1
|
Benigar E, Zupančič Valant A, Dogsa I, Sretenovic S, Stopar D, Jamnik A, Tomšič M. Structure and Dynamics of a Model Polymer Mixture Mimicking a Levan-Based Bacterial Biofilm of Bacillus subtilis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8182-8194. [PMID: 27438223 DOI: 10.1021/acs.langmuir.6b02041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we report on the structure and dynamics of biologically important model polymer mixtures that mimic the extracellular polymeric matrix in native biofilm of Bacillus subtilis. This biofilm is rich in nonionic polysaccharide levan, but also contains other biopolymers such as DNA and proteins in small concentrations. Aiming to identify the contribution of each component to the formation of the biofilm, our investigations encompassed dynamic rheology, small-angle X-ray scattering, dynamic light scattering, microscopy, densitometry, and sound velocity measurements. As it turned out, this very powerful combination of techniques is able to provide solid results on the dynamical and structural aspects of the microbiologically and chemically complex biofilm formations. Macroscopic rheological measurements revealed that the addition of DNA to levan solution increased the viscosity, pseudoplasticity, and elasticity of the system. The addition of protein contributed similarly, but also increased the rigidity of the system. This confirms that the presence of minor biofilm components is essential for biofilm formation. DNA and proteins appear to confine levan molecules within their supramolecular structure and, in this way, restrict the role of levan to merely a filling agent. These findings were complemented by small-angle X-ray scattering data, which provided insight into the structure on a molecular scale. One of the essential goals of this work was to compare the structural properties of the native biofilm and synthetic biofilm mixture.
Collapse
Affiliation(s)
- Elizabeta Benigar
- Faculty of Chemistry and Chemical Technology and Biotechnical Faculty, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Andreja Zupančič Valant
- Faculty of Chemistry and Chemical Technology and Biotechnical Faculty, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Iztok Dogsa
- Biotechnical Faculty, University of Ljubljana , Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Simon Sretenovic
- Biotechnical Faculty, University of Ljubljana , Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - David Stopar
- Biotechnical Faculty, University of Ljubljana , Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Andrej Jamnik
- Faculty of Chemistry and Chemical Technology and Biotechnical Faculty, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Faculty of Chemistry and Chemical Technology and Biotechnical Faculty, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J, Bottero JY. Aging of TiO(2) nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3482-3489. [PMID: 20346555 DOI: 10.1016/j.envpol.2010.02.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 05/29/2023]
Abstract
Aging in water of a TiO(2)-based nanocomposite used in sunscreen cosmetics has been studied as a function of light and time. It consisted initially in a TiO(2) core, coated with Al(OH)(3) and polydimethylsiloxane (PDMS) layers. Size measurement, coating alteration, and surface charge were followed by laser diffraction, TEM/EDS, ICP-AES and electrophoretic mobility measurement. The nanocomposite rapidly underwent progressive dispersion in the aqueous phase, enabled by the dissolution of the PDMS layer. A stable suspension of colloidal byproducts from 50 to 700nm in size was formed. Their positively charged Al(OH)(3) surface was evidenced with an isoelectric point around 7-8, controlling the dispersion stability. The critical coagulation concentrations measured with NaCl and CaCl(2) was 2 × 10(-2) and 8 × 10(-3)M respectively. The presence of natural organic matter affected the colloidal stability according to the NOM/byproduct ratio. A 2 wt% ratio favored bridging flocculation, whereas a 20 wt% ratio induced sterical stabilization.
