: 01/17/2023] Open
Abstract
Currently, the poultry industry has been faced with consumer pressure to utilize only vegetable feedstuffs in poultry diets, eliminate antibiotics from poultry production, and rear poultry in free range systems. To maintain current production standards, the industry must determine ways to enhance nutrient uptake and utilization further. One possible solution is the supplementation of pectinase, an enzyme that degrades pectin within the cell walls of plants, in poultry diets. Therefore, the objective of the current study was to determine the potential role of a pectinase producer, Dickeya dadantii DSM 18020, as a commercially utilized pectinase producer in poultry diets against other known pectinase producers, in silico. In the current study, whole genomes of Dickeya dadantii DSM 18020 (Dd18020), D. dadantii 3937 (Dd3937), D. solani IPO 2222 (Ds2222), Bacillus halodurans C-125 (BhC125), and B. subtilis subsp. subtilis str. 168 (Bs168) were compared using bioinformatic approaches to compare the chromosomal genome size, GC content, protein coding genes (CDS), total genes, average protein length (a.a.) and determine the predicted metabolic pathways, predicted pectin degrading enzymes, and pectin-degradation pathways across pectinase producers. Due to insufficient information surrounding the genome of Dd18020 (lack of annotation), the genome of Dd3937, a 99% identical genome to Dd18020, was utilized to compare pectinase-associated enzymes and pathways. The results from the current study demonstrated that Dd3937 possessed the most significant proportion of pathways presented and the highest number of pathways related to degradation, assimilation, and utilization of pectin. Also, Dd18020 exhibited a high number of pectinase-related enzymes. Both Dd3937 and Dd2222 shared the pectin degradation I pathway via the EC 3.1.1.11, EC 3.2.1.82, and EC 4.2.2.- enzymes, but did not share this pathway with either Bacillus species. In conclusion, Dd18020 demonstrated the genetic potential to produce multiple pectinase enzymes that could be beneficial to the degradation of pectin in poultry diets. However, for Dd18020 to become a commercially viable enzyme producer for the poultry industry, further research quantifying the pectinase production in vitro and determining the stability of the produced pectinases during feed manufacturing are necessary.
Collapse
Affiliation(s)
- Dana K Dittoe
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Ravi D Barabote
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Steven C Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Mamo G, Mattiasson B. Alkaliphiles: The Versatile Tools in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 172:1-51. [PMID: 32342125 DOI: 10.1007/10_2020_126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extreme environments within the biosphere are inhabited by organisms known as extremophiles. Lately, these organisms are attracting a great deal of interest from researchers and industrialists. The motive behind this attraction is mainly related to the desire for new and efficient products of biotechnological importance and human curiosity of understanding nature. Organisms living in common "human-friendly" environments have served humanity for a very long time, and this has led to exhaustion of the low-hanging "fruits," a phenomenon witnessed by the diminishing rate of new discoveries. For example, acquiring novel products such as drugs from the traditional sources has become difficult and expensive. Such challenges together with the basic research interest have brought the exploration of previously neglected or unknown groups of organisms. Extremophiles are among these groups which have been brought to focus and garnering a growing importance in biotechnology. In the last few decades, numerous extremophiles and their products have got their ways into industrial, agricultural, environmental, pharmaceutical, and other biotechnological applications.Alkaliphiles, organisms which thrive optimally at or above pH 9, are one of the most important classes of extremophiles. To flourish in their extreme habitats, alkaliphiles evolved impressive structural and functional adaptations. The high pH adaptation gave unique biocatalysts that are operationally stable at elevated pH and several other novel products with immense biotechnological application potential. Advances in the cultivation techniques, success in gene cloning and expression, metabolic engineering, metagenomics, and other related techniques are significantly contributing to expand the application horizon of these remarkable organisms of the 'bizarre' world. Studies have shown the enormous potential of alkaliphiles in numerous biotechnological applications. Although it seems just the beginning, some fantastic strides are already made in tapping this potential. This work tries to review some of the prominent applications of alkaliphiles by focusing such as on their enzymes, metabolites, exopolysaccharides, and biosurfactants. Moreover, the chapter strives to assesses the whole-cell applications of alkaliphiles including in biomining, food and feed supplementation, bioconstruction, microbial fuel cell, biofuel production, and bioremediation.
