1
|
Álvarez SP, Ardisana EFH. Biotechnology of Beneficial Bacteria and Fungi Useful in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
2
|
Shah F, Gressler M, Nehzati S, Op De Beeck M, Gentile L, Hoffmeister D, Persson P, Tunlid A. Secretion of Iron(III)-Reducing Metabolites during Protein Acquisition by the Ectomycorrhizal Fungus Paxillus involutus. Microorganisms 2020; 9:E35. [PMID: 33374225 PMCID: PMC7824621 DOI: 10.3390/microorganisms9010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
The ectomycorrhizal fungus Paxillus involutus decomposes proteins using a two-step mechanism, including oxidation and proteolysis. Oxidation involves the action of extracellular hydroxyl radicals (•OH) generated by the Fenton reaction. This reaction requires the presence of iron(II). Here, we monitored the speciation of extracellular iron and the secretion of iron(III)-reducing metabolites during the decomposition of proteins by P. involutus. X-ray absorption spectroscopy showed that extracellular iron was mainly present as solid iron(III) phosphates and oxides. Within 1 to 2 days, these compounds were reductively dissolved, and iron(II) complexes were formed, which remained in the medium throughout the incubation. HPLC and mass spectrometry detected five extracellular iron(III)-reducing metabolites. Four of them were also secreted when the fungus grew on a medium containing ammonium as the sole nitrogen source. NMR identified the unique iron(III)-reductant as the diarylcyclopentenone involutin. Involutin was produced from day 2, just before the elevated •OH production, preceding the oxidation of BSA. The other, not yet fully characterized iron(III)-reductants likely participate in the rapid reduction and dissolution of solid iron(III) complexes observed on day one. The production of these metabolites is induced by other environmental cues than for involutin, suggesting that they play a role beyond the Fenton chemistry associated with protein oxidation.
Collapse
Affiliation(s)
- Firoz Shah
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Markus Gressler
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Susan Nehzati
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
- MAX IV Laboratory, Lund University, 221 00 Lund, Sweden
| | - Michiel Op De Beeck
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Luigi Gentile
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität, 07747 Jena, Germany; (M.G.); (D.H.)
| | - Per Persson
- Centre for Environmental and Climate Research (CEC), Lund University, 223 62 Lund, Sweden;
| | - Anders Tunlid
- Microbial Ecology Group, Department of Biology, Lund University, 223 62 Lund, Sweden; (F.S.); (S.N.); (M.O.D.B.); (L.G.)
| |
Collapse
|
3
|
Merino N, Wang M, Ambrocio R, Mak K, O'Connor E, Gao A, Hawley EL, Deeb RA, Tseng LY, Mahendra S. Fungal biotransformation of 6:2 fluorotelomer alcohol. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/rem.21550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nancy Merino
- Research fellow, Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Rocio Ambrocio
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Kimberly Mak
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | - Ellen O'Connor
- Graduate Student in Molecular Toxicology, University of California Los Angeles
| | - An Gao
- Department of Civil and Environmental Engineering, University of California Los Angeles
| | | | | | - Linda Y. Tseng
- Assistant Professor, Environmental Studies Program & Department of Physics and Astronomy, Colgate University New York
| | - Shaily Mahendra
- Associate Professor and Samueli Fellow, University of California Los Angeles
| |
Collapse
|
4
|
Janusz G, Pawlik A, Sulej J, Swiderska-Burek U, Jarosz-Wilkolazka A, Paszczynski A. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 2017; 41:941-962. [PMID: 29088355 PMCID: PMC5812493 DOI: 10.1093/femsre/fux049] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Pawlik
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Justyna Sulej
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Urszula Swiderska-Burek
- Department of Botany and Mycology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Anna Jarosz-Wilkolazka
- Department of Biochemistry, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Andrzej Paszczynski
- School of Food Science, Food Research Center, Room 103, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
5
|
Camacho-Morales RL, Guillén-Navarro K, Sánchez JE. Degradation of the herbicide paraquat by macromycetes isolated from southeastern Mexico. 3 Biotech 2017; 7:324. [PMID: 28955621 DOI: 10.1007/s13205-017-0967-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 11/25/2022] Open
Abstract
Fifty-four macromycetes, isolated from southeastern Mexico, were used in order to evaluate their capacity for degradation and tolerance to the herbicide paraquat. Ten of these strains were capable of growing in a solid culture medium in the presence of 200 ppm paraquat. Subsequently, assays to evaluate the degradation of the xenobiotic in a liquid medium were carried out. Of the ten strains evaluated, three presented the highest levels of degradation of the compound, which were Trametes pavonia (54.2%), Trametes versicolor (54.1%) and Hypholoma dispersum. They presented the highest overall degradation percentage (70.7%) after 12 days culture. The presence of ligninolytic enzymes in these strains was evaluated. H. dispersum only presented aryl alcohol oxidase activity; however, with the data obtained, it was not possible to conclude whether this specific enzyme is responsible for paraquat degradation. The level of degradation obtained is above the one reported for Pseudomonas putida, one of the few reports on paraquat degradation. This is the first report on the contaminant degradation capacity of H. dispersum.