Collapse
Affiliation(s)
- Jérôme Labille
- CEREGE UMR 6635 CNRS/Aix-Marseille Université, Europôle de l'Arbois, 13545 Aix-en-Provence, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Rheological characterization of culture broth containing the exopolysaccharide PS-EDIV from Sphingomonas pituitosa. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Dogsa I, Kriechbaum M, Stopar D, Laggner P. Structure of bacterial extracellular polymeric substances at different pH values as determined by SAXS. Biophys J 2005; 89:2711-20. [PMID: 16085763 PMCID: PMC1366772 DOI: 10.1529/biophysj.105.061648] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 07/21/2005] [Indexed: 11/18/2022] Open
Abstract
Extracellular polymeric substances (EPS) play an important role in cell aggregation, cell adhesion, and biofilm formation, and protect cells from a hostile environment. The EPS was isolated by trichloroacetic acid/ethanol extraction from broth culture of a marine bacterium isolate. The EPS was composed of glucose and galactose as determined by HPLC and TLC; the protein content was on average 15 +/- 5% of EPS dry mass. The solution structure of EPS at different values of pH was revealed by small-angle x-ray scattering. Scattering curves of EPS solutions (0.4%, w/v) consistently showed two nearly linear log-log regions with slopes a and b in the q-ranges from 0.06 nm(-1) to 0.26 nm(-1), and from 0.27 nm(-1) to 0.88 nm(-1), respectively. Slope a was sensitive to pH changes whereas slope b was not. The observed sensitivity to pH was not a consequence of ionic strength variation with pH, as checked by salt addition. The pH variation causes major rearrangements of EPS structure mainly at length scales above 24 nm. To get a better understanding of the pH effect on EPS structure, the original model proposed by Geissler was refined into a mathematical model that enabled fitting of the experimental scattering curves in the pH range from 0.7 to 11.0. The model describes EPS structure as a network of randomly coiled polymeric chains with denser domains of polymeric chains. The results obtained from the model indicate that dense domains increase in average size from 19 nm at pH 11.0 to 52 nm at pH 0.7. The average distance between the polysaccharide chains at pH 0.7 was 2.3 nm, which indicates a compact EPS structure. Swelling was found to be at a maximum around pH = 8.8, where the average distance between the chains was 4.8 nm.
Collapse
Affiliation(s)
- Iztok Dogsa
- Laboratory for Biophysics, Jozef Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
5
|
Labille J, Thomas F, Milas M, Vanhaverbeke C. Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure. J Colloid Interface Sci 2005; 284:149-56. [PMID: 15752796 DOI: 10.1016/j.jcis.2004.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
The molecular mechanism of montmorillonite flocculation by bacterial polysaccharides was investigated, with special emphasis on the effect of carboxylic charges in the macromolecules on the mechanisms of interaction with the clay surface. An indirect way to quantify the energy of interaction was used, by comparing the flocculation ability of variously acidic polysaccharides. Data on tensile strength of aggregates in diluted suspension were collected by timed size measurements in the domain 0.1-600 microm, using laser diffraction. The flow behavior of settled aggregates was studied by rheology measurements. Flocculation of colloidal clay suspension by polysaccharides requires cancelling of the electrostatic repulsions by salts, which allows approach of clay surfaces close enough to be bridged by adsorbing macromolecules. The amount of acidic charges of the polysaccharides, and especially their location in the molecular structure, governs the bridging mechanism and the resulting tensile strength of the aggregates. The exposure of carboxylate groups located on side chains strongly promotes flocculation. In turn, charges located on the backbone of the polysaccharide are less accessible to interaction, and the flocculation ability of such polysaccharides is lowered. Measurements at different pH indicate that adsorption of acidic polysaccharides occurs via electrostatic interactions on the amphoteric edge surface of clay platelets, whereas neutral polysaccharides rather adsorb via weak interactions. Increased tensile strength in diluted aggregates due to strong surface interactions results in proportionally increased viscosity of the concentrated aggregates.
