1
|
Yamada C, Kato T, Shiono Y, Koseki T, Fushinobu S. Identification and structural characterization of a novel acetyl xylan esterase from Aspergillus oryzae. FEBS J 2025. [PMID: 39876052 DOI: 10.1111/febs.17420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 8.0 and 30 °C, respectively, and was stable up to 35 °C. The optimal substrate for hydrolysis by purified recombinant AoAxeB among a panel of α-naphthyl esters was α-naphthyl acetate. Recombinant AoAxeB catalyzed the release of acetic acid from wheat arabinoxylan. The release of acetic acid from wheat arabinoxylan increased synergistically with xylanase addition. No activity was detected for the methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. The crystal structures of AoAxeB in the apo and succinate complexes were determined at resolutions of 1.75 and 1.90 Å, respectively. Although AoAxeB has been classified in the Esterase_phb family in the ESTerases and alpha/beta-Hydrolase Enzymes and Relatives (ESTHER) database, its structural features partly resemble those of ferulic acid esterase in the FaeC family. Phylogenetic analysis also indicated that AoAxeB is located between the clades of the two families. Docking analysis provided a plausible binding mode for xylotriose substrates acetylated at the 2- or 3-hydroxy position. This study expands the current knowledge of the structures of acetyl xylan esterases and ferulic acid esterases that are required for complete plant biomass degradation.
Collapse
Affiliation(s)
- Chihaya Yamada
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Tomoe Kato
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | | | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| |
Collapse
|
2
|
Alves GS, de Andrades D, Salgado JCS, Mariano CB, Berto GL, Segato F, Ayub MAZ, Ward RJ, Alnoch RC, Polizeli MDLTM. Homologous expression, purification, and characterization of a recombinant acetylxylan esterase from Aspergillus nidulans. Int J Biol Macromol 2024; 280:135816. [PMID: 39306183 DOI: 10.1016/j.ijbiomac.2024.135816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
Acetylxylan esterases (AXEs) are essential enzymes that break down the acetyl groups in acetylated xylan found in plant cell walls polysaccharides. They work synergistically with backbone-depolymerizing xylanolytic enzymes to accelerate the degradation of complex polysaccharides. In this study, we cloned the gene axeA, which encodes the acetylxylan esterase from Aspergillus nidulans FGSC A4 (AxeAN), into the pEXPYR expression vector and introduced it into the high protein-producing strain A. nidulans A773. The purified AxeAN, with a molecular weight of 33.5 kDa as confirmed by SDS-PAGE, was found to be active on ρ-nitrophenyl acetate (ρNPA), exhibiting a remarkably high specific activity (170 U mg-1) at pH 7.0 and 55 °C. AxeAN demonstrated stability over a wide pH range (5.5-9.0), retaining >80% of its initial activity after 24 h. The KM and Vmax were 0.098 mmol L-1 and 320 U mg-1, respectively, using ρNPA as a substrate. We also evaluated the synergistic effect of AxeAN with an endo-1,4-β-xylanase from Malbranchea pulchella (MpXyn10) in the hydrolysis of four different xylans (Birchwood, Beechwood, Oat spelt, and Arabinoxylan) to produce xylooligosaccharides (XOS). The best results were obtained using Birchwood xylan as substrate and MpXyn10-AxeAN as biocatalysts after 24 h of reaction (50 °C), with a XOS-yield of 91%, value 41% higher when compared to MpXyn10 (XOS-yield of 63%). These findings showed the potential of the application of AxeAN, together with other xylanases, to produce xylooligosaccharides with high purity and other products with high added value in the field of lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Gabriela S Alves
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Diandra de Andrades
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Jose C S Salgado
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Clara B Mariano
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena 12602-810, SP, Brazil
| | - Marco Antônio Záchia Ayub
- Laboratory of Biotechnology and Biochemical Engineering (BiotecLab), Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
| | - Richard J Ward
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Robson C Alnoch
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Maria de Lourdes T M Polizeli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
3
|
Nguyen DL, Hwang J, Kim EJ, Lee JH, Han SJ. Production and Characterization of a Recombinant Cold-Active Acetyl Xylan Esterase from Psychrophilic Paenibacillus sp. R4 Strain. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Madubuike H, Ferry N. Characterisation of a Novel Acetyl Xylan Esterase (BaAXE) Screened from the Gut Microbiota of the Common Black Slug ( Arion ater). Molecules 2022; 27:2999. [PMID: 35566348 PMCID: PMC9104356 DOI: 10.3390/molecules27092999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022] Open
Abstract
Acetyl xylan esterases (AXEs) are enzymes capable of hydrolysing the acetyl bonds in acetylated xylan, allowing for enhanced activity of backbone-depolymerizing enzymes. Bioprospecting novel AXE is essential in designing enzyme cocktails with desired characteristics targeting the complete breakdown of lignocellulose. In this article, we report the characterisation of a novel AXE identified as Gene_id_40363 in the metagenomic library analysed from the gut microbiota of the common black slug. The conserved domain description was identified with an NCBI BLASTp search using the translated nucleotide sequence as a query. The activity of the recombinant enzyme was tested on various synthetic substrates and acetylated substrates. The protein sequence matched the conserved domain described as putative hydrolase and aligned closely to an uncharacterized esterase from Buttiauxella agrestis, hence the designation as BaAXE. BaAXE showed low sequence similarity among characterized CE family proteins with an available 3D structure. BaAXE was active on 4-nitrophenyl acetate, reporting a specific activity of 78.12 U/mg and a Km value of 0.43 mM. The enzyme showed optimal activity at 40 °C and pH 8 and showed high thermal stability, retaining over 40% activity after 2 h of incubation from 40 °C to 100 °C. BaAXE hydrolysed acetyl bonds, releasing acetic acid from acetylated xylan and β-D-glucose pentaacetate. BaAXE has great potential for biotechnological applications harnessing its unique characteristics. In addition, this proves the possibility of bioprospecting novel enzymes from understudied environments.
