1
|
Zhu Y, Guo S, Ravichandran D, Ramanathan A, Sobczak MT, Sacco AF, Patil D, Thummalapalli SV, Pulido TV, Lancaster JN, Yi J, Cornella JL, Lott DG, Chen X, Mei X, Zhang YS, Wang L, Wang X, Zhao Y, Hassan MK, Chambers LB, Theobald TG, Yang S, Liang L, Song K. 3D-Printed Polymeric Biomaterials for Health Applications. Adv Healthc Mater 2025; 14:e2402571. [PMID: 39498750 PMCID: PMC11694096 DOI: 10.1002/adhm.202402571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Indexed: 11/07/2024]
Abstract
3D printing, also known as additive manufacturing, holds immense potential for rapid prototyping and customized production of functional health-related devices. With advancements in polymer chemistry and biomedical engineering, polymeric biomaterials have become integral to 3D-printed biomedical applications. However, there still exists a bottleneck in the compatibility of polymeric biomaterials with different 3D printing methods, as well as intrinsic challenges such as limited printing resolution and rates. Therefore, this review aims to introduce the current state-of-the-art in 3D-printed functional polymeric health-related devices. It begins with an overview of the landscape of 3D printing techniques, followed by an examination of commonly used polymeric biomaterials. Subsequently, examples of 3D-printed biomedical devices are provided and classified into categories such as biosensors, bioactuators, soft robotics, energy storage systems, self-powered devices, and data science in bioplotting. The emphasis is on exploring the current capabilities of 3D printing in manufacturing polymeric biomaterials into desired geometries that facilitate device functionality and studying the reasons for material choice. Finally, an outlook with challenges and possible improvements in the near future is presented, projecting the contribution of general 3D printing and polymeric biomaterials in the field of healthcare.
Collapse
Affiliation(s)
- Yuxiang Zhu
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Shenghan Guo
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Arunachalam Ramanathan
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - M. Taylor Sobczak
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Alaina F. Sacco
- School of Chemical, Materials and Biomedical Engineering (CMBE), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Dhanush Patil
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Sri Vaishnavi Thummalapalli
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Tiffany V. Pulido
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Jessica N. Lancaster
- Department of ImmunologyMayo Clinic Arizona13400 E Shea BlvdScottsdaleAZ85259USA
| | - Johnny Yi
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - Jeffrey L. Cornella
- Department of Medical and Surgical GynecologyMayo Clinic Arizona5777 E Mayo BlvdPhoenixAZ85054USA
| | - David G. Lott
- Division of Laryngology, Department of OtolaryngologyMayo Clinic ArizonaPhoenixAZUSA
| | - Xiangfan Chen
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
| | - Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Linbing Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Yiping Zhao
- Physics, Franklin College of Arts and SciencesUniversity of GeorgiaAthensGA30602USA
| | | | - Lindsay B. Chambers
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Taylor G. Theobald
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of MatterTransport and Energy (SEMTE) at Arizona State UniversityTempeAZ85287USA
| | | | - Kenan Song
- Manufacturing Engineering, The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of EngineeringArizona State University (ASU)MesaAZ85212USA
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of EngineeringUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
2
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
3
|
Unagolla JM, Gaihre B, Jayasuriya AC. In Vitro and In Vivo Evaluation of 3D Printed Poly(Ethylene Glycol) Dimethacrylate-Based Photocurable Hydrogel Platform for Bone Tissue Engineering. Macromol Biosci 2024; 24:e2300414. [PMID: 38035771 PMCID: PMC11018466 DOI: 10.1002/mabi.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Indexed: 12/02/2023]
Abstract
This study focuses to develop a unique hybrid hydrogel bioink formulation that incorporates poly(ethylene glycol) dimethacrylate (PEGDMA), gelatin (Gel), and methylcellulose (MC). This formulation achieves the necessary viscosity for extrusion-based three-dimensional (3D) printing of scaffolds intended for bone regeneration. After thorough optimization of the hybrid bioink system with Gel, three distinct scaffold groups are investigated in vitro: 0%, 3%, and 6% (w/v) Gel. These scaffold groups are examined for their morphology, mechanical strength, biodegradation, in vitro cell proliferation and differentiation, and in vivo bone formation using a rat cranial defect model. Among these scaffold compositions, the 3% Gel scaffold exhibits the most favorable characteristics, prompting further evaluation as a rat mesenchymal stem cell (rMSC) carrier in a critical-size cranial defect within a Lewis rat model. The compressive strength of all three scaffold groups range between 1 and 2 MPa. Notably, the inclusion of Gel in the scaffolds leads to enhanced bioactivity and cell adhesion. The Gel-containing scaffolds notably amplify osteogenic differentiation, as evidenced by alkaline phosphatase (ALP) and Western blot analyses. The in vivo results, as depicted by microcomputed tomography, showcase augmented osteogenesis within cell-seeded scaffolds, thus validating this innovative PEGDMA-based scaffold system as a promising candidate for cranial bone defect healing.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Bipin Gaihre
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Colleges of Engineering and Medicine, University of Toledo, Toledo, OH 43606, USA
- Department of Orthopedic Surgery, College of Medicine and Life Sciences, 3000 Arlington Avenue, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Xu J, Zhang Z, Ren X, Zhang Y, Zhou Y, Lan X, Guo L. In situ photo-crosslinked hydrogel promotes oral mucosal wound healing through sustained delivery of ginsenoside Rg1. Front Bioeng Biotechnol 2023; 11:1252574. [PMID: 37840668 PMCID: PMC10569426 DOI: 10.3389/fbioe.2023.1252574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Oral mucosal wounds exhibit an increased susceptibility to inflammation as a consequence of their direct exposure to a diverse range of microorganisms. This causes pain, slow healing, and other complications that interfere with patients' daily activities like eating and speaking. Consequently, patients experience a significant decline in their overall quality of life. Therefore, the pursuit of novel treatment approaches is of great importance. In this study, ginsenoside Rg1, a natural active substance extracted from ginseng root, was chosen as a therapeutic agent. It was encapsulated in a screened photo-crosslinked hydrogel scaffold for the treatment of mucosal defects in the rat palate. The results demonstrated that Rg1-hydrogel possessed excellent physical and chemical properties, and that oral mucosa wounds treated with Rg1-hydrogel exhibited the greatest healing performance, as evidenced by more pronounced wound re-epithelialization, increased collagen deposition, and decreased inflammatory infiltration. Subsequent investigations in molecular biology confirmed that Rg1-hydrogel stimulated the secretion of repair-related factors and inhibited the secretion of inflammatory factors. This study demonstrated that the hydrogel containing ginsenoside Rg1 significantly promotes oral mucosal tissue healing in vivo. Based on the findings, it can be inferred that the Rg1-hydrogel has promising prospects for the therapeutic management of oral mucosal wounds.
