1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Ren P, Lu L, Cai S, Chen J, Lin W, Han F. Alternative Splicing: A New Cause and Potential Therapeutic Target in Autoimmune Disease. Front Immunol 2021; 12:713540. [PMID: 34484216 PMCID: PMC8416054 DOI: 10.3389/fimmu.2021.713540] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing (AS) is a complex coordinated transcriptional regulatory mechanism. It affects nearly 95% of all protein-coding genes and occurs in nearly all human organs. Aberrant alternative splicing can lead to various neurological diseases and cancers and is responsible for aging, infection, inflammation, immune and metabolic disorders, and so on. Though aberrant alternative splicing events and their regulatory mechanisms are widely recognized, the association between autoimmune disease and alternative splicing has not been extensively examined. Autoimmune diseases are characterized by the loss of tolerance of the immune system towards self-antigens and organ-specific or systemic inflammation and subsequent tissue damage. In the present review, we summarized the most recent reports on splicing events that occur in the immunopathogenesis of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) and attempted to clarify the role that splicing events play in regulating autoimmune disease progression. We also identified the changes that occur in splicing factor expression. The foregoing information might improve our understanding of autoimmune diseases and help develop new diagnostic and therapeutic tools for them.
Collapse
Affiliation(s)
- Pingping Ren
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Luying Lu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shasha Cai
- Department of Nephrology, The First People's Hospital of Wenling, Taizhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University of Medicine, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Nephropathy, Zhejiang Province, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Miyamoto K, Kobayashi D, Maeda R, Ito T, Komai T. Inhibition of cryogelation by the novel synthetic peptide (Gly-Arg-Lys-Lys-Thr): recognition site of extra domain A containing fibronectin for heparin in cryogelation. Int J Biol Macromol 2003; 31:207-15. [PMID: 12568929 DOI: 10.1016/s0141-8130(02)00083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A (EDA) containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep) in the blood of rheumatoid arthritis (RA) patients. In cryogelation EDA(+)FN cross-links to form an interaggregate of cryogel with Hep. In the present study, we determined the recognition structure of Hep for EDA(+)FN by using oligo- and desulfonated-Hep. The affinity constant (KA) (1.2 x 10(8) per M) of oligo-Hep for EDA(+)FN did not change with a decrease in number-average molecular weight (4.9 x 10(4)-->6.0 x 10(3)). The KA-value of desulfonated-Hep for EDA(+)FN decreased from 3.2 x 10(8) to 1.0 x 10(7) per M with a decrease in the sulfonation ratio (7.0-->4.3%). We also determined the recognition structure of EDA(+)FN for Hep by an inhibition experiment on the heparin binding domain II (HepII) in EDA(+)FN with the synthetic peptides, Arg-Arg-Ala-Arg (RRAR), Asp-Gln-Ala-Arg (DNAR), Ile-Lys-Tyr-Glu-Lys (IKYEK), and Gly-Arg-Lys-Lys-Try (GRKKT). The GRKKT sequence clearly inhibited bonding between EDA(+)FN and Heps containing oligo- and desulfonated-Hep. The amount of cryogel formed in the RA-patient model plasma corresponded to the EDA(+)FN concentration in cryogel (36.7%) normalized by the EDA(+)FN concentration in plasma. When GRKKT was added to plasma, the EDA(+)FN concentration fell to 10.5%. These results demonstrated that inhibition of cryogelation in plasma could progress to a novel treatment for RA.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
4
|
Miyamoto K, Kodera N, Umekawa H, Furuichi Y, Tokita M, Komai T. Specific interactions between cryogel components: role of extra domain A containing fibronectin in cryogelation. Int J Biol Macromol 2002; 30:205-12. [PMID: 12063123 DOI: 10.1016/s0141-8130(02)00021-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cryogel is a physical gel formed by heterophilic aggregation of extra domain A containing fibronectin [EDA(+)FN], plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep), which are found in high concentrations in the blood of patients suffering from rheumatoid arthritis. In this study, we clarify the specific interactions between cryogel components in terms of the affinity constant (K(A)), obtained by surface plasmon