Collapse
Affiliation(s)
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Rahman MS, Choi YS, Kim YK, Park C, Yoo JC. Production of Novel Polygalacturonase from Bacillus paralicheniformis CBS32 and Application to Depolymerization of Ramie Fiber. Polymers (Basel) 2019; 11:polym11091525. [PMID: 31546870 PMCID: PMC6780255 DOI: 10.3390/polym11091525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
Polygalacturonase (EC. 3.2.1.15) is an enzyme that hydrolyzes the alpha-1,4 glycosidic bonds between galacturonic acid. In this study, an alkaline polygalacturonase producer Bacillus paralicheniformis CBS32 was isolated from kimchi (conventional Korean fermented food). The 16S rRNA sequence analysis of the isolated strain revealed that it was 99.92% identical to B. paralicheniformis KJ 16LBMN01000156. The polygalacturonase from B. paralicheniformis CBS32 was named PN32, and the purified PN32 showed a 16.8% yield and a 33-fold purity compared to the crude broth. The molecular mass, 110 kDa, was determined by SDS-PAGE, and the active band was confirmed by zymography analysis. The N-terminal amino acid sequence residues of PN32 were determined to be Gly–Val–Lys–Glu–Val–X–Gln–Thr–Phe. In the sequence comparison, PN32 was suggested as a novel polygalacturonase, since the sequence was not matched with the previous reports. In an application study, enzymatic depolymerization of ramie was performed for fiber degumming, and the result showed that the PN32 had a 28% higher depolymerization compared to the commercial pectinase. Overall, based on the results, PN32 has high potential for industrial applications.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Yoon Seok Choi
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Young Kyun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea.
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Korea.
| |
Collapse
|
6
|
Evangelista DE, de Araújo EA, Neto MO, Kadowaki MAS, Polikarpov I. Biochemical characterization and low-resolution SAXS structure of an exo-polygalacturonase from Bacillus licheniformis. N Biotechnol 2018; 40:268-274. [DOI: 10.1016/j.nbt.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
7
|
Anand G, Yadav S, Yadav D. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice. 3 Biotech 2017; 7:122. [PMID: 28567634 PMCID: PMC5451361 DOI: 10.1007/s13205-017-0760-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/02/2017] [Indexed: 10/19/2022] Open
Abstract
Polygalacturonases (PG) represent an important member of pectinases group of enzymes with immense industrial applications. A fungal strain Aspergillus niger MTCC478 was used for the production of polygalacturonase both under submerged and solid-state fermentation condition. Further its production was optimized under solid-state fermentation condition with media comprising of wheat bran and tea extract. Purification of an exo-PG was achieved by acetone precipitation (60-90%) and CM-cellulose column chromatography revealing 15.28-fold purification with a specific activity of 33.47 U/mg protein and 1.2% yield. A relative molecular mass of purified PG was approximately 124.0 kDa. The pH and temperature optimum was found to be 4 and 50 °C, respectively. The k cat and K m value for degradation of PGA by the purified enzyme was found to be 194 s-1 and 2.3 mg/mL, respectively. Cu2+ was found to enhance the PG activity while Ag+ completely inhibited the enzyme activity. The application of the purified PG in orange juice clarification was elucidated.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
8
|
Purification and biochemical characterization of an exo-polygalacturonase from Aspergillus flavus MTCC 7589. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Amin F, Bhatti HN, Bilal M, Asgher M. Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective. Appl Biochem Biotechnol 2017; 183:426-443. [DOI: 10.1007/s12010-017-2455-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
|
10
|
Anand G, Yadav S, Yadav D. Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech 2016; 6:201. [PMID: 28330273 PMCID: PMC5033773 DOI: 10.1007/s13205-016-0517-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Polygalacturonases represents an important member of pectinases group of enzymes with diverse industrial applications and is widely distributed among fungi, bacteria, yeasts, plants and some plant parasitic nematodes. An endo-polygalacturonase from a new fungal source Aspergillus fumigatus MTCC 2584 was produced under solid-state fermentation conditions and was purified simply by acetone precipitation and gel-filtration chromatography technique. The approximate molecular weight of the purified PG was found to be 43.0 kDa as revealed by SDS-PAGE. The pH optimum of the purified enzyme was found to be 10.0 and was stable in the pH range of 7-10. The optimum temperature of purified PG was found to be 30 °C. The Km and Kcat of the purified enzyme were 2.4 mg/ml and 44 s-1, respectively, and the metal ions Cu2+ and K+ were found to enhance the enzyme activity while Ag+, Ca2+ and Hg2+ were inhibitory in nature. Based on its alkaline nature, the potential of purified PG in retting of natural fiber Crotalaria juncea was elucidated in the absence of EDTA. This is probably the first report of alkaline PG from Aspergillus fumigatus.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