Collapse
Affiliation(s)
- Reyna L Camacho-Morales
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Apdo Postal 36, 30700 Tapachula, Chiapas Mexico
| | - Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Apdo Postal 36, 30700 Tapachula, Chiapas Mexico
| | - José E Sánchez
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Apdo Postal 36, 30700 Tapachula, Chiapas Mexico
| |
Collapse
|
6
|
Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter. Appl Environ Microbiol 2015; 81:8427-33. [PMID: 26431968 PMCID: PMC4644656 DOI: 10.1128/aem.02312-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/27/2015] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + ˙OH + H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe3+ and O2, generating Fenton chemistry reagents. Here we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe3+-reducing principle secreted by P. involutus during growth on a maize compost extract. The Fe3+-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe3+ reduction. Our results show that the mechanism for the reduction of Fe3+ and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay.
Collapse
|
7
|
Arantes V, Goodell B. Current Understanding of Brown-Rot Fungal Biodegradation Mechanisms: A Review. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1158.ch001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Valdeir Arantes
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| | - Barry Goodell
- University of British Columbia, 4035-2424 Main Mall, V6T 1Z4, Vancouver BC, Canada
- Virginia Polytechnic Institute and State University (Virginia Tech), 216 ICTAS II Building (0917), 1075 Life Sciences Circle, Blacksburg VA 24061, United States
| |
Collapse
|
8
|
Korripally P, Timokhin VI, Houtman CJ, Mozuch MD, Hammel KE. Evidence from Serpula lacrymans that 2,5-dimethoxyhydroquinone Is a lignocellulolytic agent of divergent brown rot basidiomycetes. Appl Environ Microbiol 2013; 79:2377-83. [PMID: 23377930 PMCID: PMC3623220 DOI: 10.1128/aem.03880-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/24/2013] [Indexed: 11/20/2022] Open
Abstract
Basidiomycetes that cause brown rot of wood are essential biomass recyclers in coniferous forest ecosystems and a major cause of failure in wooden structures. Recent work indicates that distinct lineages of brown rot fungi have arisen independently from ligninolytic white rot ancestors via loss of lignocellulolytic enzymes. Brown rot thus proceeds without significant lignin removal, apparently beginning instead with oxidative attack on wood polymers by Fenton reagent produced when fungal hydroquinones or catechols reduce Fe(3+) in colonized wood. Since there is little evidence that white rot fungi produce these metabolites, one question is the extent to which independent lineages of brown rot fungi may have evolved different Fe(3+) reductants. Recently, the catechol variegatic acid was proposed to drive Fenton chemistry in Serpula lacrymans, a brown rot member of the Boletales (D. C. Eastwood et al., Science 333:762-765, 2011). We found no variegatic acid in wood undergoing decay by S. lacrymans. We found also that variegatic acid failed to reduce in vitro the Fe(3+) oxalate chelates that predominate in brown-rotting wood and that it did not drive Fenton chemistry in vitro under physiological conditions. Instead, the decaying wood contained physiologically significant levels of 2,5-dimethoxyhydroquinone, a reductant with a demonstrated biodegradative role when wood is attacked by certain brown rot fungi in two other divergent lineages, the Gloeophyllales and Polyporales. Our results suggest that the pathway for 2,5-dimethoxyhydroquinone biosynthesis may have been present in ancestral white rot basidiomycetes but do not rule out the possibility that it appeared multiple times via convergent evolution.
Collapse
Affiliation(s)
| | - Vitaliy I. Timokhin
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | - Kenneth E. Hammel
- U.S. Forest Products Laboratory, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Stenuit B, Lamblin G, Cornelis P, Agathos SN. Aerobic denitration of 2,4,6-trinitrotoluene in the presence of phenazine compounds and reduced pyridine nucleotides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10605-10613. [PMID: 22881832 DOI: 10.1021/es302046h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phenazine-containing spent culture supernatants of Pseudomonas aeruginosa concentrated with a C18 solid-phase extraction cartridge initiate NAD(P)H-dependent denitration of 2,4,6-trinitrotoluene (TNT). In this study, TNT denitration was investigated under aerobic conditions using two phenazine secondary metabolites excreted by P. aeruginosa, pyocyanin (Py) and its precursor phenazine-1- carboxylic acid (PCA), and two chemically synthesized pyocyanin analogs, phenazine methosulfate (PMS+) and phenazine ethosulfate (PES+). The biomimetic Py/NAD(P)H/O2 system was characterized and found to extensively denitrate TNT in unbuffered aqueous solution with minor production of toxic amino aromatic derivatives. To a much lesser extent, TNT denitration was also observed with PMS+ and PES+ in the presence of NAD(P)H. No TNT denitration was detected with the biomimetic PCA/NAD(P)H/O2 system. Electron paramagnetic resonance (EPR) spectroscopy analysis of the biomimetic Py/NAD(P)H/O2 system revealed the generation of superoxide radical anions (O2 •−). In vitro TNT degradation experiments in the presence of specific inhibitors of reactive oxygen species suggest a nucleophilic attack of superoxide radical anion followed by TNT denitration through an as yet unknown mechanism. The results of this research confirm the high functional versatility of the redox-active metabolite pyocyanin and the susceptibility of aromatic compounds bearing electron withdrawing substituents, such as nitro groups, to superoxide-driven nucleophilic attack.