Collapse
Affiliation(s)
- J Labille
- Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, B.P. 40, F-54501 Vandoeuvre-lès-Nancy cedex, France
| | | | | | | |
Collapse
|
6
|
Abstract
This paper concerns the influence of the chemical structure on the physical properties of some polysaccharides. Especially, we proposed to discuss the role of the substituents on these properties. In some cases, non-carbohydrate substituents play a minor role on rheological properties in the presence of a salt excess as shown on xanthan and succinoglycan. The rheology of aqueous solution of these stereoregular polysaccharides is controlled by the conformation (helical conformation) whose stability is not largely influenced by these substituents. On the other hand, the interaction between galactomannan and xanthan depends on the presence of acetyl substituents on xanthan but also on the xanthan conformation. However, for polymers such as gellan, XM-6 or BEC 1615, complete deacetylation induces the ability to form physical gels in given thermodynamic conditions. The presence of carbohydrate substituents or short side chains was also examined. Especially in the gellan family, the role of position of substitution (position 3 on the glucose unit C or position 6 on the A glucose) was presented. It is concluded that the substituents giving the higher stability for the helical conformation (higher DeltaH and Tm values) also cause a lower salt sensitivity for the helical stability. The role of the substituents on the properties is also described for natural polymers and their chemically or enzymatically modified derivatives.
Collapse
Affiliation(s)
- M Rinaudo
- Centre de Recherche sur les Macromolécules Végétales, CNRS, associated with Joseph Fourier University, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
7
|
Bian W, Chandrasekaran R, Rinaudo M. Molecular structure of the rhamsan-like exocellular polysaccharide RMDP17 from Sphingomonas paucimobilis. Carbohydr Res 2002; 337:45-56. [PMID: 11755911 DOI: 10.1016/s0008-6215(01)00277-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-Ray diffraction analysis of the sodium salt of the polysaccharide RMDP17, a 2-deoxy rhamsan analog, reveals that it adopts a gellan-like, half-staggered, threefold, left handed, double helix of pitch 57.4 A. The side chain of the branched polymer is hydrogen bonded to the main chain. Sodium ions, linked to the carboxylate groups, promote the association of helices via water molecules. Two helices of opposite polarity occupy a trigonal unit cell of dimensions a=17.6 and c=28.7 A. The packing arrangement displays a series of hydrogen bonds involving main chain and side chain atoms, as well as some water bridges, between the helices.
Collapse
Affiliation(s)
- Wen Bian
- Whistler Center for Carbohydrate Research, 1160 Food Science Building, Purdue University, West Lafayette, IN 47907-1160, USA
| | | | | |
Collapse
|
8
|
Villain-Simonnet A, Milas M, Rinaudo M. A new bacterial polysaccharide (YAS34). I. Characterization of the conformations and conformational transition. Int J Biol Macromol 2000; 27:65-75. [PMID: 10704988 DOI: 10.1016/s0141-8130(99)00120-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper concerns the study of the conformational transition of a new exopolysaccharide (YAS34) using experimental techniques such as optical rotation, conductimetric and microcalorimetric measurements as a function of temperature. The behaviors of this polysaccharide in the acid or sodium salt form are compared; a deacetylated sample is also prepared to demonstrate the role of substituents. For the native structure (never heated), a conformational transition is observed but the deacetylated polysaccharide exhibits no ordered conformation. Multidetection size exclusion chromatography (SEC) analyses and conductimetric experiments allowed to determine the nature of each conformation and the molecular dimensions. From these results, it is suggested that the native conformation is a double helix which by heating over T(m) (temperature corresponding to half conformational transition) dissociates into disordered single chains. In the acid and sodium salt forms, by cooling below T(m), an ordered conformation is restored. This conformation seems to be an intramolecular double helix 'hairpin-like turn' (called renatured conformation). Nevertheless an irreversible denaturation is obtained progressively in the sodium salt form when the time of heating over T(m) increases. The conformation of the deacetylated polysaccharide corresponds to that of a single flexible chain (disordered conformation). The conformational transition for the native conformation was studied also in relation to the polyelectrolytic character of the polysaccharide: stability as a function of salt nature and salt and polymer concentrations was investigated for the polymer initially in the sodium and acid forms.
Collapse
Affiliation(s)
- A Villain-Simonnet
- Centre de Recherches sur les Macromolécules Végétales, CNRS, B.P. 53, affiliated with Joseph Fourier University, 38041, Grenoble, France
| | | | | |
Collapse
|