11
|
MA YUPING, SUN SIWEN, HAO HUI, XU CHUNPING. Production, purification and characterization of an exo-polygalacturonase from Penicillium janthinellum sw09. ACTA ACUST UNITED AC 2016; 88 Suppl 1:479-87. [DOI: 10.1590/0001-3765201620150051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
ABSTRACT A soil isolate, Penicillium janthinellum sw09 has been found to produce significant amounts of an extracellular pectinase subsequently characterized as exo-polygalacturonase (exo-PG). By optimizing growth conditions, P. janthinellum sw09 produced high amount of exo-PG (16.54 units/mL). The crude enzyme was purified by gel filtration chromatography and two exo-PG activity peaks (designated as PGI and PGII) were revealed. On SDS-PAGE analysis, purified PGII using DEAE-Sepharose FF column, was found to be a single band with a molecular mass of 66.2 kDa. The purified PGII exhibited maximal activity at the temperature of 45 oC and pH 5.0. The stability profiles show that PGII is more stable in the pH range of 4.0-8.0 and below 60 oC. The Km and Vmax for the enzyme was 1.74 mg/mL and 18.08 μmol/ (mL•min), respectively. Due to this enzymatic characterization, this pectinase is an attractive candidate for applications in degradation of pectin.
Collapse
Affiliation(s)
- YUPING MA
- China Tobacco Henan Industrial Co. Ltd, China
| | - SIWEN SUN
- Zhengzhou University of Light Industry, China
| | - HUI HAO
- China Tobacco Henan Industrial Co. Ltd, China
| | - CHUNPING XU
- Zhengzhou University of Light Industry, China
| |
Collapse
|
12
|
Pili J, Danielli A, Zeni J, Trentini MMS, Cansian RL, Toniazzo G, Valduga E. Utilization of Orange Peel, Corn Steep Liquor, and Parboiled Rice Water in the Production of Polygalacturonase from Aspergillus niger. Ind Biotechnol (New Rochelle N Y) 2015. [DOI: 10.1089/ind.2015.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonaina Pili
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | | | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | | | | | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
13
|
Characterization of pectin degrading polygalacturonase produced by Bacillus licheniformis KIBGE-IB21. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Purification and characterisation of thermo-alkaline pectinase enzyme from Hylocereus polyrhizus. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2188-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Zhang C, Yao J, Zhou C, Mao L, Zhang G, Ma Y. The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber. BMC Biotechnol 2013; 13:26. [PMID: 23510095 PMCID: PMC3620942 DOI: 10.1186/1472-6750-13-26] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/12/2013] [Indexed: 12/04/2022] Open
Abstract
Background The conventional degumming process of ramie with alkaline treatment at high temperature causes severe environmental pollution. Pectate lyases can be used to remove pectin from ramie in a degumming process with reduced environmental pollution and energy consumption. Pectate lyase PEL168 from Bacillus subtilis has been previously characterized and the protein structure was resolved. However, Bacillus is not a suitable host for pectate lyases during the degumming process since most Bacillus produce cellulases endogenously with a detrimental effect to the fiber. Pichia pastoris, which does not express endogenous cellulases and has high secretion capability, will be an ideal host for the expression. No previous work was reported concerning the heterologous expression of pectate lyase PEL168 in P. pastoris with an aim for industrial application in ramie bio-degumming. Results The gene pel168 was expressed in P. pastoris in this study. The recombinant protein PEL168 in P. pastoris (PEL168P) showed two bands of 48.6 kDa and 51.4 kDa on SDS-PAGE whereas the enzyme expressed in E. coli (PEL168E) was the same as predicted with a band of 46 kDa. Deglycosylation digestion suggested that PEL168P was glycosylated. The optimum reaction temperature of the two PEL168s was 50°C, and the optimum pH 9.5. After preincubation at 60°C for 20 min, PEL168E completely lost its activity, whereas PEL168P kept 26% of the residual activity. PEL168P had a specific activity of 1320 U/mg with a Km of 0.09 mg/ml and a Vmax of 18.13 μmol/min. K+, Li+, Ni2+ and Sr2+ showed little or no inhibitory effect on PEL168P activity, and Ca2+ enhanced enzyme activity by 38%. PEL168P can remove the pectin from ramie effectively in a degumming process. A 1.5 fold increase of PEL168 enzyme expression in P. pastoris was achieved by further codon optimization. Conclusions Pectate lyase PEL168 with an available protein structure can be heterologously expressed in P. pastoris. The characterized recombinant PEL168P can be used to remove pectin from ramie efficiently and the expression level of PEL168 in P. pastoris was increased markedly by codon optimization. Therefore, PEL168 is an ideal candidate for further optimization and engineering for bio-degumming.