Collapse
Affiliation(s)
- Henry Madubuike
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
5
|
Kato T, Shiono Y, Koseki T. Identification and characterization of an acetyl xylan esterase from Aspergillus oryzae. J Biosci Bioeng 2021; 132:337-342. [PMID: 34376338 DOI: 10.1016/j.jbiosc.2021.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
In this study, we report the identification and characterization of an acetyl xylan esterase, designated as AoAXEC, which was previously annotated as a hypothetical protein encoded by AO090023000158 in the Aspergillus oryzae genomic database. Based on its amino acid sequence, a low sequence identity to known acetyl xylan esterases was observed in the sequence of characterized acetyl xylan esterase. The gene fused with α-factor signal sequence of Saccharomyces cerevisiae instead of the native signal sequence was cloned into a vector, pPICZαC, and expressed successfully in Pichia pastoris as an active extracellular protein. The purified recombinant protein had pH and temperature optima of 7.0 and 50 °C, respectively, and was stable up to 50 °C. The optimal substrate for hydrolysis by the purified recombinant AoAXEC, among a panel of α-naphthyl esters (C2-C16), was α-naphthyl propionate (C3), with an activity of 0.35 ± 0.006 units/mg protein. No significant difference of the Km value was observed between C3 (2.3 ± 0.7 mM) and C2 (1.9 ± 0.4 mM). In contrast, kcat value for C3 (18 ± 3.9 s-1) was higher compared to C2 (4.5 ± 0.7 s-1). The purified recombinant enzyme displayed a low activity toward acyl chain substrates containing eight or more carbon atoms. Recombinant AoAXEC catalyzed the release of acetic acid from wheat arabinoxylan. However, no activity was detected on methyl esters of ferulic, p-coumaric, caffeic, or sinapic acids. Additionally, the liberation of phenolic acids, such as ferulic acid, from wheat arabinoxylan was not exhibited by the recombinant protein.
Collapse
Affiliation(s)
- Tomoe Kato
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Yoshihito Shiono
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan
| | - Takuya Koseki
- Faculty of Agriculture, Yamagata University, 1-23 Wakaba-machi, Tsuruoka, Yamagata 997-8555, Japan.
| |
Collapse
|
6
|
Xu J, Zhao X, Yao Q, Zong W, Dai S, Deng Z, Liu S, Yun J, Yang X, Li H. Cloning, characterization of a novel acetyl xylan esterase, and its potential application on wheat straw utilization. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1947393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jin Xu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Xiaoshen Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Qian Yao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Wei Zong
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Shuang Dai
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Zujun Deng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Shan Liu
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - Jeonyun Yun
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - Xiong Yang
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - He Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Pramod S, Gandla ML, Derba-Maceluch M, Jönsson LJ, Mellerowicz EJ, Winestrand S. Saccharification Potential of Transgenic Greenhouse- and Field-Grown Aspen Engineered for Reduced Xylan Acetylation. FRONTIERS IN PLANT SCIENCE 2021; 12:704960. [PMID: 34557213 PMCID: PMC8454504 DOI: 10.3389/fpls.2021.704960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
High acetylation of xylan in hardwoods decreases their value as biorefinery feedstocks. To counter this problem, we have constitutively suppressed RWA genes encoding acetyl-CoA transporters using the 35S promoter, or constitutively and wood-specifically (using the WP promoter) expressed fungal acetyl xylan esterases of families CE1 (AnAXE1) and CE5 (HjAXE), to reduce acetylation in hybrid aspen. All these transformations improved the saccharification of wood from greenhouse-grown trees. Here, we describe the chemical properties and saccharification potential of the resulting lines grown in a five-year field trial, and one type of them (WP:AnAXE1) in greenhouse conditions. Chemically, the lignocellulose of the field- and greenhouse-field-grown plants slightly differed, but the reductions in acetylation and saccharification improvement of engineered trees were largely maintained in the field. The main novel phenotypic observation in the field was higher lignification in lines with the WP promoter than those with the 35S promoter. Following growth in the field, saccharification glucose yields were higher from most transformed lines than from wild-type (WT) plants with no pretreatment, but there was no improvement in saccharification with acid pretreatment. Thus, acid pretreatment removes most recalcitrance caused by acetylation. We found a complex relationship between acetylation and glucose yields in saccharification without pretreatment, suggesting that other variables, for example, the acetylation pattern, affect recalcitrance. Bigger gains in glucose yields were observed in lines with the 35S promoter than in those with the WP promoter, possibly due to their lower lignin content. However, better lignocellulose saccharification of these lines was offset by a growth penalty and their glucose yield per tree was lower. In a comparison of the best lines with each construct, WP:AnAXE1 provided the highest glucose yield per tree from saccharification, with and without pretreatment, WP:HjAXE yields were similar to those of WT plants, and yields of lines with other constructs were lower. These results show that lignocellulose properties of field-grown trees can be improved by reducing cell wall acetylation using various approaches, but some affect productivity in the field. Thus, better understanding of molecular and physiological consequences of deacetylation is needed to obtain quantitatively better results.
