1
|
Zhao X, Zong H, Lu X, Zhuge B. Toxicants improve glycerol production in the fermentation of undetoxified hydrolysate by Candida glycerinogenes. Biotechnol Lett 2024; 46:1057-1068. [PMID: 39085486 DOI: 10.1007/s10529-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Toxicants inhibit microbial fermentation and reduce product titres. This work investigated the glycerol production characteristics of Candida glycerinogenes in highly toxic unwashed undetoxified hydrolysate and provided new ideas for high glycerol production from hydrolysates. RESULTS The unwashed hydrolysate contains higher concentrations of toxicants, such as furfural, acetic acid, phenols and NaCl than the washed alkali-treated bagasse hydrolysate. C. glycerinogenes fermented unwashed undetoxified hydrolysate yielded 36.1 g/L glycerol, 15.8% higher than the washed hydrolysate, suggesting that the toxicants stimulated glycerol synthesis. qRT-PCR analysis showed that toxicants of unwashed undetoxified hydrolysates greatly up-regulated the transcript levels of the genes GPD1, HXT4 and MSN4 et al. Overexpressing the above genes increased glycerol production by 27.9% to 46.1 g/L. And it was further increased by 8.8% to 50.1 g/L in a 5 L bioreactor. CONCLUSIONS This result proves that toxicants in lignocellulosic hydrolysates can increase the titre of microbial glycerol production.
Collapse
Affiliation(s)
- Xiaohong Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Li S, Song C, Zhang H, Qin Y, Jiang M, Shen N. Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO 3 in Actinobacillus succinogenes GXAS137. Pol J Microbiol 2023; 72:399-411. [PMID: 38000010 PMCID: PMC10725169 DOI: 10.33073/pjm-2023-036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 11/26/2023] Open
Abstract
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Collapse
Affiliation(s)
- Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Chaodong Song
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yan Qin
- National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
3
|
Shen N, Li S, Li S, Wang Y, Zhang H, Jiang M. Reduced acetic acid formation using NaHSO 3 as a steering agent by Actinobacillus succinogenes GXAS137. J Biosci Bioeng 2023; 135:203-209. [PMID: 36628842 DOI: 10.1016/j.jbiosc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
The high production of acetic acid (AC) as a by-product leads to difficult separation and purification of succinic acid (SA) and increases production costs in SA fermentation by Actinobacillus succinogenes. NaHSO3 as a steering agent was used to reduce AC production. Herein, the optimum fermentation conditions were achieved by single-factor and orthogonal tests as follows: glucose 60 g/L; MgCO3 60 g/L; NaHSO3 0.15% (w/v); and NaHSO3 addition time, 8 h after inoculation. After optimization, the SA and AC contents were 44.42 and 5.73 g/L. The SA improved by 100.72%, the AC decreased by 21.18% compared with the unfermented. The acetate kinase activity decreased by 14.36% and acetyl-CoA content improved by 97.55% in the group of NaHSO3 addition compared with control check (CK). The mechanism of NaHSO3 is formation acetaldehyde-sodium bisulfite compound and reduction the activity of acetate kinase. These findings indicated a new way of using NaHSO3 as a steering agent to reduce AC generation and may help promote the development of SA industrial production.
Collapse
Affiliation(s)
- Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shiyong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Shuyan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Yibing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China.
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| |
Collapse
|
4
|
Alashek F, Keshe M, Alhassan G. Preparation of Glycerol Derivatives by Entered of Glycerol in Different Chemical Organic Reactions: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Gonzalez R, Guindal AM, Tronchoni J, Morales P. Biotechnological Approaches to Lowering the Ethanol Yield during Wine Fermentation. Biomolecules 2021; 11:1569. [PMID: 34827567 PMCID: PMC8615690 DOI: 10.3390/biom11111569] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
One of the most prominent consequences of global climate warming for the wine industry is a clear increase of the sugar content in grapes, and thus the alcohol level in wines. Among the several approaches to address this important issue, this review focuses on biotechnological solutions, mostly relying on the selection and improvement of wine yeast strains for reduced ethanol yields. Other possibilities are also presented. Researchers are resorting to both S. cerevisiae and alternative wine yeast species for the lowering of alcohol yields. In addition to the use of selected strains under more or less standard fermentation conditions, aerobic fermentation is increasingly being explored for this purpose. Genetic improvement is also playing a role in the development of biotechnological tools to counter the increase in the wine alcohol levels. The use of recombinant wine yeasts is restricted to research, but its contribution to the advancement of the field is still relevant. Furthermore, genetic improvement by non-GMO approaches is providing some interesting results, and will probably result in the development of commercial yeast strains with a lower alcohol yield in the near future. The optimization of fermentation processes using natural isolates is, anyway, the most probable source of advancement in the short term for the production of wines with lower alcohol contents.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26007 La Rioja, Spain; (R.G.); (A.M.G.)
| | - Andrea M. Guindal
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26007 La Rioja, Spain; (R.G.); (A.M.G.)
| | - Jordi Tronchoni
- Faculty of Health Sciences, Valencian International University (VIU), 46002 Valencia, Spain;
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), 26007 La Rioja, Spain; (R.G.); (A.M.G.)
