1
|
Huang H, Wang Y, Zeng J, Ma Y, Cui Z, Zhou Y, Ruan Z. Study on in vivoand in vitrodegradation of polydioxanone weaving tracheal stents. Biomed Mater 2024; 19:055032. [PMID: 39094619 DOI: 10.1088/1748-605x/ad6ac6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
The appropriate degradation characteristics of polydioxanone (PDO) are necessary for the safety and effectiveness of stents. This study aimed to investigate the degradation of PDO weaving tracheal stents (PW stents)in vitroandin vivo. The degradation solution ofS. aureus(SAU),E. coli(ECO),P. aeruginosa(PAE), and control (N) were prepared, and the PW stents were immersed for 12 weeks. Then, the radial support force, weight retention, pH, molecular structure, thermal performance, and morphology were determined. Furthermore, the PW stents were implanted into the abdominal cavity of rabbits, and omentum was embedded. At feeding for 16 weeks, the mechanical properties, and morphology were measured. During the first 8 weeks, the radial support force in all groups was progressively decreased. At week 2, the decline rate of radial support force in the experimental groups was significantly faster compared to the N group, and the difference was narrowed thereafter. The infrared spectrum showed that during the whole degradation process, SAU, ECO and PAE solution did not lead to the formation of new functional groups in PW stents.In vitroscanning electron microscope observation showed that SAU and ECO were more likely to gather and multiply at the weaving points of the PW stents, forming colonies.In vivoexperiments showed that the degradation in the concavity of weaving points of PW stents was more rapid and severe. The radial support loss rate reached more than 70% at week 4, and the radial support force was no longer measurable after week 8. In omentum, multinuclear giant cells and foreign giant cells were found to infiltrate. PW stents have good biocompatibility. The degradation rate of PW stents in the aseptic conditionsin vivowas faster than in the bacteriological environmentin vitro.
Collapse
Affiliation(s)
- Haihua Huang
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| | - Yuchen Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| | - Jun Zeng
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Yanxue Ma
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, People's Republic of China
| | - Yongxin Zhou
- Department of Thoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Zheng Ruan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 201620, People's Republic of China
| |
Collapse
|
2
|
Lu J, Hu X, Yuan T, Cao J, Zhao Y, Xiong C, Li K, Ye X, Xu T, Zhao J. 3D-Printed Poly (P-Dioxanone) Stent for Endovascular Application: In Vitro Evaluations. Polymers (Basel) 2022; 14:polym14091755. [PMID: 35566924 PMCID: PMC9103802 DOI: 10.3390/polym14091755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid formation of innovative, inexpensive, personalized, and quickly reproducible artery bioresorbable stents (BRSs) is significantly important for treating dangerous and sometimes deadly cerebrovascular disorders. It is greatly challenging to give BRSs excellent mechanical properties, biocompatibility, and bioabsorbability. The current BRSs, which are mostly fabricated from poly-l-lactide (PLLA), are usually applied to coronary revascularization but may not be suitable for cerebrovascular revascularization. Here, novel 3D-printed BRSs for cerebrovascular disease enabling anti-stenosis and gradually disappearing after vessel endothelialization are designed and fabricated by combining biocompatible poly (p-dioxanone) (PPDO) and 3D printing technology for the first time. We can control the strut thickness and vessel coverage of BRSs by adjusting the printing parameters to make the size of BRSs suitable for small-diameter vascular use. We added bis-(2,6-diisopropylphenyl) carbodiimide (commercial name: stabaxol®-1) to PPDO to improve its hydrolytic stability without affecting its mechanical properties and biocompatibility. In vitro cell experiments confirmed that endothelial cells can be conveniently seeded and attached to the BRSs and subsequently demonstrated good proliferation ability. Owing to the excellent mechanical properties of the monofilaments fabricated by the PPDO, the 3D-printed BRSs with PPDO monofilaments support desirable flexibility, therefore offering a novel BRS application in the vascular disorders field.
Collapse
Affiliation(s)
- Junlin Lu
- Beijing Tiantan Hospital, Department of Neurosurgery, Capital Medical University, Beijing 100070, China; (J.L.); (Y.Z.)
| | - Xulin Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610081, China; (X.H.); (K.L.)
| | - Tianyu Yuan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
| | - Jianfei Cao
- School of Materials and Environmental Engineering, Chengdu Technology University, Chengdu 610041, China;
| | - Yuanli Zhao
- Beijing Tiantan Hospital, Department of Neurosurgery, Capital Medical University, Beijing 100070, China; (J.L.); (Y.Z.)