Collapse
Affiliation(s)
- Jie Xu
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Zhenghao Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaofeng Ren
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yunan Zhang
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Yang Zhou
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Xiaorong Lan
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| | - Ling Guo
- Department of Oral Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
- Institute of Stomatology, Southwest Medical University, Luzhou, China
- School of Stomatology, Southwest Medical University, Luzhou, China
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, China
| |
Collapse
|
6
|
Atia GAN, Shalaby HK, Ali NG, Morsy SM, Ghobashy MM, Attia HAN, Barai P, Nady N, Kodous AS, Barai HR. New Challenges and Prospective Applications of Three-Dimensional Bioactive Polymeric Hydrogels in Oral and Craniofacial Tissue Engineering: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:702. [PMID: 37242485 PMCID: PMC10224377 DOI: 10.3390/ph16050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Regenerative medicine, and dentistry offers enormous potential for enhancing treatment results and has been fueled by bioengineering breakthroughs over the previous few decades. Bioengineered tissues and constructing functional structures capable of healing, maintaining, and regenerating damaged tissues and organs have had a broad influence on medicine and dentistry. Approaches for combining bioinspired materials, cells, and therapeutic chemicals are critical in stimulating tissue regeneration or as medicinal systems. Because of its capacity to maintain an unique 3D form, offer physical stability for the cells in produced tissues, and replicate the native tissues, hydrogels have been utilized as one of the most frequent tissue engineering scaffolds during the last twenty years. Hydrogels' high water content can provide an excellent conditions for cell viability as well as an architecture that mimics real tissues, bone, and cartilage. Hydrogels have been used to enable cell immobilization and growth factor application. This paper summarizes the features, structure, synthesis and production methods, uses, new challenges, and future prospects of bioactive polymeric hydrogels in dental and osseous tissue engineering of clinical, exploring, systematical and scientific applications.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Naema Goda Ali
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Shaimaa Mohammed Morsy
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Paritosh Barai
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh
| | - Norhan Nady
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Elarab, Alexandria P.O. Box 21934, Egypt
| | - Ahmad S. Kodous
- Department of Radiation Biology, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo P.O. Box 13759, Egypt
| | - Hasi Rani Barai
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Holiel AA, Mustafa HM, Sedek EM. Biodegradation of an injectable treated dentin matrix hydrogel as a novel pulp capping agent for dentin regeneration. BMC Oral Health 2023; 23:126. [PMID: 36841767 PMCID: PMC9960635 DOI: 10.1186/s12903-023-02831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND A novel injectable mixture termed treated dentin matrix hydrogel (TDMH) has been introduced for restoring dentin defect in DPC. However, no study evaluated its physiological biodegradation. Therefore, the present study aimed to assess scaffold homogeneity, mechanical properties and biodegradability in vitro and in vivo and the regenerated dentin induced by TDMH as a novel pulp capping agent in human permanent teeth. METHODS Three TDMH discs were weighted, and dry/wet ratios were calculated in four slices from each disc to evaluate homogeneity. Hydrogel discs were also analyzed in triplicate to measure the compressive strength using a universal testing machine. The in vitro degradation behavior of hydrogel in PBS at 37 °C for 2 months was also investigated by monitoring the percent weight change. Moreover, 20 intact fully erupted premolars were included for assessment of TDMH in vivo biodegradation when used as a novel injectable pulp capping agent. The capped teeth were divided into four equal groups according to extraction interval after 2-, 8-, 12- and 16-weeks, stained with hematoxylin-eosin for histological and histomorphometric evaluation. Statistical analysis was performed using F test (ANOVA) and post hoc test (p = 0.05). RESULTS No statistical differences among hydrogel slices were detected with (p = 0.192) according to homogeneity. TDMH compression modulus was (30.45 ± 1.11 kPa). Hydrogel retained its shape well up to 4 weeks and after 8 weeks completely degraded. Histological analysis after 16 weeks showed a significant reduction in TDMH area and a simultaneous significant increase in the new dentin area. The mean values of TDMH were 58.8% ± 5.9 and 9.8% ± 3.3 at 2 and 16 weeks, while the new dentin occupied 9.5% ± 2.8 at 2 weeks and 82.9% ± 3.8 at 16 weeks. CONCLUSIONS TDMH was homogenous and exhibited significant stability and almost completely recovered after excessive compression. TDMH generally maintained their bulk geometry throughout 7 weeks. The in vivo response to TDMH was characterized by extensive degradation of the hydrogel and dentin matrix particles and abundant formation of new dentin. The degradation rate of TDMH matched the rate of new dentin formation. TRIAL REGISTRATION PACTR201901866476410: 30/1/2019.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Hossam M Mustafa
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Phogat K, Ghosh SB, Bandyopadhyay‐Ghosh S. Recent advances on injectable nanocomposite hydrogels towards bone tissue rehabilitation. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.53362] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/23/2022] [Indexed: 01/06/2025]
Abstract
AbstractThere has been significant interest in the recent past to develop injectable hydrogel scaffolds that follow minimally invasive implantation procedures towards efficient healing and regeneration of defective bone tissues. Such scaffolds offer several advantages, as they can be injected into the irregularly shaped defect and can act as a low‐density aqueous reservoir, incorporating necessary components for bone tissue repair and augmentation. Considering that bone is a biocomposite of natural biopolymer and bioapatite nanofiller, there has been a growing trend to develop nanocomposite scaffolds by combining biopolymers and inorganic nanofillers to biomimic the hierarchical nanostructure and composition of natural bone. Furthermore, the nanocomposite scaffolds can be tailored to have patient‐specific bone properties, which can lead to better biological responses. The present article begins with the introduction, followed by an overview of polymer matrices, property requirements, and crosslinking techniques employed for injectable hydrogels. Various strategies to develop injectable composites, with emphasis on nanocomposite hydrogels incorporating bioinert and bioactive nanofillers have been discussed. The fundamental challenges related to the development of injectable hydrogel nanocomposite scaffolds and the research efforts directed towards solving these problems have also been reviewed. Finally, future trends and conclusions on new generation injectable hydrogel nanocomposite bone scaffolds have been discussed in this article.