Collapse
Affiliation(s)
- Chengjie Zhang
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | | | | | | | | | | |
Collapse
|
16
|
Yuan P, Meng K, Wang Y, Luo H, Shi P, Huang H, Bai Y, Yang P, Yao B. A protease-resistant exo-polygalacturonase from Klebsiella sp. Y1 with good activity and stability over a wide pH range in the digestive tract. BIORESOURCE TECHNOLOGY 2012; 123:171-176. [PMID: 22940315 DOI: 10.1016/j.biortech.2012.07.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/02/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Polygalacturonases are important feed and food additives. In the present study an exo-polygalacturonase gene (pgu B) was cloned from Klebsiella sp. Y1 CGMCC 4433 and expressed in Escherichia coli BL21 (DE3). pgu B encodes a 658-amino acid polypeptide belonging to Glycoside Hydrolase Family 28. The optimal pH and temperature of exo-PGU B activity were 6.0 and 40-50°C, respectively. The enzyme exhibited >35% of maximum activity within the pH range of 2.0-12.0. Exo-PGU B or an exo-PGU B/ endo-polygalacturonase mixture reduced the viscosity of polygalacturonic acid (1.0%, w/v) by 15.6 and 39.4%, respectively. Under simulated alimentary tract conditions, exo-PGU B was very stable (>25% activity from pH 1.5 to 6.8) and active, releasing 53.7 and 109.6μg of galacturonic acid from 400 to 800μg of polygalacturonic acid, respectively. These properties make exo-PGU B a potentially valuable additive for applications in feed and food.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhou J, Dong Y, Gao Y, Tang X, Li J, Yang Y, Xu B, Xie Z, Huang Z. Characterization of a family 3 polysaccharide lyase with broad temperature adaptability, thermo-alkali stability, and ethanol tolerance. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Gupta R. Optimization of production and reaction conditions of polygalacturonase from Byssochlamys fulva. Acta Microbiol Immunol Hung 2011; 58:339-49. [PMID: 22207291 DOI: 10.1556/amicr.58.2011.4.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, the optimization of production and reaction conditions of polygalacturonase produced by a fungus Byssochlamys fulva MTCC 505 was achieved. The production of polygalacturonase with a considerable activity of 1.28 IU/ml was found when the culture was shaken at 30°C for 5 days in 100 ml of medium containing (w/v) 10 g/l pectin, 2 g/l NaNO₃, 1 g/l KH₂PO₄, 0.5 g/l KCl, 0.5 g/l MgSO₄. 7H₂O, 0.001 g/l FeSO₄. 7H₂O, 0.001 g/l CaCl₂. The best carbon and nitrogen source for this enzyme were pectin (1%) and Ca(NO₃)₂ (0.1%), respectively. The enzyme gave maximum activity at incubation time of 72 h, temperature of 30°C and pH 4.5. During the optimization of reaction conditions, the enzyme showed maximum activity in sodium citrate buffer (50 mM) of pH 5.5 at 50°C reaction temperature for 15 minutes of incubation. The enzyme showed greater affinity for polygalacturonic acid as substrate (0.5%). Km and Vmax values were 0.15 mg/ml and 4.58 μmol/ml/min. The effect of various phenolics, thiols, protein inhibitors and metal ions on the enzyme activity was investigated. The enzyme was quite stable at 4°C and 30°C. At 40°C the half life of the enzyme was 6 h and at 60°C it was 2 h.