| |
Collapse
|
6
|
Hawary H, Rasmey AHM, Aboseidah AA, El-Morsi ES, Hafez M. Enhancement of glycerol production by UV-mutagenesis of the marine yeast Wickerhamomyces anomalus HH16: kinetics and optimization of the fermentation process. 3 Biotech 2019; 9:446. [PMID: 31763124 DOI: 10.1007/s13205-019-1981-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/29/2019] [Indexed: 01/25/2023] Open
Abstract
The current study aims to enhance glycerol production using UV-mutagenesis of the marine yeast Wickerhamomyces anomalus HH16 isolated from marine sediment collected from South Sinai Governorate, Egypt. Besides optimization of the culture conditions and analyzing the kinetic parameters of growth and glycerol biosynthesis by the mutant strain were studied. The marine yeast isolate HH16 was selected as the front runner glycerol-producer among all tested isolates, with glycerol yield recorded as 66.55 gl-1. The isolate was identified based on the phenotypic and genotypic characteristics of W. anomalus. The genotypic characterization based on the internal transcribed spacer (ITS) sequence was deposited in the GenBank database with the accession number MK182824. UV-mutagenesis of W. anomalus HH16 by its exposure to UV radiation (254 nm, 200 mW cm-2) for 5 min; increased its capability in the glycerol production rate with 16.97% (80.15 g l-1). Based on the kinetic and Monod equations, the maximum specific growth rate (μ max) and maximum specific glycerol production rate (v max) by the mutant strain W. anomalus HH16MU5 were 0.21 h-1 and 0.103 g g-1, respectively. Optimization of the fermentation parameters such as nitrogen source, salinity and pH has been achieved. The maximum glycerol production 86.55 g l-1 has been attained in a fermentation medium composed of 200 g l-1 glucose, 1 g l-1 peptone, 3 g l-1 yeast extract, and 58.44 g l-1 NaCl, this medium was adjusted at pH 8 and incubated for 3 days at 30° C. Moreover, results indicated the ability of this yeast to produce glycerol (73.33 g l-1) using a seawater based medium. These findings suggest the applicability of using the yeast isolate W. anomalus HH16MU5 as a potential producer of glycerol for industrial purposes.
Collapse
|
7
|
Drabik K, Chabroszewska P, Vasiukov K, Adamczuk A, Batkowska J. Glycerin as a factor for moderating quality changes in table eggs during storage. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-285-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Glycerol, a by-product of biodiesel production, is non-toxic to humans and
the environment. With the current increase in the demand for fuels obtained from
biomass, the amount of glycerine waste production is increasing. There are many ways to
dispose this substance (in pharmaceuticals, cosmetics, and in chemical industry),
but its utilization is still insufficient. Therefore, the aim of this study was to assess
the possibility of limiting quality changes in table eggs during
storage by coating the shells with a glycerol solution. The material used in this research consisted
of 270 table chicken eggs collected on the same day. On the first day of the
experiment, quality traits of 30 eggs were evaluated (initial control group). The
remaining 240 eggs were divided into two equal groups: control (eggs that
were not subjected to any treatment) and experimental (eggs that were coated with a
5 % aqueous solution of glycerol). The eggs were placed on transport
trays and stored at 14 ∘C and 70 % humidity. Quality
evaluations were carried out after 14 and 28 days of storage. The depth of the air cell,
mass and specific gravity of the egg, the shell characteristics (water vapour
conductance, strength, mass, thickness, and density), and the content traits (pH
of the albumen and yolk, Haugh units, and colour and weight of the yolk) were evaluated.
The results obtained suggest that the use of glycerine may contribute to
slowing adverse changes in egg quality during storage by limiting
CO2 removal from the egg content, which allows the egg to maintain albumen
structure. Due to the fact that glycerine is a safe, cheap, and easy-to-apply
substance, its large-scale use in poultry raw material storage seems to be a very real possibility.
Collapse
|
8
|
Qi W, Zhang WT, Lu FP. Carbon metabolism and transcriptional variation in response to salt stress in the genome shuffled Candida versatilis and a wild-type salt tolerant yeast strain. RSC Adv 2017. [DOI: 10.1039/c6ra25188a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The carbon metabolism and molecular mechanisms of adaptation response when exposed to conditions causing osmotic stress in strains of a wild-type of Candida versatilis (WT) and S3–5 were investigated.