resonance (SPR). It is found that Fbg self-interactions occur at lower temperatures, and that K(A) of Fbg-Hep changes with temperature. Specifically, K(A) (2.0 x 10(8) [M(-1)]) of Fbg-Hep at 5 degrees C increases significantly from that (1.0x10(7) [M(-1)]) at 40 degrees C. K(A) of EDA(+)FN-Hep increases with temperature, by approximately 100-fold between 40 degrees C (K(A)=10(12) [M(-1)]) and 20 degrees C (K(A)=10(10) [M(-1)]). Although K(A) of the FN fragments of Hep-binding domain containing an EDA region [EDA(+)HBD(+)] and Hep increases with temperatures above 30 degrees C, K(A)s of HBD(+)-Hep and EDA(+)-Hep are not temperature-dependent. Therefore, EDA(+)HBD(+), formed as a special structure for high Hep affinity, exhibits temperature-dependent interaction with Hep. These results suggest that the main role of EDA(+)FN in cryogelation is to support the interaction with Hep.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Cho, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Miyamoto K, Sugihara K, Abe Y, Nobori T, Tokita M, Komai T. Novel plasma-separation dilayer gellan-gellan-sulfate adsorber for direct removal of extra domain A containing fibronectin from the blood of rheumatoid arthritis patients. Int J Biol Macromol 2002; 30:197-204. [PMID: 12063122 DOI: 10.1016/s0141-8130(02)00020-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rheumatoid arthritis (RA) patients, in whom cryogelation occurs in the presence of heparin, exhibit abnormally high concentrations of extra domain A containing fibronectin [EDA(+)FN] in their plasma. The selective removal of EDA(+)FN from patient blood is therefore of potential therapeutic benefit. Gellan-sulfate is a candidate ligand for the removal of EDA(+)FN due to its high affinity for FN. In this study, we prepare a novel adsorber for the direct removal of EDA(+)FN from patient blood. The adsorber has both a plasma separation function and EDA(+)FN trapping zones, and is prepared by cross-linking gellan-sulfate with epichlorohydrine. The ratio of gellan-sulfate to gellan in the adsorber is 48%. The surface and internal structure of gellan beads were observed by a range of microscopic techniques, and the beads were found to have a dilayer structure, consisting of a porous outer layer and an underlying gellan-sulfate phase as the adsorber. The affinity constants of the gellan-sulfate beads for EDA(+)FN were almost the same in blood as in buffer because the porous gellan coating acts to separate plasma from the cellular fraction of the blood. The removal rate of plasma proteins and blood cells from mock RA blood was measured for coated and uncoated gellan-sulfate beads. Removal rates were 30-32% for EDA(+)FN, 6-10% for fibrinogen, 10-14% for antithrombin III, 8% for C3, 4-7% for C4, and 0% for albumin. The removal rates of uncoated beads were 11% for white blood cells, 0% for red blood cells and 33% for platelets, whereas removal rates of 0% for white blood cells, 0% for red blood cells and 20% for platelets were achieved for coated beads. The coating effectively inhibits the adsorption of white blood cells and platelets. Existing problems with direct adsorbers, including selectivity and plasma separation, have been solved by this material.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu, Mie 514-8507, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Miyamoto K, Kanemoto A, Hashimoto K, Tokita M, Komai T. Immobilized gellan sulfate surface for cell adhesion and multiplication: development of cell-hybrid biomaterials using self-produced fibronectin. Int J Biol Macromol 2002; 30:75-80. [PMID: 11911896 DOI: 10.1016/s0141-8130(02)00013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new concept for cell-hybrid biomaterial is proposed in which human unbilical vein endothelial cells (HUVEC) are adhered to an immobilized gellan sulfate (GS) surface. Extra domain A containing fibronectin (EDA(+)FN) released from HUVEC is necessary for cell adhesion and multiplication. The material design in this study is based on these self-released cell adhesion proteins. The interaction between GS and EDA(+)FN was evaluated using the affinity constant (KA); the value obtained was 1.03x10(8) (M(-1)). These results suggest that the adhesion of HUVEC to GS may be supported by the adhesion of EDA(+)FN to GS. We also found that this new material adheres to HUVEC, allowing the reintroduction of EDA(+)FN, which is self-produced by the cell. This material is relatively easy to produce, not requiring the usual coating of adhesion proteins in pretreatment.