Collapse
Affiliation(s)
- Reena Gupta
- 1 Himachal Pradesh University Department of Biotechnology Summer Hill Shimla 171005 India
| | | |
Collapse
|
19
|
Yasawong M, Areekit S, Pakpitchareon A, Santiwatanakul S, Chansiri K. Characterization of thermophilic halotolerant Aeribacillus pallidus TD1 from Tao Dam Hot Spring, Thailand. Int J Mol Sci 2011; 12:5294-303. [PMID: 21954359 PMCID: PMC3179166 DOI: 10.3390/ijms12085294] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 08/05/2011] [Indexed: 11/29/2022] Open
Abstract
The bacterial strain TD1 was isolated from Tao Dam hot spring in Thailand. Strain TD1 was Gram positive, rod-shaped, aerobic, motile, and endospore forming. The cell was 2.0–40 μm in length and about 0.4 μm in diameter. The optimum growth occurred at 55–60 °C and at pH 7–8. Strain TD1 was able to grow on medium containing up to 10% NaCl. The DNA G+C content was 38.9 mol%. The cellular fatty acid content was mainly C16:0, which comprised 25.04% of the total amount of cellular fatty acid. 16S rDNA showed 99% identity to Aeribacillus pallidus DSM 3670T. Bayesian tree analysis strongly supported the idea that strain TD1 is affiliated with genus Aeribacillus, as Aeribacillus pallidus strain TD1. Although the 16S rDNA of A. pallidus strain TD1 is similar to that of A. pallidus DSM 3670T, some physiological properties and the cellular fatty acid profiles differ significantly. A. pallidus strain TD1 can produce extracellular pectate lyase, which has not been reported elsewhere for other bacterial strains in the genus Aeribacillus. A. pallidus strain TD1 may be a good candidate as a pectate lyase producer, which may have useful industrial applications.
Collapse
Affiliation(s)
- Montri Yasawong
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Supatra Areekit
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Arda Pakpitchareon
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
| | - Somchai Santiwatanakul
- Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mail:
| | - Kosum Chansiri
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; E-Mails: (M.Y.); (S.A.); (A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +662-664-1000-4605; Fax: +662-664-1000-4618
| |
Collapse
|
20
|
Maller A, Damásio ARL, da Silva TM, Jorge JA, Terenzi HF, Polizeli MDLTDM. Biotechnological Potential of Agro-Industrial Wastes as a Carbon Source to Thermostable Polygalacturonase Production in Aspergillus niveus. Enzyme Res 2011; 2011:289206. [PMID: 21837272 PMCID: PMC3132474 DOI: 10.4061/2011/289206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/15/2011] [Accepted: 04/23/2011] [Indexed: 11/20/2022] Open
Abstract
Agro-industrial wastes are mainly composed of complex polysaccharides that might serve as nutrients for microbial growth and production of enzymes. The aim of this work was to study polygalacturonase (PG) production by Aspergillus niveus cultured on liquid or solid media supplemented with agro-industrial wastes. Submerged fermentation (SbmF) was tested using Czapeck media supplemented with 28 different carbon sources. Among these, orange peel was the best PG inducer. On the other hand, for solid state fermentation (SSF), lemon peel was the best inducer. By comparing SbmF with SSF, both supplemented with lemon peel, it was observed that PG levels were 4.4-fold higher under SSF. Maximum PG activity was observed at 55°C and pH 4.0. The enzyme was stable at 60°C for 90 min and at pH 3.0–5.0. The properties of this enzyme, produced on inexpensive fermentation substrates, were interesting and suggested several biotechnological applications.
Collapse
Affiliation(s)
- Alexandre Maller
- Biochemistry and Immunology Department, Ribeirão Preto School of Medicine, São Paulo University, Avenue Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Di Candilo M, Bonatti PM, Guidetti C, Focher B, Grippo C, Tamburini E, Mastromei G. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties. J Appl Microbiol 2010; 108:194-203. [PMID: 19558465 DOI: 10.1111/j.1365-2672.2009.04409.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. METHODS AND RESULTS The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. CONCLUSIONS The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.