Collapse
Affiliation(s)
- Wei Qi
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| | - Wen-Tao Zhang
- Key Laboratory of Food Nutrition and Safety
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| | - Fu-Ping Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Tianjin University of Science & Technology
- Ministry of Education
- Tianjin 300457
- P. R. China
| |
Collapse
|
9
|
Tilloy V, Cadière A, Ehsani M, Dequin S. Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. Int J Food Microbiol 2015. [DOI: 10.1016/j.ijfoodmicro.2015.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Chow Y, Tu WY, Wang D, Ng DH, Lee YK. The role of micronutrients and strategies for optimized continual glycerol production from carbon dioxide byDunaliella tertiolecta. Biotechnol Bioeng 2015; 112:2163-71. [DOI: 10.1002/bit.25608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Yvonne Chow
- Industrial Biotechnology Group; Institute of Chemical and Engineering Sciences; Jurong Island Singapore
| | - Wang Yung Tu
- Industrial Biotechnology Group; Institute of Chemical and Engineering Sciences; Jurong Island Singapore
| | - David Wang
- Industrial Biotechnology Group; Institute of Chemical and Engineering Sciences; Jurong Island Singapore
| | - Daphne H.P. Ng
- Department of Microbiology; National University of Singapore; Singapore
| | - Yuan Kun Lee
- Department of Microbiology; National University of Singapore; Singapore
| |
Collapse
|
11
|
Ribeiro LS, Duarte WF, Dias DR, Schwan RF. Fermented sugarcane and pineapple beverage produced usingSaccharomyces cerevisiaeand non-Saccharomycesyeast. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luciana Silva Ribeiro
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Whasley Ferreira Duarte
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Disney Ribeiro Dias
- Department of Food Science; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| | - Rosane Freitas Schwan
- Department of Biology; Federal University of Lavras; Campus Universitário 37.200-000 Lavras MG Brazil
| |
Collapse
|
12
|
Influence of sequential fermentation with Torulaspora delbrueckii and Saccharomyces cerevisiae on wine quality. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Raksaphort S, Pengpanich S, Hunsom M. Products distribution of glycerol hydrogenolysis over supported co catalysts in a liquid phase. KINETICS AND CATALYSIS 2014. [DOI: 10.1134/s0023158414040132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chem 2014; 161:112-9. [PMID: 24837928 DOI: 10.1016/j.foodchem.2014.03.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/29/2023]
Abstract
Metabolic profiles of 32 Negroamaro red wines were analysed using (1)H NMR spectroscopy and multivariate statistical analyses (Principal Component Analysis, PCA, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Among winemaking technologies three were compared: ultrasounds (U; 12 samples), cryomaceration using dry ice (C; 12 samples) and traditional (T; 8 samples). Moreover, each vinification technology was used for grapes grown by two different soil management practices, soil tillage (ST; 16 samples) and cover crop (CC; 16 samples), and by two different training systems, monolateral (M; 16 samples) and bilateral Guyot (B; 16 samples). All statistical models applied on NMR data revealed a good separation between ST (soil tillage) and CC (cover crop), showing a higher influence of the soil management practices compared to the winemaking technologies (ultrasound, cryomaceration and traditional). The differentiation among samples, due to soil management practices, was mainly caused by metabolites such as glycerol, 2,3-butanediol, malic acid, α/β-glucose and phenolic compounds, such as tyrosine and caffeic acid.
Collapse
|
15
|
Thanasilp S, Schwank JW, Meeyoo V, Pengpanich S, Hunsom M. Preparation of supported POM catalysts for liquid phase oxydehydration of glycerol to acrylic acid. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Mazzei P, Spaccini R, Francesca N, Moschetti G, Piccolo A. Metabolomic by 1H NMR spectroscopy differentiates "Fiano di Avellino" white wines obtained with different yeast strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10816-10822. [PMID: 24117410 DOI: 10.1021/jf403567x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We employed (1)H NMR spectroscopy to examine the molecular profile of a white "Fiano di Avellino" wine obtained through fermentation by either a commercial or a selected autochthonous Saccharomyces cerevisiae yeast starter. The latter was isolated from the same grape variety used in the wine-making process in order to strengthen the relationship between wine molecular quality and its geographical origin. (1)H NMR spectra, where water and ethanol signals were suppressed by a presaturated T1-edited NMR pulse sequence, allowed for definition of the metabolic content of the two differently treated wines. Elaboration of NMR spectral data by multivariate statistical analyses showed that the two different yeasts led to significant diversity in the wine metabolomes. Our results indicate that metabolomics by (1)H NMR spectroscopy combined with multivariate statistical analysis enables wine differentiation as a function of yeast species and other wine-making factors, thereby contributing to objectively relate wine quality to the terroir.
Collapse
Affiliation(s)
- Pierluigi Mazzei
- Centro Interdipartimentale per la Risonanza Magnetica Nucleare (CERMANU), Università di Napoli Federico II , Via Università 100, 80055 Portici, Italy
| | | | | | | | | |
Collapse
|
17
|
Chow YYS, Goh SJM, Su Z, Ng DHP, Lim CY, Lim NYN, Lin H, Fang L, Lee YK. Continual production of glycerol from carbon dioxide by Dunaliella tertiolecta. BIORESOURCE TECHNOLOGY 2013; 136:550-555. [PMID: 23567730 DOI: 10.1016/j.biortech.2013.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/05/2013] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
Microalgae have high photosynthetic efficiencies and produce many valuable compounds from carbon dioxide. The Dunaliella genus accumulates glycerol, yet no commercial process currently exists for glycerol production from this microalga. Here it was found that in addition to intracellular accumulation, Dunaliella tertiolecta also releases glycerol into the external medium continuously, forming a large and stable carbon pool. The process is not affected by nutrient starvation or onset of cell death. Carbon dioxide was fixed at a constant rate, the bulk of it being channelled to extracellular glycerol (82%), resulting in enhanced photosynthetic carbon assimilation of 5 times that used for biomass production. The final extracellular glycerol concentration was 34 times the maximum concentration of intracellular glycerol; the latter declined further during cell death. Findings from this work will assist in the development of a bioconversion process to produce glycerol using D. tertiolecta without the need for cell harvest or disruption.
Collapse
Affiliation(s)
- Yvonne Y S Chow
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sehnem NT, Machado ADS, Leite FCB, Pita WDB, de Morais MA, Ayub MAZ. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production. BIORESOURCE TECHNOLOGY 2013; 133:190-196. [PMID: 23422309 DOI: 10.1016/j.biortech.2013.01.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
The aims of this work were to obtain, by evolutionary engineering, an industrial strain of Saccharomyces cerevisiae tolerant to high concentrations of HMF and to determine the expression levels of genes previously described as responsible for this tolerance. Cells were grown under anaerobic and oxygen limited conditions, in the presence of glucose or sucrose as carbon sources. P6H9 strain presented high expression levels for genes ADH7 and ARI1 in presence of HMF. This tolerant strain also showed higher ethanol productivity, biomass formation and alcohol dehydrogenase activity comparing to sensitive strains. Results suggest that S. cerevisiae P6H9 strain presents potential to be used for second-generation ethanol production.