Collapse
Affiliation(s)
- Kapender Phogat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
- Department of Mechanical Engineering JECRC University Jaipur Rajasthan India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering Manipal University Jaipur Jaipur Rajasthan India
| | | |
Collapse
|
9
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Zhuo S, Halligan E, Tie BSH, Breheny C, Geever LM. Lower Critical Solution Temperature Tuning and Swelling Behaviours of NVCL-Based Hydrogels for Potential 4D Printing Applications. Polymers (Basel) 2022; 14:polym14153155. [PMID: 35956668 PMCID: PMC9370960 DOI: 10.3390/polym14153155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
The phase transitions of poly (N-vinyl caprolactam) (PNVCL) hydrogels are currently under investigation as possible materials for biomedical applications thanks to their thermosensitive properties. This study aims to use the photopolymerisation process to simulate the 4D printing process. NVCL-based polymers with different thermal properties and swellability were prepared to explore the possibility of synthetic hydrogels being used for 4D printing. In this contribution, the thermal behaviours of novel photopolymerised NVCL-based hydrogels were analysed. The lower critical solution temperature (LCST) of the physically crosslinked gels was detected using differential scanning calorimetry (DSC), ultraviolet (UV) spectroscopy, and cloud point measurement. The chemical structure of the xerogels was characterised by means of Fourier transform infrared spectroscopy (FTIR). Pulsatile swelling studies indicated that the hydrogels had thermo-reversible properties. As a result, the effect of varying the macromolecular monomer concentration was apparent. The phase transition temperature is increased when different concentrations of hydrophilic monomers are incorporated. The transition temperature of the hydrogels may allow for excellent flexibility in tailoring transition for specific applications, while the swelling and deswelling behaviour of the gels is strongly temperature- and monomer feed ratio-dependent.
Collapse
Affiliation(s)
- Shuo Zhuo
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
- Correspondence: (S.Z.); (L.M.G.)
| | - Elaine Halligan
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Billy Shu Hieng Tie
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Colette Breheny
- Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland; (E.H.); (B.S.H.T.); (C.B.)
| | - Luke M. Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon, Midlands Midwest, Dublin Road, N37 HD68 Athlone, County Westmeath, Ireland
- Correspondence: (S.Z.); (L.M.G.)
| |
Collapse
|
11
|
Chen Y, Lin J, Yan W. A Prosperous Application of Hydrogels With Extracellular Vesicles Release for Traumatic Brain Injury. Front Neurol 2022; 13:908468. [PMID: 35720072 PMCID: PMC9201053 DOI: 10.3389/fneur.2022.908468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 01/29/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability worldwide, becoming a heavy burden to the family and society. However, the complexity of the brain and the existence of blood-brain barrier (BBB) do limit most therapeutics effects through simple intravascular injection. Hence, an effective therapy promoting neurological recovery is urgently required. Although limited spontaneous recovery of function post-TBI does occur, increasing evidence indicates that exosomes derived from stem cells promote these endogenous processes. The advantages of hydrogels for transporting drugs and stem cells to target injured sites have been discussed in multitudinous studies. Therefore, the combined employment of hydrogels and exosomes for TBI is worthy of further study. Herein, we review current research associated with the application of hydrogels and exosomes for TBI. We also discuss the possibilities and advantages of exosomes and hydrogels co-therapies after TBI.
Collapse
|
12
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|
13
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
14
|
Benski L, Viran I, Katzenberg F, Tiller JC. Small‐Angle X‐Ray Scattering Measurements on Amphiphilic Polymer Conetworks Swollen in Orthogonal Solvents. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lena Benski
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Ismail Viran
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Frank Katzenberg
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| | - Joerg C. Tiller
- Department of Bio‐ and Chemical Engineering TU Dortmund Emil‐Figge‐Straße 66 Dortmund 44227 Germany
| |
Collapse
|
15
|
Abstract
Regenerative therapies aim to develop novel treatments to restore tissue function. Several strategies have been investigated including the use of biomedical implants as three-dimensional artificial matrices to fill the defect side, to replace damaged tissues or for drug delivery. Bioactive implants are used to provide growth environments for tissue formation for a variety of applications including nerve, lung, skin and orthopaedic tissues. Implants can either be biodegradable or non-degradable, should be nontoxic and biocompatible, and should not trigger an immunological response. Implants can be designed to provide suitable surface area-to-volume ratios, ranges of porosities, pore interconnectivities and adequate mechanical strengths. Due to their broad range of properties, numerous biomaterials have been used for implant manufacture. To enhance an implant’s bioactivity, materials can be functionalised in several ways, including surface modification using proteins, incorporation of bioactive drugs, growth factors and/or cells. These strategies have been employed to create local bioactive microenvironments to direct cellular responses and to promote tissue regeneration and controlled drug release. This chapter provides an overview of current bioactive biomedical implants, their fabrication and applications, as well as implant materials used in drug delivery and tissue regeneration. Additionally, cell- and drug-based bioactivity, manufacturing considerations and future trends will be discussed.