Collapse
Affiliation(s)
- Sivan Pramod
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Ewa J. Mellerowicz,
| | | |
Collapse
|
8
|
Li X, Griffin K, Langeveld S, Frommhagen M, Underlin EN, Kabel MA, de Vries RP, Dilokpimol A. Functional Validation of Two Fungal Subfamilies in Carbohydrate Esterase Family 1 by Biochemical Characterization of Esterases From Uncharacterized Branches. Front Bioeng Biotechnol 2020; 8:694. [PMID: 32671051 PMCID: PMC7332973 DOI: 10.3389/fbioe.2020.00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
The fungal members of Carbohydrate Esterase family 1 (CE1) from the CAZy database include both acetyl xylan esterases (AXEs) and feruloyl esterases (FAEs). AXEs and FAEs are essential auxiliary enzymes to unlock the full potential of feedstock. They are being used in many biotechnology applications including food and feed, pulp and paper, and biomass valorization. AXEs catalyze the hydrolysis of acetyl group from xylan, while FAEs release ferulic and other hydroxycinnamic acids from xylan and pectin. Previously, we reported a phylogenetic analysis for the fungal members of CE1, establishing five subfamilies (CE1_SF1–SF5). Currently, the characterized AXEs are in the subfamily CE1_SF1, whereas CE1_SF2 contains mainly characterized FAEs. These two subfamilies are more related to each other than to the other subfamilies and are predicted to have evolved from a common ancestor, but target substrates with a different molecular structure. In this study, four ascomycete enzymes from CE1_SF1 and SF2 were heterologously produced in Pichia pastoris and characterized with respect to their biochemical properties and substrate preference toward different model and plant biomass substrates. The selected enzymes from CE1_SF1 only exhibited AXE activity, whereas the one from CE1_SF2 possessed dual FAE/AXE activity. This dual activity enzyme also showed broad substrate specificity toward model substrates for FAE activity and efficiently released both acetic acid and ferulic acid (∼50%) from wheat arabinoxylan and wheat bran which was pre-treated with a commercial xylanase. These fungal AXEs and FAEs also showed promising biochemical properties, e.g., high stability over a wide pH range and retaining more than 80% of their residual activity at pH 6.0–9.0. These newly characterized fungal AXEs and FAEs from CE1 have high potential for biotechnological applications. In particular as an additional ingredient for enzyme cocktails to remove the ester-linked decorations which enables access for the backbone degrading enzymes. Among these novel enzymes, the dual FAE/AXE activity enzyme also supports the evolutionary relationship of CE1_SF1 and SF2.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Kelli Griffin
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Sandra Langeveld
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Emilie N Underlin
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands.,Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Expression of Pleurotus ostreatus Laccase Gene in Pichia pastoris and Its Degradation of Corn Stover Lignin. Microorganisms 2020; 8:microorganisms8040601. [PMID: 32326242 PMCID: PMC7232166 DOI: 10.3390/microorganisms8040601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022] Open
Abstract
Pleurotus ostreatus is a species of white-rot fungi that effectively degrades lignin. In this study, we aimed to efficiently express the lac-2 gene of Pleurotus ostreatus in the Pichia pastoris X33 yeast strain. The enzymatic properties of recombinant yeast were determined, and its ability to degrade corn stover lignin was determined. The results showed the optimum pH values of recombinant laccase for 2,2’-Azinobis-3-ethylbenzothiazoline-6-sulfonic acid, 2,6-dimethoxyphenol, and 2-methoxyphenol were 3.0, 3.0, and 3.5, respectively. The optimum reaction temperature was 50 °C, and it had good thermal stability and acid and alkali resistance. The degradation rate of lignin in corn stover by recombinant laccase was 18.36%, and the native Pleurotus ostreatus degradation rate was 14.05%, the difference between them is significant (p < 0.05). This experiment lays a foundation for the study of the degradation mechanism of lignin by laccase.
Collapse
|
10
|
Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY, Kang YH, Kang DH, De Zoysa M, Marasinghe SD, Oh C. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb Cell Fact 2019; 18:122. [PMID: 31286972 PMCID: PMC6615230 DOI: 10.1186/s12934-019-1169-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetyl xylan esterase plays an important role in the complete enzymatic hydrolysis of lignocellulosic materials. It hydrolyzes the ester linkages of acetic acid in xylan and supports and enhances the activity of xylanase. This study was conducted to identify and overexpress the acetyl xylan esterase (AXE) gene revealed by the genomic sequencing of the marine bacterium Ochrovirga pacifica. RESULTS The AXE gene has an 864-bp open reading frame that encodes 287 aa and consists of an AXE domain from aa 60 to 274. Gene was cloned to pET-16b vector and expressed the recombinant AXE (rAXE) in Escherichia coli BL21 (DE3). The predicted molecular mass was 31.75 kDa. The maximum specific activity (40.08 U/mg) was recorded at the optimal temperature and pH which were 50 °C and pH 8.0, respectively. The thermal stability assay showed that AXE maintains its residual activity almost constantly throughout and after incubation at 45 °C for 120 min. The synergism of AXE with xylanase on beechwood xylan, increased the relative activity 1.41-fold. CONCLUSION Resulted higher relative activity of rAXE with commercially available xylanase on beechwood xylan showed its potential for the use of rAXE in industrial purposes as a de-esterification enzyme to hydrolyze xylan and hemicellulose-like complex substrates.