Collapse
Affiliation(s)
- Nicole Teixeira Sehnem
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Viana MB, Freitas AV, Leitão RC, Pinto GA, Santaella ST. Anaerobic digestion of crude glycerol: a review. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/09593330.2012.692723] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF. The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 2012; 96:197-209. [PMID: 22526794 DOI: 10.1007/s00253-012-4037-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/29/2022]
Abstract
Two recombinant strains of Saccharomyces cerevisiae Y294 producing cellulase using different expression strategies were compared to a reference strain in aerobic culture to evaluate the potential metabolic burden that cellulase expression imposed on the yeast metabolism. In a chemically defined mineral medium with glucose as carbon source, S. cerevisiae strain Y294[CEL5] with plasmid-borne cellulase genes produced endoglucanase and β-glucosidase activities of 0.038 and 0.30 U mg dry cell weight(-1), respectively. Chromosomal expression of these two cellulases in strain Y294[Y118p] resulted in no detectable activity, although low levels of episomally co-expressed cellobiohydrolase (CBH) activity were detected. Whereas the biomass concentration of strain Y294[CEL5] was slightly greater than that of a reference strain, CBH expression by Y294[Y118p] resulted in a 1.4-fold lower maximum specific growth rate than that of the reference. Supplementation of the growth medium with amino acids significantly improved culture growth and enzyme production, but only partially mitigated the physiological effects and metabolic burden of cellulase expression. Glycerol production was decreased significantly, up to threefold, in amino acid-supplemented cultures, apparently due to redox balancing. Disproportionately higher levels of glycerol production by Y294[CEL5] indicated a potential correlation between the redox balance of anabolism and the physiological stress of cellulase production. With the reliance on cellulase expression in yeast for the development of consolidated bioprocesses for bioethanol production, this work demonstrates the need for development of yeasts that are physiologically robust in response to burdens imposed by heterologous enzyme production.
Collapse
Affiliation(s)
- Eugéne van Rensburg
- Department of Process Engineering, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | | | | | | | | |
Collapse
|
21
|
Abstract
The production and sale of alcohol-reduced wines, and the lowering of ethanol concentration in wines with alcohol levels greater than acceptable for a specific wine style, poses a number of technical and marketing challenges. Several engineering solutions and wine production strategies that focus upon pre- or postfermentation technologies have been described and patented for production of wines with lower ethanol concentrations than would naturally arise through normal fermentation and wine production techniques. However, consumer perception and acceptance of the sensory quality of wines manufactured by techniques that utilize thermal distillation for alcohol removal is generally unfavorable. This negative perception from consumers has focused attention on nonthermal production processes and the development or selection of specific yeast strains with downregulated or modified gene expression for alcohol production. The information presented in this review will allow winemakers to assess the relative technical merits of each of the technologies described and make decisions regarding implementation of novel winemaking techniques for reducing ethanol concentration in wine.
Collapse
Affiliation(s)
- Leigh M Schmidtke
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | | | | |
Collapse
|
22
|
Adaptive evolution of Saccharomyces cerevisiae to generate strains with enhanced glycerol production. Appl Microbiol Biotechnol 2011; 93:1175-84. [DOI: 10.1007/s00253-011-3622-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/07/2011] [Accepted: 09/30/2011] [Indexed: 10/17/2022]
|
23
|
Mussatto SI, Machado EMS, Martins S, Teixeira JA. Production, Composition, and Application of Coffee and Its Industrial Residues. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0565-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Continuous culture for the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0225-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Yu C, Cao Y, Zou H, Xian M. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 2010; 89:573-83. [PMID: 21052988 DOI: 10.1007/s00253-010-2970-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.
Collapse
Affiliation(s)
- Chao Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
| | | | | | | |
Collapse
|
26
|
NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglianico grapes. Anal Chim Acta 2010; 673:167-72. [DOI: 10.1016/j.aca.2010.06.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/23/2022]
|
27
|
Sudheer Kumar Y, Prakasam RS, Reddy OVS. Optimisation of fermentation conditions for mango (Mangifera indicaL.) wine production by employing response surface methodology. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2009.02076.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Medication-associated diethylene glycol mass poisoning: a review and discussion on the origin of contamination. J Public Health Policy 2009; 30:127-43. [PMID: 19597445 DOI: 10.1057/jphp.2009.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diethylene glycol (DEG), an extremely toxic chemical, has been implicated as the etiologic agent in at least 12 medication-associated mass poisonings over the last 70 years. Why DEG mass poisonings occur remains unclear. Most reports do not contain detailed reports of trace-back investigations into the etiology. The authors, therefore, conducted a systematic literature review on potential etiologies of these mass poisonings. The current available evidence suggests that substitution of DEG or DEG-containing compounds for pharmaceutical ingredients results from: (1) deception as to the true nature of certain ingredients by persons at some point in the pharmaceutical manufacturing process, and (2) failure to adhere to standardized quality control procedures in manufacturing pharmaceutical products intended for consumers. We discuss existing guidelines and new recommendations for prevention of these incidents.