Collapse
|
16
|
Cemali G, Aruh A, Köse GT, Can E. Biodegradable polymeric networks of poly(propylene fumarate) and phosphonic acid‐based monomers. POLYM INT 2020. [DOI: 10.1002/pi.6077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Görkem Cemali
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Avram Aruh
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Gamze Torun Köse
- Genetics and Bioengineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| | - Erde Can
- Chemical Engineering Department, Faculty of Engineering Yeditepe University Istanbul Turkey
| |
Collapse
|
17
|
Xu P, Jiang F, Zhang H, Yin R, Cen L, Zhang W. Calcium Carbonate/Gelatin Methacrylate Microspheres for 3D Cell Culture in Bone Tissue Engineering. Tissue Eng Part C Methods 2020; 26:418-432. [DOI: 10.1089/ten.tec.2020.0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Pengwei Xu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Fuliang Jiang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China
| | - Lian Cen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenjun Zhang
- School of Mechatronics and Automation, Shanghai University, Shanghai, China
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
18
|
Asim MH, Silberhumer S, Shahzadi I, Jalil A, Matuszczak B, Bernkop-Schnürch A. S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold. Carbohydr Polym 2020; 237:116092. [PMID: 32241444 DOI: 10.1016/j.carbpol.2020.116092] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 01/10/2023]
Abstract
The purpose of this study was to synthesize S-protected thiolated hyaluronic acid (HA) and to evaluate its potential for 3D cell culture scaffold. S-protected thiolated HA was synthesized by the covalent attachment of N-acetyl-S-((3-((2,5-dioxopyrrolidin-1-yl)oxy)-3-oxopropyl)thio)cysteine hydrazide ligand to the HA. Hydrogels were characterized for texture, swelling behavior and rheological properties. Furthermore, the potential of S-protected thiolated HA hydrogels as a scaffold for tissue engineering was evaluated by cell proliferation studies with Caco-2 and NIH 3T3 cells. It showed enhanced cohesion upon addition of N-acetyl cysteine (NAC). Dynamic viscosity of S-protected thiolated HA hydrogel was increased up to 19.5-fold by addition of NAC and 10.1-fold after mixing with mucus. Furthermore, Caco-2 and NIH 3T3 cells encapsulated into hydrogels proliferated in-vitro. As this novel S-protected thiolated HA is stable towards oxidation and forms highly cohesive gels when getting into contact with endogenous thiols due to disulfide-crosslinking, it is a promising tool for 3D cell culture scaffold.
Collapse
Affiliation(s)
- Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Stefanie Silberhumer
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Iram Shahzadi
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
20
|
Vasile E, Pandele AM, Andronescu C, Selaru A, Dinescu S, Costache M, Hanganu A, Raicopol MD, Teodorescu M. Hema-Functionalized Graphene Oxide: a Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Sci Rep 2019; 9:18685. [PMID: 31822794 PMCID: PMC6904734 DOI: 10.1038/s41598-019-55081-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022] Open
Abstract
Poly(propylene fumarate) (PPF) is a linear unsaturated polyester which has been widely investigated for tissue engineering due to its good biocompatibility and biodegradability. In order to extend the range of possible applications and enhance its mechanical properties, current approaches consist in the incorporation of various fillers or obtaining blends with other polymers. In the current study we designed a reinforcing agent based on carboxylated graphene oxide (GO-COOH) grafted with 2-hydroxyethyl methacrylate (GO@HEMA) for poly(propylene fumarate)/poly(ethylene glycol) dimethacrylate (PPF/PEGDMA), in order to enhance the nanofiller adhesion and compatibility with the polymer matrix, and in the same time to increase the crosslinking density. The covalent modification of GO-COOH was proved by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Raman spectroscopy. The mechanical properties, water uptake capacity, morphology, biodegradability, mineralization and in vitro cytotoxicity of PPF/PEGDMA hybrid materials containing GO@HEMA were investigated. A 14-fold increase of the compressive modulus and a 2-fold improvement in compressive strength were observed after introduction of the nanofiller. Moreover, the decrease in sol fraction and solvent swelling in case of the hybrid materials containing GO@HEMA suggests an increase of the crosslinking density. SEM images illustrate an exfoliated structure at lower nanofiller content and a tendency for agglomeration at higher concentrations. Finally, the synthesized hybrid materials proved non-cytotoxic to murine pre-osteoblast cells and induced the formation of hydroxyapatite crystals under mineralization conditions.
Collapse
Affiliation(s)
- Eugeniu Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| | - Andreea M Pandele
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| | - Corina Andronescu
- Chemical Technology III, University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg, Germany
- CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, D-47057, Duisburg, Germany
| | - Aida Selaru
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Anamaria Hanganu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, 90-92 Şos. Panduri, 050657, Bucharest, Romania
| | - Matei D Raicopol
- Costin Nenitzescu" Department of Organic Chemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania.
| | - Mircea Teodorescu
- Department of Bioresources and Polymer Science, University Politehnica of Bucharest, 1-7 Polizu St., 011061, Bucharest, Romania
| |
Collapse
|
21
|
Poly(2-oxazoline) macromonomers as building blocks for functional and biocompatible polymer architectures. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Larrañaga A, Lizundia E. A review on the thermomechanical properties and biodegradation behaviour of polyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109296] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Effect of cross-linking on the performance of polymer inclusion membranes (PIMs) for the extraction, transport and separation of Zn(II). J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117256] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem 2019; 25:5782-5797. [PMID: 28933299 DOI: 10.2174/0929867324666170920161246] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/08/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Composed in a large extent of water and due to their nonadhesiveness, hydrogels found their way to the wound dressing market as materials that provide a moisture environment for healing while being comfortable to the patient. Hydrogels' exploitation is constantly increasing after evidences of their even broader therapeutic potential due to resemblance to dermal tissue and ability to induce partial skin regeneration. The innovation in advanced wound care is further directed to the development of so-called active dressings, where hydrogels are combined with components that enhance the primary purpose of providing a beneficial environment for wound healing. OBJECTIVE The objective of this review is to concisely describe the relevance of hydrogel dressings as platforms for delivery of active molecules for improved management of difficult- to-treat wounds. The emphasis is on the most recent advances in development of stimuli- responsive hydrogels, which allow for control over wound healing efficiency in response to different external modalities. Novel strategies for monitoring of the wound status and healing progress based on incorporation of sensor molecules into the hydrogel platforms are also discussed.