Collapse
Affiliation(s)
- Ben Stenuit
- Earth and Life Institute, Laboratory of Bioengineering, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
10
|
Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Olsen PB, Persson P, Grell MN, Lindquist E, Grigoriev IV, Lange L, Tunlid A. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 2012; 14:1477-87. [PMID: 22469289 PMCID: PMC3440587 DOI: 10.1111/j.1462-2920.2012.02736.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/16/2012] [Accepted: 03/07/2012] [Indexed: 01/25/2023]
Abstract
Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.
Collapse
Affiliation(s)
- Francois Rineau
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Doris Roth
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Firoz Shah
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Mark Smits
- Centre for Environmental Sciences, Hasselt UniversityBuilding D, Agoralaan, 3590 Diepenbeek, Limburg, Belgium
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| | | | - Per Persson
- Department of Chemistry, Umeå UniversitySE-901 87 Umeå, Sweden
| | - Morten Nedergaard Grell
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Erika Lindquist
- US Department of Energy, Joint Genome Institute2800 Mitchell Avenue, Walnut Creek, CA94598, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute2800 Mitchell Avenue, Walnut Creek, CA94598, USA
| | - Lene Lange
- Department of Biotechnology and Chemistry, Aalborg UniversityLautrupvang 15, DK-2750, Ballerup, Denmark
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Ecology BuildingSE-22362 Lund, Sweden
| |
Collapse
|
11
|
Moldes D, Fernández-Fernández M, Sanromán MÁ. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization. ScientificWorldJournal 2012; 2012:398725. [PMID: 22566767 PMCID: PMC3329927 DOI: 10.1100/2012/398725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/04/2012] [Indexed: 11/24/2022] Open
Abstract
The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.
Collapse
Affiliation(s)
- Diego Moldes
- Department of Chemical Engineering, University of Vigo, Isaac Newton Building, Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | | | | |
Collapse
|
12
|
Arantes V, Jellison J, Goodell B. Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 2012; 94:323-38. [DOI: 10.1007/s00253-012-3954-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022]
|
13
|
Purnomo AS, Kamei I, Kondo R. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 2008; 105:614-21. [DOI: 10.1263/jbb.105.614] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 02/28/2008] [Indexed: 11/17/2022]
|
14
|
|
15
|
Daniel G, Volc J, Filonova L, Plíhal O, Kubátová E, Halada P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 2007; 73:6241-53. [PMID: 17660304 PMCID: PMC2075019 DOI: 10.1128/aem.00977-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/23/2007] [Indexed: 11/20/2022] Open
Abstract
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (K(m) = 2.3 mM, k(cat) = 15.6 s(-1)). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H(2)O(2), a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.
Collapse
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
16
|
Suzuki MR, Hunt CG, Houtman CJ, Dalebroux ZD, Hammel KE. Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 2006; 8:2214-23. [PMID: 17107562 DOI: 10.1111/j.1462-2920.2006.01160.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fungi that cause brown rot of wood initiate lignocellulose breakdown with an extracellular Fenton system in which Fe(2+) and H(2)O(2) react to produce hydroxyl radicals (.OH), which then oxidize and cleave the wood holocellulose. One such fungus, Gloeophyllum trabeum, drives Fenton chemistry on defined media by reducing Fe(3+) and O(2) with two extracellular hydroquinones, 2,5-dimethoxyhydroquinone (2,5-DMHQ) and 4,5-dimethoxycatechol (4,5-DMC). However, it has never been shown that the hydroquinones contribute to brown rot of wood. We grew G. trabeum on spruce blocks and found that 2,5-DMHQ and 4,5-DMC were each present in the aqueous phase at concentrations near 20 microM after 1 week. We determined rate constants for the reactions of 2,5-DMHQ and 4,5-DMC with the Fe(3+)-oxalate complexes that predominate in wood undergoing brown rot, finding them to be 43 l mol(-1) s(-1) and 65 l mol(-1) s(-1) respectively. Using these values, we estimated that the average amount of hydroquinone-driven .OH production during the first week of decay was 11.5 micromol g(-1) dry weight of wood. Viscometry of the degraded wood holocellulose coupled with computer modelling showed that a number of the same general magnitude, 41.2 micromol oxidations per gram, was required to account for the depolymerization that occurred in the first week. Moreover, the decrease in holocellulose viscosity was correlated with the measured concentrations of hydroquinones. Therefore, hydroquinone-driven Fenton chemistry is one component of the biodegradative arsenal that G. trabeum expresses on wood.
Collapse
|