Collapse
Affiliation(s)
- Keiichi Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, Tsu, Japan.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Cryogel, prevalent in the plasma of rheumatoid arthritis patients, is a plasma fibronectin (pFN)-extra domain A containing FN [EDA(+)FN]-fibrinogen (Fbg) aggregate formed by the addition of heparin (Hep) at low temperature. Although EDA(+)FN is not usually present in normal plasma, its prevalence in rheumatic patients induces cryogelation. In this study, we determined the hydrodynamic radius (R(h)) ratio (R(h)/R(h30)) of the cryogel component by dynamic light scattering in vitro. R(h)/R(h30) was normalized to R(h) at 30 degrees C (R(h30)) at several temperatures. The R(h)/R(h30) of Fbg was found to increase only by self-aggregation, whereas the R(h)/R(h30) of FNs does not increase in response to temperature changes. The R(h)/R(h30) of the Fbg/FN aggregate is increased by the addition of Hep, and the R(h)/R(h30) (12.5) of the Hep-induced EDA(+)FN/Fbg aggregate is greater than that (2.5) of the pFN/Fbg aggregate. These results suggest that cryogelation requires Fbg self-aggregation and the interaction between EDA(+)FN and Hep.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu, 514-8507, Mie, Japan.
| | | | | | | |
Collapse
|
8
|
Miyamoto K, Asakawa Y, Arai Y, Shimizu T, Tokita M, Komai T. Preparation of gellan sulfate as an artificial ligand for removal of extra domain A containing fibronectin. Int J Biol Macromol 2001; 28:381-5. [PMID: 11325425 DOI: 10.1016/s0141-8130(01)00135-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The extra domain A containing fibronectin (EDA(+)FN) concentration in plasma of rheumatoid arthritis (RA) is abnormally higher than the normal level. We synthesized various gellan-sulfate (GS) candidates as artificial ligands for removing EDA(+)FN from plasma. The interaction between these artificial ligands and EDA(+)FN was evaluated using affinity constants (KA), which were determined by surface plasmon resonance measurement. The KA (3.6 x 10(8) per M) of GS-25 [degree of substitution for sulfonation (DS) = 25%] with EDA(+)FN was higher than those of other molecules: GS-16 (DS=16%) at 8.3 x 10(7) per M, and GS-35 (DS = 35%) at 1.7 x 10(8) per M. Furthermore, GSs displayed selectivity of EDA(+)FN for binding with plasma FN (KAEDA(+)FN)/KA(plasma FN)>2). The removal ratio in plasma was measured by using GS-immobilized gel. Removals of 66, 11, 7.7, 6.2, 6.9, and 12% for EDA(+)FN, plasma FN, fibrinogen, albumin, immunoglobulin G (IgG) and antithrombin III from the patient-model plasma were, respectively, achieved with GS-25-immobilized gel. These results suggest that GS may be used as a selective artificial ligand for EDA(+)FN removal from plasma in RA treatment.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-chou, Tsu, 514-5807, Mie, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cryogel is a physical gel formed by the heterophilic aggregation of extra domain A containing fibronectin (EDA(+)FN), plasma fibronectin (pFN), fibrinogen (Fbg) and heparin (Hep). Cryogelation is controlled by the interactions between each aggregate and the amount of aggregates. Therefore, the present study attempted to elucidate these properties by studying turbidity (tau). Although only Fbg formed a self-aggregate under low temperatures, from the temperature dependence of tau, the amount of aggregate in three-element (pFN/Fbg/Hep) solution surpassed that of the EDA(+)FN/Fbg/Hep system. The optimal condition for cryogelation was afforded by a solution with Fbg/EDA(+)FN/pFN/Hep expressed in the molar ratio of 12:0.04:0.79:1. This cryogel structure in solution was probably formed via structural changes induced by pFN in Fbg. The structural change in Fbg was examined by circular dichroism under optimal conditions. This concept was based on observations of the direct transmission scanning electron microscopy of a cryogel. The EDA(+)FN/pFN/Fbg/Hep aggregates displayed a network structure that manifested particulate crosslinkage. Cryogelation, a phenomenon related to induction of rheumatoid arthritis in humans, was facilitated by both the EDA(+)FN-Hep interaction and the structural changes of Fbg induced by pFN.
Collapse
Affiliation(s)
- K Miyamoto
- Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1515 Kamihama-Chou, Tsu-city, 514-8507, Mie, Japan.
| | | | | | | | | |
Collapse
|