Collapse
|
29
|
Role of Glycerol Addition on Xylose-to-Xylitol Bioconversion by Candida guilliermondii. Curr Microbiol 2008; 58:274-8. [DOI: 10.1007/s00284-008-9321-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
|
30
|
Kaçka A, Dönmez G. Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol. BIORESOURCE TECHNOLOGY 2008; 99:8348-8352. [PMID: 18406610 DOI: 10.1016/j.biortech.2008.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/21/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
The purpose of the present work was to study the potential biotechnological use of Dunaliella species isolated from a hypersaline lake in Turkey. Dunaliella spp. grown in Johnson's medium were isolated and their glycerol production was studied in a batch system in order to determine the optimal conditions required for the highest glycerol accumulation. In the experiments performed with four newly isolated Dunaliella spp., the maximum glycerol accumulation was obtained at 20% NaCl concentration, and pH 6 (for strains T1 and T2) and pH 9 (for strains T3 and T4). Biomass production by strain T2 was significantly higher that by the other strains but the highest glycerol production in broth was obtained by strain T1 followed by strain T2. Strain T1 showed high glycerol production, i.e. 452.57microg/ml of culture broth at 20% NaCl concentration. The highest glycerol accumulation on both dry weight and cell basis was obtained with strain T1, followed by strains T3 and T4 (55.01, 50.16, and 40.23microg/10(6) cells (or pg/cell), respectively) at 25% NaCl concentration. When the high initial inoculum concentration was used at 25% NaCl concentration, strain T1 had the shortest (approximately 10-15days) lag period. This study shows that the isolated strains T1 and T2 can be used for glycerol production because of their high productivity.
Collapse
Affiliation(s)
- Aşkin Kaçka
- Department of Biology, Faculty of Science, Ankara University, 06100 Beşevler, Ankara, Turkey
| | | |
Collapse
|
31
|
Pham TH, Mauvais G, Vergoignan C, De Coninck J, Dumont F, Lherminier J, Cachon R, Feron G. Gaseous environments modify physiology in the brewing yeastSaccharomyces cerevisiaeduring batch alcoholic fermentation. J Appl Microbiol 2008; 105:858-74. [DOI: 10.1111/j.1365-2672.2008.03821.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Sanchez S, Demain AL. Metabolic regulation and overproduction of primary metabolites. Microb Biotechnol 2008; 1:283-319. [PMID: 21261849 PMCID: PMC3815394 DOI: 10.1111/j.1751-7915.2007.00015.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/04/2007] [Accepted: 10/23/2007] [Indexed: 12/01/2022] Open
Abstract
Overproduction of microbial metabolites is related to developmental phases of microorganisms. Inducers, effectors, inhibitors and various signal molecules play a role in different types of overproduction. Biosynthesis of enzymes catalysing metabolic reactions in microbial cells is controlled by well-known positive and negative mechanisms, e.g. induction, nutritional regulation (carbon or nitrogen source regulation), feedback regulation, etc. The microbial production of primary metabolites contributes significantly to the quality of life. Fermentative production of these compounds is still an important goal of modern biotechnology. Through fermentation, microorganisms growing on inexpensive carbon and nitrogen sources produce valuable products such as amino acids, nucleotides, organic acids and vitamins which can be added to food to enhance its flavour, or increase its nutritive values. The contribution of microorganisms goes well beyond the food and health industries with the renewed interest in solvent fermentations. Microorganisms have the potential to provide many petroleum-derived products as well as the ethanol necessary for liquid fuel. Additional applications of primary metabolites lie in their impact as precursors of many pharmaceutical compounds. The roles of primary metabolites and the microbes which produce them will certainly increase in importance as time goes on. In the early years of fermentation processes, development of producing strains initially depended on classical strain breeding involving repeated random mutations, each followed by screening or selection. More recently, methods of molecular genetics have been used for the overproduction of primary metabolic products. The development of modern tools of molecular biology enabled more rational approaches for strain improvement. Techniques of transcriptome, proteome and metabolome analysis, as well as metabolic flux analysis. have recently been introduced in order to identify new and important target genes and to quantify metabolic activities necessary for further strain improvement.
Collapse
Affiliation(s)
- Sergio Sanchez
- Departamento de Biologia Molecular y Biotecnologia, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City, Mexico
| | - Arnold L. Demain
- Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ 07940, USA
| |
Collapse
|
33
|
Rodrigues RCLB, Lu C, Lin B, Jeffries TW. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor. Appl Biochem Biotechnol 2007; 148:199-209. [PMID: 18418752 DOI: 10.1007/s12010-007-8080-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Collapse
Affiliation(s)
- Rita C L B Rodrigues
- Departamento de Biotecnologia, DEBIQ, Escola de Engenharia de Lorena, EEL, USP, Universidade de São Paulo, P.O Box 116, 12600-970, Lorena, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Arnold L. Demain
- Charles A. Dana Research Institute for Scientists Emeriti (RISE), Drew University, Madison, NJ
| |
Collapse
|
35
|
Yongguang Z, Wei S, Zhiming R, Huiying F, Jian Z. Deletion of the CgTPI Gene Encoding Triose Phosphate Isomerase of Candida glycerinogenes Inhibits the Biosynthesis of Glycerol. Curr Microbiol 2007; 55:147-51. [PMID: 17619100 DOI: 10.1007/s00284-007-0070-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/03/2007] [Indexed: 11/30/2022]
Abstract
The yeast Candida glycerinogenes produces a high yield of glycerol only in response to a medium-osmotic stress, but little is known about the relationship between osmoadaptation and glycerol metabolism. The CgTPI gene encoding triose phosphate isomerase of C. glycerinogenes was cloned and sequenced, and its functionality was confirmed by complementation of Saccharomyces cerevisiae tpi1 Delta. The roles of CgTpip in the glycerol biosynthesis and the osmoadaptation were investigated. Unlike S. cerevisiae tpi1 Delta and Klyuveromyces lactis tpi1 Delta, the mutant lacking CgTPI significantly decreased the rate of glucose consumption and the glycerol yield. Furthermore, the mutants decreased osmotolerance to glucose and NaCl. The results suggest that CgTPI might be crucial for a high yield of glycerol by C. glycerinogenes. The inhibition of glycerol biosynthesis might be related to the reduced ability of osmoadaptation to high external osmolarity. To our knowledge, this is the first report that inactivation of a yeast TPI gene inhibits the biosynthesis of glycerol.