Collapse
Affiliation(s)
- M Di Candilo
- C.R.A. - Istituto Sperimentale per le Colture Industriali, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Purification and Partial Characterization of an Exo-polygalacturonase from Paecilomyces variotii Liquid Cultures. Appl Biochem Biotechnol 2009; 160:1496-507. [DOI: 10.1007/s12010-009-8682-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
23
|
Characterization of an Exopolygalacturonase from Aspergillus niger. Appl Biochem Biotechnol 2008; 149:205-17. [DOI: 10.1007/s12010-007-8107-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
24
|
Mohamed SA, Farid NM, Hossiny EN, Bassuiny RI. Biochemical characterization of an extracellular polygalacturonase from Trichoderma harzianum. J Biotechnol 2006; 127:54-64. [PMID: 16872705 DOI: 10.1016/j.jbiotec.2006.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 02/02/2006] [Accepted: 06/13/2006] [Indexed: 11/24/2022]
Abstract
An extracellular polygalacturonase (PGII) from Trichoderma harzianum was purified to homogeneity by two chromatography steps using DEAE-Sepharose and Sephacryl S-200. The molecular weight of T. harzianum PGII was 31,000 Da by gel filtration and SDS-PAGE. PGII had isoelectric point of 4.5 and optimum pH of 5.0. PGII was very stable at the pH 5.0. The extent of hydrolysis of different pectins by enzyme was decreased with increasing of degree of esterification (DE). PGII had very low activity toward non-pectic polysaccharides. The apparent K(m) value and K(cat) value for hydrolyzing polygalacturonic acid (PGA) were 3.4 mg/ml and 592 s(-1), respectively. PGII was found to have temperature optimum at 40 degrees C and was approximately stable up to 30 degrees C for 60 min of incubation. All the examined metal cations showed inhibitory effects on the enzyme activity. A 1,10-phenanthroline, Tween 20, Tween 80, Triton X-100 and SDS had no effect on the enzyme activity. The rate of enzyme catalyzed reduction of viscosity of solutions of PGA or pectin was higher three times than the rate of release of reducing sugars indicating that the enzyme had an endo-action. The storage stability of the enzyme in liquid and powder forms was studied, where the activity of the powder form was stable up to 1 year. These properties of T. harzianum PGII with appreciable activity would be potentially novel source of enzyme for food processing.
Collapse
Affiliation(s)
- Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Egypt.
| | | | | | | |
Collapse
|
25
|
Celestino SMC, Maria de Freitas S, Javier Medrano F, Valle de Sousa M, Filho EXF. Purification and characterization of a novel pectinase from Acrophialophora nainiana with emphasis on its physicochemical properties. J Biotechnol 2006; 123:33-42. [PMID: 16337707 DOI: 10.1016/j.jbiotec.2005.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/28/2005] [Accepted: 10/24/2005] [Indexed: 11/19/2022]
Abstract
An extracellular pectinase (PECI) was purified to apparent homogeneity from liquid state cultures of the thermophilic fungus Acrophialophora nainiana by ultrafiltration and a combination of gel filtration and ion-exchange chromatographic procedures. The molecular masses of PECI were 35,500 and 30,749 Da, as determined by SDS-PAGE and mass spectrometry, respectively. It was more active at 60 degrees C and pH 8.0 and showed high stability at 50 degrees C with half-life of 7 days. However at 60 and 70 degrees C, PECI was much less stable with half lives of approximately 20 and 3 min, respectively. The thermostability of purified PECI was also investigated by fluorescence and circular dichroism spectroscopy. Fluorescence revealed that the unfolding transition region was observed between 45 and 70 degrees C. A major decrease in the stability was found at 70 degrees C. Circular dichroism measurements at pH between 5.0 and 9.0 showed a transition temperature (T(m)) range of 50-55 degrees . The thermodynamic analysis of these results showed that EPGI is thermal stable protein exhibiting maximum stability (DeltaG(25)) of 22.65 and 19.19 kcal/mol at pH 8.0 and 9.0, respectively. The apparent K(m) value on pectin from citrus fruits was 4.22 mgml(-1). PECI exhibited no detectable activity of pectin methylesterase, endo-polygalacturonase, mannanase, xylanase and cellulase. However, it showed exo-polygalacturonase and pectin lyase activities. The presence of carbohydrate was detected in the pure PECI. It was activated by l-tryptophan, DEPC, DTT, DTNB, DTP, l-cystein and beta-mercaptoethanol and inhibited by NBS, Fe(2+), Cu(2+), Zn(2+), Mn(2+), Al(3+) and Ca(2+). The enzyme showed homology with a pectin lyases from Xanthomonas campestris and Bacillus licheniformis.