Collapse
Affiliation(s)
| | - Petya Petkova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| |
Collapse
|
25
|
Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proc Inst Mech Eng H 2019; 233:1165-1174. [PMID: 31545134 DOI: 10.1177/0954411919877277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to produce a composite of poly(propylene fumarate)/magnesium calcium phosphate as a substitutional implant in the treatment of trabecular bone defects. So, the effect of magnesium calcium phosphate particle size, magnesium calcium phosphate:poly(propylene fumarate) weight ratio on compressive strength, Young's modulus, and toughness was assessed by considering effective fracture mechanisms. Micro-sized (∼30 µm) and nano-sized (∼50 nm) magnesium calcium phosphate particles were synthesized via emulsion precipitation and planetary milling methods, respectively, and added to poly(propylene fumarate) up to 20 wt.%. Compressive strength, Young's modulus, and toughness of the composites were measured by compressive test, and effective fracture mechanisms were evaluated by imaging fracture surface. In both micro- and nano-composites, the highest compressive strength was obtained by adding 10 wt.% magnesium calcium phosphate particles, and the enhancement in nano-composite was superior to micro-one. The micrographs of fracture surface revealed different mechanisms such as crack pinning, void plastic growth, and particle cleavage. According to the results, the produced composite can be considered as a candidate for substituting hard tissue.
Collapse
Affiliation(s)
- Masoud Karfarma
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Hamid Reza Rezaie
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Jafar Javadpour
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
26
|
Ogueri KS, Jafari T, Escobar Ivirico JL, Laurencin CT. POLYMERIC BIOMATERIALS FOR SCAFFOLD-BASED BONE REGENERATIVE ENGINEERING. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:128-154. [PMID: 31423461 PMCID: PMC6697158 DOI: 10.1007/s40883-018-0072-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
Reconstruction of large bone defects resulting from trauma, neoplasm, or infection is a challenging problem in reconstructive surgery. The need for bone grafting has been increasing steadily partly because of our enhanced capability to salvage limbs after major bone loss. Engineered bone graft substitutes can have advantages such as lack of antigenicity, high availability, and varying properties depending on the applications chosen for use. These favorable attributes have contributed to the rise of scaffold-based polymeric tissue regeneration. Critical components in the scaffold-based polymeric regenerative engineering approach often include 1. The existence of biodegradable polymeric porous structures with properties selected to promote tissue regeneration and while providing appropriate mechanical support during tissue regeneration. 2. Cellular populations that can influence and enhance regeneration. 3. The use of growth and morphogenetic factors which can influence cellular migration, differentiation and tissue regeneration in vivo. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and their ability to produce biocompatible degradation products. This paper presents an overview of polymeric scaffold-based bone tissue regeneration and reviews approaches as well as the particular roles of biodegradable polymers currently in use.
Collapse
Affiliation(s)
- Kenneth S. Ogueri
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tahereh Jafari
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jorge L. Escobar Ivirico
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T. Laurencin
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
27
|
Cai Z, Wan Y, Becker ML, Long YZ, Dean D. Poly(propylene fumarate)-based materials: Synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials 2019; 208:45-71. [PMID: 30991217 DOI: 10.1016/j.biomaterials.2019.03.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/04/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Poly(propylene fumarate) (PPF) is a biodegradable polymer that has been investigated extensively over the last three decades. It has led many scientists to synthesize and fabricate a variety of PPF-based materials for biomedical applications due to its controllable mechanical properties, tunable degradation and biocompatibility. This review provides a comprehensive overview of the progress made in improving PPF synthesis, resin formulation, crosslinking, device fabrication and post polymerization modification. Further, we highlight the influence of these parameters on biodegradation, biocompatibility, and their use in a number of regenerative medicine applications, especially bone tissue engineering. In particular, the use of 3D printing techniques for the fabrication of PPF-based scaffolds is extensively reviewed. The recent invention of a ring-opening polymerization method affords precise control of PPF molecular mass, molecular mass distribution (ƉM) and viscosity. Low ƉM facilitates time-certain resorption of 3D printed structures. Novel post-polymerization and post-printing functionalization methods have accelerated the expansion of biomedical applications that utilize PPF-based materials. Finally, we shed light on evolving uses of PPF-based materials for orthopedics/bone tissue engineering and other biomedical applications, including its use as a hydrogel for bioprinting.
Collapse
Affiliation(s)
- Zhongyu Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, United States.
| | - Yong Wan
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials, College of Physics, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China; Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong Province, China.
| | - David Dean
- Department of Plastic & Reconstructive Surgery, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
28
|
Farshid B, Lalwani G, Mohammadi MS, Sankaran JS, Patel S, Judex S, Simonsen J, Sitharaman B. Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. J Biomed Mater Res A 2019; 107:1143-1153. [PMID: 30635968 DOI: 10.1002/jbm.a.36606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
This study investigates the mechanical properties and in vitro cytotoxicity of two-dimensional (2D) graphene oxide nanoribbons and nanoplatelets (GONRs and GONPs) reinforced porous polymeric nanocomposites. Highly porous poly(propylene fumarate) (PPF) nanocomposites were prepared by dispersing 0.2 wt % single- and multiwalled SONRs (SWGONRs and MWGONRs) and GONPs. The mechanical properties of scaffolds were characterized using compression testing and in vitro cytocompatibility was assessed using QuantiFlour assay for cellularity and PrestoBlue assay for cell viability. Immunofluorescence was used to assess collagen-I expression and deposition in the extracellular matrix. Porous PPF scaffolds were used as a baseline control and porous single and multiwalled carbon nanotubes (SWCNTs and MWCNTs) reinforced nanocomposites were used as positive controls. Results show that incorporation of 2D graphene nanomaterials leads to an increase in the mechanical properties of porous PPF nanocomposites with following the trend: MWGONRs > GONPs > SWGONRs > MWCNTs > SWCNTs > PPF control. MWGONRs showed the best enhancement of compressive mechanical properties with increases of up to 26% in compressive modulus (i.e., Young's modulus), ~60% in yield strength, and ~24% in the ultimate compressive strength. Addition of 2D nanomaterials did not alter the cytocompatibility of porous PPF nanocomposites. Furthermore, PPF nanocomposites reinforced with SWGONRs, MWGONRs, and GONPs show an improvement in the adsorption of collagen-I compared to PPF baseline control. The results of this study show that 2D graphene nanomaterial reinforced porous PPF nanocomposites possess superior mechanical properties, cytocompatibility, and increased protein adsorption. The favorable cytocompatibility results opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1143-1153, 2019.