Collapse
Affiliation(s)
- Zhang Yongguang
- The Key Lab of Industrial Biotechnology of Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Geertman JMA, van Dijken JP, Pronk JT. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res 2007; 6:1193-203. [PMID: 17156016 DOI: 10.1111/j.1567-1364.2006.00124.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Anaerobic Saccharomyces cerevisiae cultures reoxidize the excess NADH formed in biosynthesis via glycerol production. This study investigates whether cometabolism of formate, a well-known NADH-generating substrate in aerobic cultures, can increase glycerol production in anaerobic S. cerevisiae cultures. In anaerobic, glucose-limited chemostat sultures (D=0.10 h(-1)) with molar formate-to-glucose ratios of 0 to 0.5, only a small fraction of the formate added to the cultures was consumed. To investigate whether incomplete formate consumption was by the unfavourable kinetics of yeast formate dehydrogenase (high k(M) for formate at low intracellular NAD(+) concentrations) strains were constructed in which the FDH1 and/or GPD2 genes, encoding formate dehydrogenase and glycerol-3-phosphate dehydrogenase, respectively, were overexpressed. The engineered strains consumed up to 70% of the formate added to the feed, thereby increasing glycerol yields to 0.3 mol mol(-1) glucose at a formate-to-glucose ratio of 0.34. In all strains tested, the molar ratio between formate consumption and additional glycerol production relative to a reference culture equalled one. While demonstrating that that format can be use to enhance glycerol yields in anaerobic S. cerevisiae cultures, This study also reveals kinetic constraints of yeast formate dehydrogenase as an NADH-generating system in yeast mediated reduction processes.
Collapse
|
37
|
Modig T, Granath K, Adler L, Lidén G. Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 2007; 75:289-96. [PMID: 17221190 DOI: 10.1007/s00253-006-0821-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 10/23/2022]
Abstract
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80-90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.
Collapse
Affiliation(s)
- Tobias Modig
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, Sweden.
| | | | | | | |
Collapse
|
38
|
Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.046] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Cambon B, Monteil V, Remize F, Camarasa C, Dequin S. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Appl Environ Microbiol 2006; 72:4688-94. [PMID: 16820460 PMCID: PMC1489326 DOI: 10.1128/aem.02975-05] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the two copies of ALD6 encoding the NADP+-dependent Mg2+-activated cytosolic acetaldehyde dehydrogenase have been deleted. Under wine fermentation conditions, the engineered industrial strains exhibit fermentation performance and growth properties similar to those of the wild type. Acetate was produced at concentrations similar to that of the wild-type strains, whereas sugar was efficiently diverted to glycerol. The ethanol yield of the GPD1 ald6 industrial strains was 15 to 20% lower than that in the controls. However, these strains accumulated acetoin at considerable levels due to inefficient reduction to 2,3-butanediol. Due to the low taste and odor thresholds of acetoin and its negative sensorial impact on wine, novel engineering strategies will be required for a proper adjustment of the metabolites at the acetaldehyde branch point.
Collapse
Affiliation(s)
- Brigitte Cambon
- UMR Sciences pour l'Oenologie, Microbiologie, INRA, 2 Place Viala, F-34060 Montpellier Cedex 1, France
| | | | | | | | | |
Collapse
|
40
|
Djelal H, Larher F, Martin G, Amrane A. Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions. J Biotechnol 2006; 125:95-103. [PMID: 16567011 DOI: 10.1016/j.jbiotec.2006.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 02/03/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
The effect of the dissolved oxygen on glycerol and ethanol productions by an osmotolerant yeast Hansenula anomala was examined during growth in media at low water activity resulting from the addition of 2M NaCl in the culture medium. High stirring rate, high culture medium aeration, as well as high mass transfer surface inhibited both glycerol and ethanol biosynthesis. In absence of oxygen, yeast used acetaldehyde as a hydrogen acceptor, leading to the stimulation of ethanol biosynthesis and accounting for the low biomass and glycerol production; the experimental ratio ethanol on glycerol produced was 5.1 when the available oxygen was lowered (low stirring rate, 500rpm) and increased to 10.2 in absence of aeration. Extracellular glycerol production was therefore optimal for a moderate stirring (1000rpm) and aeration (1.4vvm) rates. These optimal conditions resulted in an experimental ratio ethanol on glycerol produced of 4.1, namely close to the theoretical value of 4, illustrating the osmodependent channelling of carbon towards polyols production.