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing 100070, China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
| | - Kainan Li
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu 610081, China; (X.H.); (K.L.)
| | - Xun Ye
- Beijing Tiantan Hospital, Department of Neurosurgery, Capital Medical University, Beijing 100070, China; (J.L.); (Y.Z.)
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing 100070, China
- Correspondence: (X.Y.); (T.X.); (J.Z.)
| | - Tao Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Bio-Intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen 518057, China
- East China Institute of Digital Medical Engineering, Shangrao 334000, China
- Correspondence: (X.Y.); (T.X.); (J.Z.)
| | - Jizong Zhao
- Beijing Tiantan Hospital, Department of Neurosurgery, Capital Medical University, Beijing 100070, China; (J.L.); (Y.Z.)
- Beijing Translational Engineering Enter for 3D Printer in Clinical Neuroscience, Beijing 100070, China
- Correspondence: (X.Y.); (T.X.); (J.Z.)
| |
Collapse
|
3
|
Zheng H, Peng H, Wang P, Li H, Li L, Du Y, Lv G. In vitro and in vivo evaluation of degradability and biocompatibility of poly(p‐dioxanone) hemostatic clips for laparoscopic surgery. J Appl Polym Sci 2021. [DOI: 10.1002/app.50772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Heng Zheng
- College of Physics Sichuan University Chengdu Sichuan China
| | - Haitao Peng
- College of Physics Sichuan University Chengdu Sichuan China
| | - Peng Wang
- Sichuan Guona Technology Company Chengdu Sichuan China
| | - Hong Li
- College of Physics Sichuan University Chengdu Sichuan China
| | - Lin Li
- College of Physics Sichuan University Chengdu Sichuan China
| | - Yan Du
- College of Physics Sichuan University Chengdu Sichuan China
| | - Guoyu Lv
- College of Physics Sichuan University Chengdu Sichuan China
| |
Collapse
|
4
|
Zhong G, Liu Y, Liu C, Li X, Lin J, Lanzon AL, Zhang H, Chen M. Biological compatibility, thermal and in vitro simulated degradation for poly(p-dioxanone)/poly(lactide-co-glycolide)/poly(ethylene succinate-co-glycolide). J Biomed Mater Res B Appl Biomater 2021; 109:1817-1835. [PMID: 33894107 DOI: 10.1002/jbm.b.34842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 01/17/2023]
Abstract
Bio-absorbable polymers are widely desired to be applied and used as biomaterials for surgery hemostatic and medical tissue engineering devices. Ring-opening copolymerization reaction was applied to synthesize poly(ethylene succinate-co-glycolide) (PES-b-PGA). Stannous octoate was used as a catalyst whereas poly(ethylene succinate) was used as a macro-initiator to react with glycolide. PES-b-PGA was then used as a compatibilizer to prepare the blend biomaterial of PPDO/PLGA/PES-b-PGA by melt blending poly(p-dioxanone) (PPDO) with poly(lactide-co-glycolide) (PLGA). This would enhance the interactions of the inter-molecular chains and intra-molecular segments thus improving the compatibility. To obtain the biomaterial of PPDO/PLGA/PES-b-PGA with a regulated and controlled degradation and/or hydrolysis period, various ratios of PPDO, PLGA, and PES-b-PGA was blended. Behaviors of the thermal and in vitro simulated degradation, biological compatibility, cytotoxicity and subcutaneous implantation of PPDO/PLGA/PES-b-PGA were investigated. The results show that the in vitro hydrolytic degradation cycle is consistent with the wound healing time and that the biomaterial has slight cytotoxicity and it will do good to the cell proliferation, with 1 grade of cytotoxicity and the relative growth rate being the range from 92.5% to 96.2%. The implantation of the biomaterial into the rabbits' ears will not adversely affect the wound healing and the tissues surrounding the implanted sites. Therefore, the biomaterial has good biocompatibility and potential applications in medical tissue engineering devices.