Collapse
Affiliation(s)
- Sachithra Amarin Hettiarachchi
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.,Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
| | - Young-Kyung Kwon
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Youngdeuk Lee
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Eunyoung Jo
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea
| | - Tae-Yang Eom
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yoon-Hyeok Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Do-Hyung Kang
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Svini Dileepa Marasinghe
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea.,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Chulhong Oh
- Korea Institute of Ocean Science & Technology, 2670, Iljudong-ro, Gujwa-eup, Jeju, Republic of Korea. .,Department of Ocean Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
11
|
Sathyanarayana S, Harish Prashanth KV. Malting process has minimal influence on the structure of arabinan-rich rhamnogalacturonan pectic polysaccharides from chickpea ( Cicer arietinum L.) hull. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:1732-1743. [PMID: 30996409 PMCID: PMC6443944 DOI: 10.1007/s13197-019-03600-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
The objective of the study was to determine the changes brought about by malting/germination on the pectic polysaccharides (PP's), the major components of soluble fibres present in chickpea (Cicer arietinum L.) hull. Chickpea hull PP's were extracted sequentially using ammonium oxalate (AO) and ethylenediaminetetraacetic acid (EDTA), and a comparative study was conducted in native (unprocessed, N-PP) and after subjecting to 48 h malting process (M-PP). Malting process did not show a significant change in the respective yields of AO and EDTA extracted pectic polysaccharides. The degree of esterification of N-PP-EDTA through Fourier transform infrared spectroscopy was found to be five times (~ 21%) more than N-PP-AO (~ 4%). AO isolated PP's have more complexed xylogalacturonan with relatively more galactan side chains compared to EDTA isolated PPs. Proton (1H) nuclear magnetic resonance result further suggested the occurrence of arabinan rich rhamnogalacturonan in chickpea hull and malting process showed no significant changes in structure.
Collapse
Affiliation(s)
- Shakuntala Sathyanarayana
- Functional Biopolymer Lab, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570 020 India
| | - Keelara Veerappa Harish Prashanth
- Functional Biopolymer Lab, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570 020 India
| |
Collapse
|
12
|
Ramos-Martinez EM, Fimognari L, Rasmussen MK, Sakuragi Y. Secretion of Acetylxylan Esterase From Chlamydomonas reinhardtii Enables Utilization of Lignocellulosic Biomass as a Carbon Source. Front Bioeng Biotechnol 2019; 7:35. [PMID: 30873405 PMCID: PMC6403119 DOI: 10.3389/fbioe.2019.00035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
Microalgae offer a promising biological platform for sustainable biomanufacturing of a wide range of chemicals, pharmaceuticals, and fuels. The model microalga Chlamydomonas reinhardtii is thus far the most versatile algal chassis for bioengineering and can grow using atmospheric CO2 and organic carbons (e.g., acetate and pure cellulose). Ability to utilize renewable feedstock like lignocellulosic biomass as a carbon source could significantly accelerate microalgae-based productions, but this is yet to be demonstrated. We observed that C. reinhardtii was not able to heterotrophically grow using wheat straw, a common type of lignocellulosic biomass, likely due to the recalcitrant nature of the biomass. When the biomass was pretreated with alkaline, C. reinhardtii was able to grow using acetate that was released from the biomass. To establish an eco-friendly and self-sustained growth system, we engineered C. reinhardtii to secrete a fungal acetylxylan esterase (AXE) for hydrolysis of acetylesters in the lignocellulosic biomass. Two transgenic strains (CrAXE03 and CrAXE23) secreting an active AXE into culture media were isolated. Incubation of CrAXE03 with wheat straw resulted in an eight-fold increase in the algal cell counts with a concomitant decrease of biomass acetylester contents by 96%. The transgenic lines showed minor growth defects compared to the parental strain, indicating that secretion of the AXE protein imposes limited metabolic burden. The results presented here would open new opportunities for applying low-cost renewable feedstock, available in large amounts as agricultural and manufacturing by-products, for microalgal cultivation. Furthermore, acetylesters and acetate released from them, are well-known inhibitors in lignocellulosic biofuel productions; thus, direct application of the bioengineered microalga could be exploited for improving renewable biofuel productions.
Collapse
Affiliation(s)
| | | | | | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
13
|
Mäkelä MR, Dilokpimol A, Koskela SM, Kuuskeri J, de Vries RP, Hildén K. Characterization of a feruloyl esterase from Aspergillus terreus facilitates the division of fungal enzymes from Carbohydrate Esterase family 1 of the carbohydrate-active enzymes (CAZy) database. Microb Biotechnol 2018; 11:869-880. [PMID: 29697197 PMCID: PMC6116738 DOI: 10.1111/1751-7915.13273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/05/2023] Open
Abstract
Feruloyl esterases (FAEs) are accessory enzymes for plant biomass degradation, which catalyse hydrolysis of carboxylic ester linkages between hydroxycinnamic acids and plant cell‐wall carbohydrates. They are a diverse group of enzymes evolved from, e.g. acetyl xylan esterases (AXEs), lipases and tannases, thus complicating their classification and prediction of function by sequence similarity. Recently, an increasing number of fungal FAEs have been biochemically characterized, owing to their potential in various biotechnological applications and multitude of candidate FAEs in fungal genomes. However, only part of the fungal FAEs are included in Carbohydrate Esterase family 1 (CE1) of the carbohydrate‐active enzymes (CAZy) database. In this work, we performed a phylogenetic analysis that divided the fungal members of CE1 into five subfamilies of which three contained characterized enzymes with conserved activities. Conservation within one of the subfamilies was confirmed by characterization of an additional CE1 enzyme from Aspergillus terreus. Recombinant A. terreus FaeD (AtFaeD) showed broad specificity towards synthetic methyl and ethyl esters, and released ferulic acid from plant biomass substrates, demonstrating its true FAE activity and interesting features as potential biocatalyst. The subfamily division of the fungal CE1 members enables more efficient selection of candidate enzymes for biotechnological processes.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Salla M Koskela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Jaana Kuuskeri
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| |
Collapse
|
14
|
Crystal Structure and Substrate Specificity Modification of Acetyl Xylan Esterase from Aspergillus luchuensis. Appl Environ Microbiol 2017; 83:AEM.01251-17. [PMID: 28802264 DOI: 10.1128/aem.01251-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/03/2017] [Indexed: 11/20/2022] Open
Abstract
Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from Aspergillus luchuensis (AlAXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. AlAXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from Aspergillus niger indicated that AlAXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of AlAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan.IMPORTANCE Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of thermoplastic polymers.