Collapse
Affiliation(s)
- Behzad Farshid
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Meisam Shir Mohammadi
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon, 97331
- Department of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, Oregon, 97331
| | | | - Sunny Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - John Simonsen
- Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon, 97331
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
29
|
Luo Y, Le Fer G, Dean D, Becker ML. 3D Printing of Poly(propylene fumarate) Oligomers: Evaluation of Resin Viscosity, Printing Characteristics and Mechanical Properties. Biomacromolecules 2019; 20:1699-1708. [PMID: 30807696 DOI: 10.1021/acs.biomac.9b00076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex three-dimensional (3D) pore geometries, useful for tissue engineering scaffolds, can be fabricated via photo-crosslinking of resorbable poly(propylene fumarate) (PPF) resins using stereolithography (SLA) and/or continuous digital light processing (cDLP) methods. Physico-chemical parameters inherent to 3D printable resin design, include viscosity, polymer concentration, degree of polymerization, and resin printing temperature. We report here on our study of these parameters and their influence the cDLP 3D printing process and the resulting mechanical properties. A series of PPF oligomers were synthesized by the ring-opening copolymerization (ROCOP) of maleic anhydride and propylene oxide followed by a base-catalyzed isomerization. The resin viscosities were measured as a function of number-average molecular mass ([Formula: see text]) of the PPF oligomers (1.1, 1.7 and 2.0 kDa), concentrations of PPF in the reactive diluent diethyl fumarate (DEF) (50 and 75 wt %) and resin temperature (25 to 55 °C). The zero-shear viscosity (η0) of the resins was found to be temperature-dependent and follow a linear Arrhenius relationship. Tensile tests demonstrated mechanical properties within the range of trabecular bone, with the ultimate strength at break above 15 MPa and elastic moduli between 178 and 199 MPa.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - Gaëlle Le Fer
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| | - David Dean
- Department of Plastic Surgery , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Matthew L Becker
- Department of Polymer Science , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
30
|
Park SY, Kim SY, Kim T, Ahn H, Chung I. Syntheses of biodegradable polymer networks based on polycaprolactone and glutamic acid. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soo Yong Park
- Department of Polymer Science and Engineering; Pusan National University; Busan South Korea
| | - Soo-Yeon Kim
- Department of Polymer Science and Engineering; Pusan National University; Busan South Korea
| | - Taeyoon Kim
- Department of Polymer Science and Engineering; Pusan National University; Busan South Korea
| | - Heejoon Ahn
- Department of Organic and Nano Engineering; Hanyang University; Seoul South Korea
| | - Ildoo Chung
- Department of Polymer Science and Engineering; Pusan National University; Busan South Korea
| |
Collapse
|
31
|
Understanding the Impact of Stent and Scaffold Material and Strut Design on Coronary Artery Thrombosis from the Basic and Clinical Points of View. Bioengineering (Basel) 2018; 5:bioengineering5030071. [PMID: 30181463 PMCID: PMC6164756 DOI: 10.3390/bioengineering5030071] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
The technology of percutaneous coronary intervention (PCI) is constantly being refined in order to overcome the shortcomings of present day technologies. Even though current generation metallic drug-eluting stents (DES) perform very well in the short-term, concerns still exist about their long-term efficacy. Late clinical complications including late stent thrombosis (ST), restenosis, and neoatherosclerosis still exist and many of these events may be attributed to either the metallic platform and/or the drug and polymer left behind in the arterial wall. To overcome this limitation, the concept of totally bioresorbable vascular scaffolds (BRS) was invented with the idea that by eliminating long-term exposure of the vessel wall to the metal backbone, drug, and polymer, late outcomes would improve. The Absorb-bioabsorbable vascular scaffold (Absorb-BVS) represented the most advanced attempt to make such a device, with thicker struts, greater vessel surface area coverage and less radial force versus contemporary DES. Unfortunately, almost one year after its initial approval by the U.S. Food and Drug Administration, this scaffold was withdrawn from the market due to declining devise utilization driven by the concerns about scaffold thrombosis (ScT) seen in both early and late time points. Additionally, the specific causes of ScT have not yet been fully elucidated. In this review, we discuss the platform, vascular response, and clinical data of past and current metallic coronary stents with the Absorb-BVS and newer generation BRS, concentrating on their material/design and the mechanisms of thrombotic complications from the pre-clinical, pathologic, and clinical viewpoints.
Collapse
|
32
|
Duque R, Shan Y, Joya M, Ravichandran N, Asi B, Mobed-Miremadi M, Mulrooney S, McNeil M, Prakash S. Effect of artificial cell miniaturization on urea degradation by immobilized E. coli DH5α (pKAU17). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:766-775. [PMID: 29961338 DOI: 10.1080/21691401.2018.1469026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Second generation E. coli DH5α (pKAU17) was successfully encapsulated by means of atomization (MA), inkjet printing (MI) and double-encapsulation (DDMI) for the purpose of urea degradation in a simulated uremic medium at 37 °C. Experimentally determined values of the effectiveness factor are 0.83, 0.28 and 0.34 for the MI, MA and DDMI capsules, respectively, suggesting that the catalytic activity of the E. coli DH5α (pKAU17) immobilized in MI capsule (d = 52 μm ± 2.7 μm) is significantly less diffusion-limited than in the case of the MA (d = 1558 μm ± 125 μm) and DDMI (d = 1370 μm ± 60 μm) bio-encapsulation schemes at the 98.3% CI. The proposed novel double encapsulation biofabrication method for alginate-based microspheres, characterized by lower membrane degradation rates due to secondary containment is recommended compared to the standard atomization scheme currently adopted across immobilization-based therapeutic scenarios. A Fickian-based mechanism is proposed with simulations mimicking urea degradation for a single capsule for the atomization and the inkjet schemes.