Collapse
Affiliation(s)
- H Djelal
- Equipe Chimie et Ingénierie des Procédés, Université de Rennes 1/ENSCR, UMR CNRS 6226 Sciences Chimiques de Rennes, ENSCR, Campus de Beaulieu, Avenue du Général Leclerc, 35700 Rennes, France
| | | | | | | |
Collapse
|
41
|
Geertman JMA, van Maris AJA, van Dijken JP, Pronk JT. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Metab Eng 2006; 8:532-42. [PMID: 16891140 DOI: 10.1016/j.ymben.2006.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/11/2006] [Accepted: 06/21/2006] [Indexed: 11/28/2022]
Abstract
Previous metabolic engineering strategies for improving glycerol production by Saccharomyces cerevisiae were constrained to a maximum theoretical glycerol yield of 1 mol.(molglucose)(-1) due to the introduction of rigid carbon, ATP or redox stoichiometries. In the present study, we sought to circumvent these constraints by (i) maintaining flexibility at fructose-1,6-bisphosphatase and triosephosphate isomerase, while (ii) eliminating reactions that compete with glycerol formation for cytosolic NADH and (iii) enabling oxidative catabolism within the mitochondrial matrix. In aerobic, glucose-grown batch cultures a S. cerevisiae strain, in which the pyruvate decarboxylases the external NADH dehydrogenases and the respiratory chain-linked glycerol-3-phosphate dehydrogenase were deleted for this purpose, produced glycerol at a yield of 0.90 mol.(molglucose)(-1). In aerobic glucose-limited chemostat cultures, the glycerol yield was ca. 25% lower, suggesting the involvement of an alternative glucose-sensitive mechanism for oxidation of cytosolic NADH. Nevertheless, in vivo generation of additional cytosolic NADH by co-feeding of formate to aerobic, glucose-limited chemostat cultures increased the glycerol yield on glucose to 1.08 mol mol(-1). To our knowledge, this is the highest glycerol yield reported for S. cerevisiae.
Collapse
Affiliation(s)
- Jan-Maarten A Geertman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | |
Collapse
|
42
|
Bideaux C, Alfenore S, Cameleyre X, Molina-Jouve C, Uribelarrea JL, Guillouet SE. Minimization of glycerol production during the high-performance fed-batch ethanolic fermentation process in Saccharomyces cerevisiae, using a metabolic model as a prediction tool. Appl Environ Microbiol 2006; 72:2134-40. [PMID: 16517663 PMCID: PMC1393190 DOI: 10.1128/aem.72.3.2134-2140.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the basis of knowledge of the biological role of glycerol in the redox balance of Saccharomyces cerevisiae, a fermentation strategy was defined to reduce the surplus formation of NADH, responsible for glycerol synthesis. A metabolic model was used to predict the operating conditions that would reduce glycerol production during ethanol fermentation. Experimental validation of the simulation results was done by monitoring the inlet substrate feeding during fed-batch S. cerevisiae cultivation in order to maintain the respiratory quotient (RQ) (defined as the CO2 production to O2 consumption ratio) value between 4 and 5. Compared to previous fermentations without glucose monitoring, the final glycerol concentration was successfully decreased. Although RQ-controlled fermentation led to a lower maximum specific ethanol production rate, it was possible to reach a high level of ethanol production: 85 g.liter-1 with 1.7 g.liter-1 glycerol in 30 h. We showed here that by using a metabolic model as a tool in prediction, it was possible to reduce glycerol production in a very high-performance ethanolic fermentation process.
Collapse
Affiliation(s)
- Carine Bideaux
- Biotechnology and Bioprocess Laboratory, UMR-CNRS 5504, UMR-INRA 792, Département de Génie Biochimique et Alimentaire, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Granath K, Modig T, Forsmark A, Adler L, Lidén G. The YIG1 (YPL201c) encoded protein is involved in regulating anaerobic glycerol metabolism in Saccharomyces cerevisiae. Yeast 2006; 22:1257-68. [PMID: 16358322 DOI: 10.1002/yea.1307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Under anaerobic conditions S. cerevisiae produces glycerol to regenerate NAD(+) from the excess NADH produced in cell metabolism. We here report on the role of an uncharacterized protein, Yig1p (Ypl201cp), in anaerobic glycerol production. Yig1p was previously shown to interact in two-hybrid tests with the GPP1 and GPP2 encoded glycerol 3-phosphatase (Gpp), and we here demonstrate that strains overexpressing YIG1 show strongly decreased Gpp activity and content of the major phosphatase, Gpp1p. However, cells overexpressing YIG1 exhibited only slightly decreased GPP1 transcript levels, suggesting that Yig1p modulates expression on both transcriptional and post-transcriptional levels. In agreement with such a role, a GFP-tagged derivate of Yig1p was localized to both the cytosol and the nucleus. Deletion or overexpression of YIG1 did not, however, significantly affect growth yield or glycerol yield in anaerobic batch cultures, which is consistent with the previously proposed low flux control exerted at the Gpp level.
Collapse
Affiliation(s)
- K Granath
- Department of Cell and Molecular Biology--Microbiology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
44
|
Djelal H, Amrane A, Lahrer F, Martin G. Effect of medium osmolarity on the bioproduction of glycerol and ethanol by Hansenula anomala growing on glucose and ammonium. Appl Microbiol Biotechnol 2005; 69:341-9. [PMID: 15838673 DOI: 10.1007/s00253-005-1987-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/23/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022]
Abstract
The osmotolerant yeast Hansenula anomala survives in media at low water activity resulting from increasing NaCl concentrations in the culture medium by producing compatible solutes. High salinity resulted in the use of a large part of the assimilated carbon substrate (glucose) for cell maintenance (28%), required for intracellular synthesis compounds and for osmotic cell regulation. The maintenance coefficient for non-growth-associated glucose consumption was found to be 0.38 mmol glucose g biomass(-1) h(-1). For decreasing water activity, there is a competition between the pathways leading to glycerol and ethanol production, until an experimental ethanol/total glycerol ratio reached a value 3.4 for 2 mol l(-1) NaCl (close to the theoretical value of 4)-illustrating the osmo-dependent channelling of carbon towards polyols production. This competition leads to a cessation of ethanol production during the stationary state before that of glycerol. Since osmotic adjustment occurred mainly during growth, glycerol production during stationary state can be clearly related to another mechanism other than osmotic: it was excreted by a fermentative mechanism to ensure energy for cell maintenance.