Collapse
|
15
|
Yang Y, Zhu N, Yang J, Lin Y, Liu J, Wang R, Wang F, Yuan H. A novel bifunctional acetyl xylan esterase/arabinofuranosidase from Penicillium chrysogenum P33 enhances enzymatic hydrolysis of lignocellulose. Microb Cell Fact 2017; 16:166. [PMID: 28950907 PMCID: PMC5615437 DOI: 10.1186/s12934-017-0777-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Xylan, the major constituent of hemicellulose, is composed of β-(1,4)-linked xylopyranosyl units that for the backbone, with side chains formed by other chemical moieties such as arabinose, galactose, mannose, ferulic acid and acetyl groups. Acetyl xylan esterases and α-L-arabinofuranosidases are two important accessory enzymes that remove side chain residues from xylan backbones and may act in synergy with other xylanolytic enzymes. Compared with enzymes possessing a single catalytic activity, multifunctional enzymes can achieve lignocellulosic biomass hydrolysis using a less complex mixture of enzymes. RESULTS Here, we cloned an acetyl xylan esterase (PcAxe) from Penicillium chrysogenum P33 and expressed it in Pichia pastoris GS115. The optimal pH and temperature of the recombinant PcAxe (rPcAxe) for 4-nitrophenyl acetate were 7.0 and 40 °C, respectively. rPcAxe is stable across a broad pH range, retaining 100% enzyme activity om pH 6-9 after a 1 h incubation. The enzyme tolerates the presence of a wide range of metal ions. Sequence alignment revealed a GH62 domain exhibiting α-L-arabinofuranosidase activity with pH and temperature optima of pH 7.0 and 50 °C, in addition to the expected esterase domain. rPcAxe displayed significant synergy with a recombinant xylanase, with a degree of synergy of 1.35 for the hydrolysis of delignified corn stover. Release of glucose was increased by 51% from delignified corn stover when 2 mg of a commercial cellulase was replaced by an equivalent amount of rPcAxe, indicating superior hydrolytic efficiency. CONCLUSIONS The novel bifunctional enzyme PcAxe was identified in P. chrysogenum P33. rPcAxe includes a carbohydrate esterase domain and a glycosyl hydrolase family 62 domain. This is the first detailed report on a novel bifunctional enzyme possessing acetyl xylan esterase and α-L-arabinofuranosidase activities. These findings expand our current knowledge of glycoside hydrolases and pave the way for the discovery of similar novel enzymes.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yujian Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiawen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruonan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengqin Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Manavalan T, Liu R, Zhou Z, Zou G. Optimization of acetyl xylan esterase gene expression in Trichoderma reesei and its application to improve the saccharification efficiency on different biomasses. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Abstract
Colorimetric detection of reaction products is typically preferred for initial surveys of acetyl xylan esterase (AcXE) activity. This chapter will describe common colorimetric methods, and variations thereof, for measuring AcXE activities on commercial, synthesized, and natural substrates. Whereas assays using pNP-acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate (4MUA) are emphasized, common methods used to measure AcXE activity towards carbohydrate analogs (e.g., acetylated p-nitrophenyl β-D-xylopyranosides) and various acetylated xylans are also described. Strengths and limitations of the colorimetric assays are highlighted.