Collapse
Affiliation(s)
| | | | | | | | - Berok Asi
- e Genentech , South San Francisco , CA , USA
| | | | - Scott Mulrooney
- g Microbiology and Molecular Genetics , Michigan State University , East Lansing , MI , USA
| | - Melanie McNeil
- h Department of Biomedical, Chemical and Materials Engineering , San Jose State University , San Jose , CA , USA
| | - Satya Prakash
- i Department of Biomedical Engineering , McGill University , Montreal , Quebec , Canada
| |
Collapse
|
33
|
Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L. Biodegradable Materials and Metallic Implants-A Review. J Funct Biomater 2017; 8:E44. [PMID: 28954399 PMCID: PMC5748551 DOI: 10.3390/jfb8040044] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 01/08/2023] Open
Abstract
Recent progress made in biomaterials and their clinical applications is well known. In the last five decades, great advances have been made in the field of biomaterials, including ceramics, glasses, polymers, composites, glass-ceramics and metal alloys. A variety of bioimplants are currently used in either one of the aforesaid forms. Some of these materials are designed to degrade or to be resorbed inside the body rather than removing the implant after its function is served. Many properties such as mechanical properties, non-toxicity, surface modification, degradation rate, biocompatibility, and corrosion rate and scaffold design are taken into consideration. The current review focuses on state-of-the-art biodegradable bioceramics, polymers, metal alloys and a few implants that employ bioresorbable/biodegradable materials. The essential functions, properties and their critical factors are discussed in detail, in addition to their challenges to be overcome.
Collapse
Affiliation(s)
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia.
| | - Kristine Salma-Ancane
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia.
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia.
| | - Alain Largeteau
- CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France.
| | - Liga Berzina-Cimdina
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia.
| |
Collapse
|
34
|
Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017; 35:530-544. [DOI: 10.1016/j.biotechadv.2017.05.006] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/08/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
|
35
|
Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 111:1-26. [PMID: 28649171 PMCID: PMC5478172 DOI: 10.1016/j.mser.2016.11.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including natural, synthetic, and composite biomaterials. Next, we discuss a variety of characteristic parameters and gelation mechanisms of the injectable scaffolds. The advanced injectable scaffolding systems developed in recent years are then illustrated. Furthermore, we summarize the applications of the injectable scaffolds for the regeneration of dental and craniofacial tissues that include pulp, dentin, periodontal ligament, temporomandibular joint, and alveolar bone. Finally, our perspectives on the injectable scaffolds for dental and craniofacial tissue regeneration are offered as signposts for the future advancement of this field.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Neelam Ahuja
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
36
|
Liu X, Miller AL, Fundora KA, Yaszemski MJ, Lu L. Poly(ε-caprolactone) Dendrimer Cross-Linked via Metal-Free Click Chemistry: Injectable Hydrophobic Platform for Tissue Engineering. ACS Macro Lett 2016; 5:1261-1265. [PMID: 35614737 DOI: 10.1021/acsmacrolett.6b00736] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The fabrication of injectable self-cross-linkable hyperbranched poly(ε-caprolactone) (hyPCL) formulation using metal-free click chemistry was reported. The cross-linking between hyPCL32-(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (hyPCL32-BCN) and hyPCL32-azide (hyPCL32-N3) components was proceeded via strain-promoted alkyne-azide cycloaddition (SPAAC) click reaction. Cross-linking was tested to proceed effectively with the exclusion of any toxic cross-linking agents. Strong mechanical properties and excellent biocompatibility were demonstrated for the cross-linked substrates. These newly synthesized dendrimers may have broad applications in tissue engineering such as bone defect repair. In addition, the introduction of metal-free click chemistry to hydrophobic polymers provides an attractive new strategy for developing injectable stiff polymer formulations besides hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Xifeng Liu
- Departments of †Physiology and Biomedical Engineering and ‡Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Departments of †Physiology and Biomedical Engineering and ‡Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kevin A. Fundora
- Departments of †Physiology and Biomedical Engineering and ‡Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Michael J. Yaszemski
- Departments of †Physiology and Biomedical Engineering and ‡Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Departments of †Physiology and Biomedical Engineering and ‡Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
37
|
Carballo-Molina OA, Sánchez-Navarro A, López-Ornelas A, Lara-Rodarte R, Salazar P, Campos-Romo A, Ramos-Mejía V, Velasco I. Semaphorin 3C Released from a Biocompatible Hydrogel Guides and Promotes Axonal Growth of Rodent and Human Dopaminergic Neurons. Tissue Eng Part A 2016; 22:850-61. [PMID: 27174503 PMCID: PMC4913502 DOI: 10.1089/ten.tea.2016.0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Cell therapy in experimental models of Parkinson's disease replaces the lost dopamine neurons (DAN), but we still need improved methods to guide dopaminergic axons (DAx) of grafted neurons to make proper connections. The protein Semaphorin 3C (Sema3C) attracts DAN axons and enhances their growth. In this work, we show that the hydrogel PuraMatrix, a self-assembling peptide-based matrix, incorporates Sema3C and releases it steadily during 4 weeks. We also tested if hydrogel-delivered Sema3C attracts DAx using a system of rat midbrain explants embedded in collagen gels. We show that Sema3C released by this hydrogel attracts DAx, in a similar way to pretectum, which is known to attract growing DAN axons. We assessed the effect of Sema3C on the growth of DAx using microfluidic devices. DAN from rat midbrain or those differentiated from human embryonic stem cells showed enhanced axonal extension when exposed to hydrogel-released Sema3C, similar to soluble Sema3C. Notably, DAN of human origin express the cognate Sema3C receptors, Neuropilin1 and Neuropilin2. These results show that PuraMatrix is able to incorporate and release Sema3C, and such delivery guides and promotes the axonal growth of DAN. This biocompatible hydrogel might be useful as a Sema3C carrier for in vivo studies in parkinsonian animal models.