Collapse
Affiliation(s)
- H Djelal
- LARCIP (Université de Rennes 1-ENSCR) ENSCR, Avenue du Général Leclerc, 35700 Rennes, France
| | | | | | | |
Collapse
|
45
|
Determination of Growth and Glycerol Production Kinetics of a Wine Yeast Strain Saccharomyces cerevisiae Kalecik 1 in Different Substrate Media. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-2634-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Gardner JM, McBryde C, Vystavelova A, De Barros Lopes M, Jiranek V. Identification of genes affecting glucose catabolism in nitrogen-limited fermentation. FEMS Yeast Res 2005; 5:791-800. [PMID: 15925307 DOI: 10.1016/j.femsyr.2005.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Revised: 01/19/2005] [Accepted: 02/16/2005] [Indexed: 10/25/2022] Open
Abstract
In recognition of the importance of assimilable nitrogen in the successful completion of several fermentation processes, we have sought to develop yeast strains that utilise this typically limited nutrient group more efficiently. With the aid of transposon mutagenesis together with a high-throughput method for analysis of multiple fermentations, we have identified 'nitrogen-efficient' mutants that catabolise more sugar for a given amount of nitrogen utilised. In this way we have identified two genes, NGR1 and GID7, whose disruption leads to an enhanced catabolism of sugar in an industrial strain and/or a laboratory strain, during growth in a chemically defined grape juice medium with limiting nitrogen. Deletion of NGR1 or GID7 also resulted in minor changes in metabolites produced, and biomass yield, measured as dry weight, was also decreased in NGR1 mutant strains.
Collapse
|
47
|
Talebnia F, Niklasson C, Taherzadeh MJ. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulatedS. cerevisiae. Biotechnol Bioeng 2005; 90:345-53. [PMID: 15772948 DOI: 10.1002/bit.20432] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The performance of encapsulated Saccharomyces cerevisiae CBS 8066 in anaerobic cultivation of glucose, in the presence and absence of furfural as well as in dilute-acid hydrolyzates, was investigated. The cultivation of encapsulated cells in 10 sequential batches in synthetic media resulted in linear increase of biomass up to 106 g/L of capsule volume, while the ethanol productivity remained constant at 5.15 (+/-0.17) g/L x h (for batches 6-10). The cells had average ethanol and glycerol yields of 0.464 and 0.056 g/g in these 10 batches. Addition of 5 g/L furfural decreased the ethanol productivity to a value of 1.31 (+/-0.10) g/L x h with the encapsulated cells, but it was stable in this range for five consecutive batches. On the other hand, the furfural decreased the ethanol yield to 0.41-0.42 g/g and increased the yield of acetic acid drastically up to 0.068 g/g. No significant lag phase was observed in any of these experiments. The encapsulated cells were also used to cultivate two different types of dilute-acid hydrolyzates. While the free cells were not able to ferment the hydrolyzates within at least 24 h, the encapsulated yeast successfully converted glucose and mannose in both of the hydrolyzates in less than 10 h with no significant lag phase. However, since the hydrolyzates were too toxic, the encapsulated cells lost their activity gradually in sequential batches.
Collapse
Affiliation(s)
- Farid Talebnia
- Department of Chemical Engineering and Environmental Science, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | | | | |
Collapse
|
48
|
Yalçin S, Özbas Z. Effects of different substrates on growth and glycerol production kinetics of a wine yeast strain Saccharomyces cerevisiae Narince 3. Process Biochem 2004. [DOI: 10.1016/s0032-9592(03)00252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Klinner U, Schäfer B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 2004; 28:201-23. [PMID: 15109785 DOI: 10.1016/j.femsre.2003.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 08/20/2003] [Accepted: 10/02/2003] [Indexed: 11/16/2022] Open
Abstract
Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.
Collapse
Affiliation(s)
- U Klinner
- RWTH Aachen, Institut für Biologie IV (Mikrobiologie und Genetik), Worringer Weg, D-52056 Aachen, Germany.
| | | |
Collapse
|
50
|
Hamlet CG, Sadd PA, Gray DA. Generation of monochloropropanediols (MCPDs) in model dough systems. 1. Leavened doughs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:2059-2066. [PMID: 15053552 DOI: 10.1021/jf035077w] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effect of dough recipe ingredients and processing on the generation of monochloropropanediol isomers (MCPDs) in leavened wheat doughs has been investigated. Commercial ingredients having no effect on MCPD formation were acetic acid and baking fats (triacylglycerols). Ingredients making a significant contribution to MCPD levels were yeast and flour improver [ascorbic acid, diacetyl tartaric acid esters of mono- and diglycerides (DATEM), and soya flour]. The results showed that free glycerol is a key precursor of MCPDs in leavened doughs. This glycerol is primarily generated by the yeast during proving but is also present in the flour, the yeast, and the improver. Under conditions of high dough moisture content (45%), MCPD formation was approximately proportional to glycerol concentration but showed a weaker dependence on chloride level, suggesting that the mechanisms of formation involved at least some reversible stages. MCPD generation increased with decreasing dough moisture to a point where the formation reaction was limited by chloride solubility and competing reactions involving glycerol and key precursor intermediates. These results could be predicted by a kinetic model derived from the experimental data. Glycerol was shown to account for 68% of MCPDs generated in proved full recipe dough.
Collapse
Affiliation(s)
- Colin G Hamlet
- RHM Technology Ltd., The Lord Rank Centre, Lincoln Road, High Wycombe, Buckinghamshire, HP12 3QR, United Kingdom.
| | | | | |
Collapse
|