Collapse
Affiliation(s)
- Galina Mai-Gisondi
- Department of Bioproducts and Biosystems, Aalto University, 00076, Kemistintie 1, Espoo, Aalto, Finland
| | - Emma R Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
18
|
Adesioye FA, Makhalanyane TP, Biely P, Cowan DA. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzyme Microb Technol 2016; 93-94:79-91. [DOI: 10.1016/j.enzmictec.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
|
19
|
Pawar PMA, Derba-Maceluch M, Chong SL, Gómez LD, Miedes E, Banasiak A, Ratke C, Gaertner C, Mouille G, McQueen-Mason SJ, Molina A, Sellstedt A, Tenkanen M, Mellerowicz EJ. Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:387-97. [PMID: 25960248 PMCID: PMC11389080 DOI: 10.1111/pbi.12393] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 05/08/2023]
Abstract
Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Sun-Li Chong
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Leonardo D Gómez
- Center for Novel Agricultural Products Department of Biology, University of York, York, UK
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Alicja Banasiak
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Christine Ratke
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin UMR 1318 INRA/AgroParisTech, Saclay Plant Sciences, Centre de Versailles-Grignon, Versailles Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin UMR 1318 INRA/AgroParisTech, Saclay Plant Sciences, Centre de Versailles-Grignon, Versailles Cedex, France
| | - Simon J McQueen-Mason
- Center for Novel Agricultural Products Department of Biology, University of York, York, UK
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Anita Sellstedt
- Department of Plant Physiology, Umea University, Umeå Plant Science Centre, Umeå, Sweden
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
20
|
Huy ND, Nguyen CL, Park HS, Loc NH, Choi MS, Kim DH, Seo JW, Park SM. Characterization of a novel manganese dependent endoglucanase belongs in GH family 5 from Phanerochaete chrysosporium. J Biosci Bioeng 2015; 121:154-9. [PMID: 26173955 DOI: 10.1016/j.jbiosc.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 01/22/2023]
Abstract
The cDNA encoding a putative glycoside hydrolase family 5, which has been predicted to be an endoglucanase (PcEg5A), was cloned from Phanerochaete chrysosporium and expressed in Pichia pastoris. PcEg5A contains a carbohydrate-binding domain and two important amino acids, E209 and E319, playing as proton donor and nucleophile in substrate catalytic domain. SDS-PAGE analysis indicated that the recombinant endoglucanase 5A (rPcEg5A) has a molecular size of 43 kDa which corresponds with the theoretical calculation. Optimum pH and temperature were found to be 4.5-6.0, and 50°C-60°C, respectively. Moreover, rPcEg5A exhibited maximal activity in the pH range of 3.0-8.0, whereas over 50% of activity still remained at 20°C and 80°C. rPcEg5A was stable at 60°C for 12 h incubation, indicating that rPcEg5A is a thermostable enzyme. Manganese ion enhanced the enzyme activity by 77%, indicating that rPcEg5A is a metal dependent enzyme. The addition of rPcEg5A to cellobiase (cellobiohydrolase and β-glucosidase) resulted in a 53% increasing saccharification of NaOH-pretreated barley straw, whereas the glucose release was 47% higher than that cellobiase treatment alone. Our study suggested that rPcEg5A is an enzyme with great potential for biomass saccharification.
Collapse
Affiliation(s)
- Nguyen Duc Huy
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea; Institute of Biotechnology, Hue University, Hue 530000, Viet Nam
| | - Cu Le Nguyen
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea
| | - Han-Sung Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea
| | | | - Myoung-Suk Choi
- Institute of Molecular Biology and Genetics, College of Natural Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Dae-Hyuk Kim
- Institute of Molecular Biology and Genetics, College of Natural Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jeong-Woo Seo
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Seung-Moon Park
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, Republic of Korea.
| |
Collapse
|
21
|
Immobilization of acetyl xylan esterase on modified graphite oxide and utilization to peracetic acid production. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0298-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Isolation of Filamentous Fungi Exhibiting High Endoxylanase Activity in Lignocellulose Hydrolysate. Appl Biochem Biotechnol 2014; 175:2066-74. [DOI: 10.1007/s12010-014-1427-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022]
|
23
|
Tong X, Lange L, Grell MN, Busk PK. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum. Appl Biochem Biotechnol 2014; 175:1139-52. [PMID: 25369895 DOI: 10.1007/s12010-014-1348-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has been sequenced, its carbohydrate esterases are not annotated yet. We applied peptide pattern recognition (PPR) tool for sequence analysis of the C. thermophilum genome, and 11 carbohydrate esterase genes were discovered. Furthermore, we cloned and heterologously expressed two putative acetyl xylan esterase genes, CtAxeA and CtAxeB, in Pichia pastoris. The recombinant proteins, rCtAxeA and rCtAxeB, released acetic acids from p-nitrophenyl acetate and water-insoluble wheat arabinoxylan. These results indicate that CtAxeA and CtAxeB are true acetyl xylan esterases. For both recombinant esterases, over 93 % of the initial activity was retained after 24 h of incubation at temperatures up to 60 °C, and over 90 % of the initial activity was retained after 24 h of incubation in different buffers from pH 4.0 to 9.0 at 4 and 50 °C. The overall xylose yield from wheat arabinoxylan hydrolysis was 8 % with xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass bioconversion to high value chemicals or biofuels.
Collapse
Affiliation(s)
- Xiaoxue Tong
- Section for Sustainable Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
24
|
Saravanakumar T, Palvannan T, Kim DH, Park SM. Optimized immobilization of peracetic acid producing recombinant acetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Huy ND, Thiyagarajan S, Kim DH, Park SM. Cloning and characterization of a novel bifunctional acetyl xylan esterase with carbohydrate binding module from Phanerochaete chrysosporium. J Biosci Bioeng 2013; 115:507-13. [DOI: 10.1016/j.jbiosc.2012.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]
|
26
|
Peng F, Peng P, Xu F, Sun RC. Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 2012; 30:879-903. [PMID: 22306329 DOI: 10.1016/j.biotechadv.2012.01.018] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Tian B, Chen Y, Ding S. A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability. Protein Expr Purif 2012; 85:44-50. [PMID: 22750674 DOI: 10.1016/j.pep.2012.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 11/19/2022]
Abstract
High level expression of axe1, a gene previously cloned from Volvariella volvacea that encodes an acetyl xylan esterase with two potential N-linked glycosylation sites, has been achieved in Pichia pastoris using a codon-optimized axe1 synthesized by the primer extension PCR procedure. The GC content of the codon-optimized axe1 was 48.62% compared with 55.49% in the native gene. Using the codon-optimized construct, AXE1 expression in P. pastoris was increased from an undetectable level to 136.45 U/ml six days after induction of yeast cultures grown in BMMY medium. A further increase (to 463 U/ml) was achieved when conditions for yeast culture were optimized as follows: 2.8% methanol, 0.63% casamino acids, and pH 8.0. This latter value represented a 3.4-fold and 246-fold increase in the enzyme levels recorded in non-optimized P. pastoris cultures and in rice straw-grown cultures of V. volvacea, respectively. N-linked glycosylation played an essential role in AXE1 secretion but had only a slight effect on the catalytic activity and stability of the recombinant enzyme.