Collapse
Affiliation(s)
- S Maria C Celestino
- Laboratório de Enzimologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, CEP 70910-900, Brazil
| | | | | | | | | |
Collapse
|
26
|
Tamburini E, León AG, Perito B, Mastromei G. Characterization of bacterial pectinolytic strains involved in the water retting process. Environ Microbiol 2003; 5:730-6. [PMID: 12919408 DOI: 10.1046/j.1462-2920.2003.00462.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pectinolytic microorganisms involved in the water retting process were characterized. Cultivable mesophilic anaerobic and aerobic bacteria were isolated from unretted and water-retted material. A total of 104 anaerobic and 23 aerobic pectinolytic strains were identified. Polygalacturonase activity was measured in the supernatant of cell cultures; 24 anaerobic and nine aerobic isolates showed an enzymatic activity higher than the reference strains Clostridium felsineum and Bacillus subtilis respectively. We performed the first genotypic characterization of the retting microflora by a 16S amplified ribosomal DNA restriction analysis (ARDRA). Anaerobic isolates were divided into five different groups, and the aerobic isolates were clustered into three groups. 84.6% of the anaerobic and 82.6% of the aerobic isolates consisted of two main haplotypes. Partial 16S rRNA gene sequences were determined for 12 strains, representative of each haplotype. All anaerobic strains were assigned to the Clostridium genus, whereas the aerobic isolates were assigned to either the Bacillus or the Paenibacillus genus. Anaerobic isolates with high polygalacturonase (PG) activity belong to two clearly distinct phylogenetic clusters related to C. acetobutylicum-C. felsineum and C. saccharobutylicum species. Aerobic isolates with high PG activity belong to two clearly distinct phylogenetic clusters related to B. subtilisT and B. pumilusT.
Collapse
MESH Headings
- Bacillus/isolation & purification
- Bacillus/metabolism
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/enzymology
- Bacteria, Aerobic/isolation & purification
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/enzymology
- Bacteria, Anaerobic/isolation & purification
- Cannabis/metabolism
- Cannabis/microbiology
- Clostridium/isolation & purification
- Clostridium/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Flax/metabolism
- Flax/microbiology
- Haplotypes
- Pectins/metabolism
- Phylogeny
- Polygalacturonase/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribotyping
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Water Microbiology
Collapse
Affiliation(s)
- Elena Tamburini
- Dipartimento di Biologia Sperimentale, Sezione di Microbiologia, University of Cagliari, Cittadella universitaria, 09042 Monserrato, Italy
| | | | | | | |
Collapse
|
27
|
Sawada K, Suzumatsu A, Kobayashi T, Ito S. Molecular cloning and sequencing of the gene encoding an exopolygalacturonase of a Bacillus isolate and properties of its recombinant enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:162-70. [PMID: 11750764 DOI: 10.1016/s0304-4165(01)00213-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An exopolygalacturonase (exo-PGase; EC 3.2.1.82) was found in the culture broth of a Bacillus isolate. The gene encoding the exo-PGase, pehK, was cloned by polymerase chain reaction using mixed primers designed from N-terminal and internal amino acid (aa) sequences of the enzyme (PehK). The determined nucleotide (nt) sequence of pehK revealed a 2940 bp open reading frame (980 aa) that encoded a putative signal sequence (27 aa) and a mature protein (953 aa; 103810 Da). The recombinant enzyme was purified to homogeneity from a culture broth of Bacillus subtilis harboring a pehK-containing plasmid. It had a molecular mass of 105 kDa and a pI value of 5.0. The maximum activity was observed at pH 8 and 55 degrees C in Tris-HCl buffer. The degradation products from polygalacturonic or oligogalacturonic acids were digalacturonic acid, like the exo-PGases, PehX of Erwinia chrysanthemi and PehB of Ralstonia solanacearum. The deduced aa sequence of PehK exhibited moderate homology to those of PehX and PehB with approx. 30% identity for both. High homology was observed in a suitably aligned internal region of the three enzymes (65% identity), and some of the conserved aa residues appeared to form the catalytic core of the enzymes.
Collapse
Affiliation(s)
- K Sawada
- Tochigi Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, 321-3497 Tochigi, Japan
| | | | | | | |
Collapse
|