Collapse
Affiliation(s)
- Gang Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Yihao Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Canpei Liu
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingwei Lin
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Thoracic Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Alain Luigi Lanzon
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Mingfeng Chen
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
Heidari BS, Chen P, Ruan R, Davachi SM, Al-Salami H, De Juan Pardo E, Zheng M, Doyle B. A novel biocompatible polymeric blend for applications requiring high toughness and tailored degradation rate. J Mater Chem B 2021; 9:2532-2546. [PMID: 33660730 DOI: 10.1039/d0tb02971h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Finding the right balance in mechanical properties and degradation rate of biodegradable materials for biomedical applications is challenging, not only at the time of implantation but also during biodegradation. For instance, high elongation at break and toughness with a mid-term degradation rate are required for tendon scaffold or suture application, which cannot be found in each alpha polyester individually. Here, we hypothesise that blending semi-crystalline poly(p-dioxanone) (PDO) and poly(lactide-co-caprolactone) (LCL) in a specific composition will enhance the toughness while also enabling tailored degradation times. Hence, blends of PDO and LCL (PDO/LCL) were prepared in varying concentrations and formed into films by solvent casting. We thoroughly characterised the chemical, thermal, morphological, and mechanical properties of the new blends before and during hydrolytic degradation. Cellular performance was determined by seeding mouse fibroblasts onto the samples and culturing for 72 hours, before using proliferation assays and confocal imaging. We found that an increase in LCL content causes a decrease in hydrolytic degradation rate, as indicated by induced crystallinity, surface and bulk erosions, and tensile properties. Interestingly, the noncytotoxic blend containing 30% PDO and 70% LCL (PDO3LCL7) resulted in small PDO droplets uniformly dispersed within the LCL matrix and demonstrated a tailored degradation rate and toughening behaviour with a notable strain-hardening effect reaching 320% elongation at break; over 3 times the elongation of neat LCL. In summary, this work highlights the potential of PDO3LCL7 as a biomaterial for biomedical applications like tendon tissue engineering or high-performance absorbable sutures.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yuan Y, Ding SD, Zhao YQ, Wang YZ. Influences of Bis-(2,6-Diisopropylphenyl) Carbodiimide on the Thermal Stability and Crystallization of Poly( P-Dioxanone). J MACROMOL SCI B 2016. [DOI: 10.1080/00222348.2016.1171084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
|
8
|
|
9
|
Giammanco G, Martínez de Ilarduya A, Alla A, Muñoz-Guerra S. Hydrolyzable Aromatic Copolyesters of p-Dioxanone. Biomacromolecules 2010; 11:2512-20. [DOI: 10.1021/bm1007025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Giammanco
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - A. Martínez de Ilarduya
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - A. Alla
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - S. Muñoz-Guerra
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Bajgai MP, Parajuli DC, Ko JA, Kang HK, Khil MS, Kim HY. Synthesis, characterization and aqueous dispersion of dextran-g-poly(1,4-dioxan-2-one) copolymers. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2009.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
A rapid synthesis of poly (p-dioxanone) by ring-opening polymerization under microwave irradiation. Polym Bull (Berl) 2006. [DOI: 10.1007/s00289-006-0668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Hong JT, Cho NS, Yoon HS, Kim TH, Koh MS, Kim WG. Biodegradable studies of poly(trimethylenecarbonate-ɛ-caprolactone)-block-poly(p-dioxanone), poly(dioxanone), and poly(glycolide-ɛ-caprolactone) (Monocryl®) monofilaments. J Appl Polym Sci 2006. [DOI: 10.1002/app.24440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hiraguri Y, Katase K, Tokiwa Y. Biodegradability of Poly(ester‐ether) and Poly(ester) Obtained from a Radical Ring‐Opening Polymerization of Cyclic Ketene Acetals. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2005. [DOI: 10.1081/ma-200063155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Hong JT, Cho NS, Yoon HS, Kim TH, Lee DH, Kim WG. Preparation and characterization of biodegradable poly(trimethylenecarbonate-ɛ-caprolactone)-block-poly(p-dioxanone) copolymers. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/pola.20752] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
|
17
|
Pezzin A, Duek E. Hydrolytic degradation of poly(para-dioxanone) films prepared by casting or phase separation. Polym Degrad Stab 2002. [DOI: 10.1016/s0141-3910(02)00174-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
|
19
|
Cao A, Okamura T, Nakayama K, Inoue Y, Masuda T. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002. [DOI: 10.1016/s0141-3910(02)00124-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Nishida H, Konno M, Tokiwa Y. Microbial degradation of poly(p-dioxanone) II. Isolation of hydrolyzates-utilizing microorganisms and utilization of poly(p-dioxanone) by mixed culture. Polym Degrad Stab 2000. [DOI: 10.1016/s0141-3910(00)00010-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Thermal decomposition of poly(1,4-dioxan-2-one). Polym Degrad Stab 2000. [DOI: 10.1016/s0141-3910(00)00145-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|