Collapse
Affiliation(s)
- Bin Tian
- State Key Laboratory of Forest Genetics & Biotechnology, Department of Biological Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | | |
Collapse
|
28
|
Cloning, overexpression in Escherichia coli, and characterization of a thermostable fungal acetylxylan esterase from Talaromyces emersonii. Appl Environ Microbiol 2012; 78:3759-62. [PMID: 22407679 DOI: 10.1128/aem.05659-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels.
Collapse
|
29
|
Park SM. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide. J Biosci Bioeng 2011; 112:473-5. [DOI: 10.1016/j.jbiosc.2011.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/11/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022]
|
30
|
Huy ND, Kim SW, Park SM. Heterologous expression of endo-1,4-beta-xylanaseC from Phanerochaete chrysosporium in Pichia pastoris. J Biosci Bioeng 2011; 111:654-7. [DOI: 10.1016/j.jbiosc.2011.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/09/2011] [Accepted: 02/17/2011] [Indexed: 11/15/2022]
|
31
|
Huy ND, Thiyagarajan S, Son YL, Park SM. Heterologous Expression of Endo-1,4-beta-xylanaseA from Phanerochaete chrysosporium in Pichia pastoris. MYCOBIOLOGY 2011; 39:121-124. [PMID: 22783089 PMCID: PMC3385102 DOI: 10.4489/myco.2011.39.2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/13/2011] [Indexed: 06/01/2023]
Abstract
The cDNA of endo-1,4-β-xylanaseA, isolated from Phaenerocheate chrysosporium was expressed in Pichia pastoris. Using either the intrinsic leader peptide of XynA or the α-factor signal peptide of Saccharomyces cerevisiae, xylanaseA is efficiently secreted into the medium at maximum concentrations of 1,946 U/L and 2,496 U/L, respectively.
Collapse
Affiliation(s)
- Nguyen Duc Huy
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570-752, Korea
| | | | | | | |
Collapse
|
32
|
|
33
|
Calero-Rueda O, Barba V, Rodríguez E, Plou F, Martínez ÁT, Martínez MJ. Study of a sterol esterase secreted by Ophiostoma piceae: Sequence, model and biochemical properties. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1099-106. [DOI: 10.1016/j.bbapap.2009.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
|
34
|
Ding S, Cao J, Zhou R, Zheng F. Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroomVolvariella volvacea. FEMS Microbiol Lett 2007; 274:304-10. [PMID: 17623028 DOI: 10.1111/j.1574-6968.2007.00844.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.
Collapse
Affiliation(s)
- Shaojun Ding
- Department of Biological Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | | | | | | |
Collapse
|
35
|
Latha GM, Muralikrishna G. Purification and partial characterization of acetic acid esterase from malted finger millet (Eleusine coracana, Indaf-15). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:895-902. [PMID: 17263491 DOI: 10.1021/jf0618527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acetic acid esterase (EC 3.1.1.6) cleaves the acetyl groups substituted at O-2/O-3 of the xylan backbone of arabinoxylans and is known to modulate their functional properties. To date, this enzyme from cereals has not received much attention. In the present study, acetic acid esterase from 72 h ragi malt was isolated and purified to apparent homogeneity by a four-step purification, i.e., ammonium sulfate precipitation, DEAE-cellulose, Sephacryl S-200, and phenyl-Sepharose column chromatography, with a recovery of 0.36% and a fold purification of 34. The products liberated from alpha-NA and PNPA by the action of purified ragi acetic acid esterase were authenticated by ESI-MS and 1H NMR. The pH and temperature optima of the enzyme were found to be 7.5 and 45 degrees C, respectively. The enzyme is stable in the pH range of 6.0-9.0 and temperature range of 30-40 degrees C. The activation energy of the enzymatic reaction was found to be 7.29 kJ mol-1. The apparent Km and Vmax of the purified acetic acid esterase for alpha-NA were 0.04 microM and 0.175 microM min-1 mL-1, respectively. The molecular weight of the native enzyme was found to be 79.4 kDa by GPC whereas the denatured enzyme was found to be 19.7 kDa on SDS, indicating it to be a tetramer. EDTA, citric acid, and metal ions such as Fe+3 and Cu+2 increased the activity while Ni+2, Ca+2, Co+2, Ba+2, Mg+2, Mn+2, Zn+2, and Al+3 reduced the activity. Group-specific reagents such as eserine and PCMB at 25 mM concentration completely inhibited the enzyme while iodoacetamide did not have any effect. Eserine was found to be a competitive inhibitor.
Collapse
Affiliation(s)
- G Madhavi Latha
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570020, Karnataka, India
| | | |
Collapse
|
36
|
Gordillo F, Caputo V, Peirano A, Chavez R, Van Beeumen J, Vandenberghe I, Claeyssens M, Bull P, Ravanal MC, Eyzaguirre J. Penicillium purpurogenum produces a family 1 acetyl xylan esterase containing a carbohydrate-binding module: characterization of the protein and its gene. ACTA ACUST UNITED AC 2006; 110:1129-39. [PMID: 17008082 DOI: 10.1016/j.mycres.2006.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 05/22/2006] [Accepted: 07/05/2006] [Indexed: 11/21/2022]
Abstract
At least three acetyl xylan esterases (AXE I, II and III) are secreted by Penicillium purpurogenum. This publication describes more detailed work on AXE I and its gene. AXE I binds cellulose but not xylan; it is glycosylated and inactivated by phenylmethylsulphonyl fluoride, showing that it is a serine esterase. The axe1 gene presents an open reading frame of 1278 bp, including two introns of 68 and 61 bp; it codes for a signal peptide of 31 residues and a mature protein of 351 amino acids (molecular weight 36,693). AXE I has a modular structure: a catalytic module at the amino terminus belonging to family 1 of the carbohydrate esterases, a linker rich in serines and threonines, and a family 1 carboxy terminal carbohydrate binding module (CBM). The CBM is similar to that of AXE from Trichoderma reesei, (with a family 5 catalytic module) indicating that the genes for catalytic modules and CBMs have evolved separately, and that they have been linked by gene fusion. The promoter sequence of axe1 contains several putative sequences for binding of gene expression regulators also found in other family 1 esterase gene promoters. It is proposed that AXE I and II act in succession in xylan degradation; first, xylan is attacked by AXE I and other xylanases possessing CBMs (which facilitate binding to lignocellulose), followed by other enzymes acting mainly on soluble substrates.
Collapse
Affiliation(s)
- Felipe Gordillo
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Quyen DT, Dao TT, Thanh Nguyen SL. A novel esterase from Ralstonia sp. M1: gene cloning, sequencing, high-level expression and characterization. Protein Expr Purif 2006; 51:133-40. [PMID: 16893659 DOI: 10.1016/j.pep.2006.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/24/2022]
Abstract
A newly isolated gene from Ralstonia sp. M1, encoding an esterase, was cloned in Escherichia coli and its nucleotide sequence determined. The 1.6kb insert revealed one complete open reading frame, predicted to encode an esterase (320 aa, 34.1kDa) with a pI of 9.86. EstR contained a putative oxyanion hole H36G37, a conserved pentapeptide G103HSLG107 and a conserved catalytic His265 and Asp237. The EstR sequence shared 64-70 and 44-48% identity with the hydrolases/acyltransferases from Burkholderia strains and from Ralstonia strains, respectively, 44 and 38% identity with the lactone-specific esterase from Pseudomonas fluorescens and Mesorhizobium loti, respectively. The esterase EstR was expressed with a high level of 41mg/g wet cells. The Ni-NTA-purified esterase EstR showed an optimal activity in the temperature range 60-65 degrees C and pH range 7.5-9.0 towards p-nitrophenyl caproate. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine. Metal ions showed slight effect on esterase activity. The inhibitor phenylmethanesulfonyl fluoride inhibited strongly the esterase. Triton X-45 induced the activation of EstR, but other detergents slightly to strongly decreased or completely inhibited. Among tested p-NP esters, caproate was the most preferential substrate of this esterase.
Collapse
Affiliation(s)
- Dinh Thi Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Distr. Caugiay, 10600 Hanoi, Viet Nam.
| | | | | |
Collapse
|
38
|
Koseki T, Miwa Y, Akao T, Akita O, Hashizume K. An Aspergillus oryzae acetyl xylan esterase: Molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris. J Biotechnol 2006; 121:381-9. [PMID: 16129506 DOI: 10.1016/j.jbiotec.2005.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 07/12/2005] [Indexed: 11/19/2022]
Abstract
We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.
Collapse
Affiliation(s)
- Takuya Koseki
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan.
| | | | | | | | | |
Collapse
|
39
|
Koseki T, Miwa Y, Fushinobu S, Hashizume K. Biochemical characterization of recombinant acetyl xylan esterase from Aspergillus awamori expressed in Pichia pastoris: Mutational analysis of catalytic residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:7-13. [PMID: 15848131 DOI: 10.1016/j.bbapap.2005.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 01/12/2005] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
We engineered an acetyl xylan esterase (AwaxeA) gene from Aspergillus awamori into a heterologous expression system in Pichia pastoris. Purified recombinant AwAXEA (rAwAXEA) displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. Putative catalytic residues, Ser(119), Ser(146), Asp(168) and Asp(202), were substituted for alanine by site-directed mutagenesis. The biochemical properties and kinetic parameters of the four mutant enzymes were examined. The S119A and D202A mutant enzymes were catalytically inactive, whereas S146A and D168A mutants displayed significant hydrolytic activity. These observations indicate that Ser(119) and Asp(202) are important for catalysis. The S146A mutant enzyme showed lower specific activity toward the C2 substrate and higher thermal stability than wild-type enzyme. The lower activity of S146A was due to a combination of increased K(m) and decreased k(cat). The catalytic efficiency of S146A was 41% lower than that of wild-type enzyme. The synthesis of ethyl acetate was >10-fold than that of ethyl n-hexanoate synthesis for the wild-type, S146A and D168A mutant enzymes. However, the D202A showed greater synthetic activity of ethyl n-hexanoate as compared with the wild-type and other mutants.
Collapse
Affiliation(s)
- Takuya Koseki
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima 739-0046, Japan.
| | | | | | | |
Collapse
|