Collapse
Affiliation(s)
- Oscar A. Carballo-Molina
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Andrea Sánchez-Navarro
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Adolfo López-Ornelas
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Rolando Lara-Rodarte
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Patricia Salazar
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Aurelio Campos-Romo
- Unidad Periférica de Neurociencias Facultad de Medicina-UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| | - Verónica Ramos-Mejía
- GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Spain
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de México, México, D.F., México
- Laboratorio de Reprogramación Celular IFC/UNAM en el Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,” México, D.F., México
| |
Collapse
|
38
|
Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, Dehghani F. Biomedical Applications of Biodegradable Polyesters. Polymers (Basel) 2016; 8:E20. [PMID: 30979116 PMCID: PMC6432531 DOI: 10.3390/polym8010020] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.
Collapse
Affiliation(s)
- Iman Manavitehrani
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Ali Fathi
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Hesham Badr
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Sean Daly
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Ali Negahi Shirazi
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
39
|
Das RK, Brar SK, Verma M. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics. Pharmacol Rep 2015; 68:404-14. [PMID: 26922546 DOI: 10.1016/j.pharep.2015.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
Several lines of evidence have demonstrated the potential biomedical applications of fumaric acid (FA) and its ester derivatives against many human disease conditions. Fumaric acid esters (FAEs) have been licensed for the systemic treatment of the immune-mediated disease psoriasis. Biogen Idec Inc. announced about the safety and efficacy of the formulation FAE (BG-12) for treating RRMS (relapsing-remitting multiple sclerosis). Another FAE formulation DMF (dimethyl fumarate) was found to be capable of reduction in inflammatory cardiac conditions, such as autoimmune myocarditis and ischemia and reperfusion. DMF has also been reported to be effective as a potential neuroprotectant against the HIV-associated neurocognitive disorders (HAND). Many in vivo studies carried out on rat and mice models indicated inhibitory effects of fumaric acid on carcinogenesis of different origins. Moreover, FAEs has emerged as an important matrix ingredient in the fabrication of biodegradable scaffolds for tissue engineering applications. Drug delivery vehicles composed of FAEs have shown promising results in delivering some leading drug molecules. Apart from these specific applications and findings, many more studies on FAEs have revealed new therapeutic potentials with the scope of clinical applications. However, until now, this scattered vital information has not been written into a collective account and analyzed for minute details. The aim of this paper is to review the advancement made in the biomedical application of FA and FAEs and to focus on the clinical investigation and molecular interpretation of the beneficial effects of FA and FAEs.
Collapse
|
40
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
41
|
Amphiphilic polymer conetworks with defined nanostructure and tailored swelling behavior for exploring the activation of an entrapped lipase in organic solvents. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Carballo-Molina OA, Velasco I. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci 2015; 9:13. [PMID: 25741236 PMCID: PMC4330895 DOI: 10.3389/fncel.2015.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/09/2015] [Indexed: 01/24/2023] Open
Abstract
Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system (NS). Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult NS, particularly the Central Nervous System (CNS). The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS). Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased NS. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the CNS and PNS. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of the NS.
Collapse
Affiliation(s)
- Oscar A. Carballo-Molina
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMexico, D.F., Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de MéxicoMexico, D.F., Mexico
| |
Collapse
|
43
|
Farshid B, Lalwani G, Sitharaman B. In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites. J Biomed Mater Res A 2014; 103:2309-21. [PMID: 25367032 DOI: 10.1002/jbm.a.35363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/04/2014] [Accepted: 10/22/2014] [Indexed: 11/09/2022]
Abstract
This study investigates the in vitro cytocompatibility of one-dimensional and two-dimensional (1D and 2D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single and multiwalled carbon nanotubes, single and multiwalled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02 and 0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products were examined for effects on viability and attachment using two cell lines: NIH3T3 fibroblasts and MC3T3 preosteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78-100%), high cellular attachment (40-55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to unreacted components, crosslinked nanocomposites and their degradation products. Initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications.
Collapse
Affiliation(s)
- Behzad Farshid
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794.,Department of Materials Science and Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Gaurav Lalwani
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| | - Balaji Sitharaman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
44
|
Chia HN, Wu BM. Improved resolution of 3D printed scaffolds by shrinking. J Biomed Mater Res B Appl Biomater 2014; 103:1415-23. [PMID: 25404276 DOI: 10.1002/jbm.b.33320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/04/2014] [Accepted: 10/26/2014] [Indexed: 11/07/2022]
Abstract
Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination.
Collapse
Affiliation(s)
- Helena N Chia
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, 90095
| | - Benjamin M Wu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, 90095.,Division of Advanced Prosthodontics, University of California, Los Angeles, California, 90095.,Department of Materials Science and Engineering, University of California, Los Angeles, California, 90095.,Department of Orthopedic Surgery, University of California, Los Angeles, California, 90095
| |
Collapse
|
45
|
Ito A, Fang Z, Brennaman MK, Meyer TJ. Long-range photoinduced electron transfer dynamics in rigid media. Phys Chem Chem Phys 2014; 16:4880-91. [PMID: 24473124 DOI: 10.1039/c3cp54801e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In semi-rigid PEG-DMA550 films with added reductive quenchers, electron transfer quenching of the metal-to-ligand charge transfer excited state(s) of [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) occurs by both rapid, fixed-site, and slow, diffusional, quenching processes. Stern-Volmer analysis of diffusional quenching reveals diffusion-controlled quenching both in the fluid and film with the latter greatly inhibited by the high viscosity of the medium. The data for fixed-site quenching are consistent with electron tunneling with the expected exponential distance dependence. Based on this analysis long-range electron transfer occurs with a distance attenuation factor β of ∼0.47 Å(-1) with a notable decrease, β = 0.16 Å(-1), when the quencher is incorporated into the PEG backbone. Fixed-site electron transfer quenching varies with driving force. Back electron transfer is complex, as expected for a distribution of fixed sites, and varies with power law kinetics.
Collapse
Affiliation(s)
- Akitaka Ito
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
46
|
Biological Evaluation and Characterisation of Novel Hydrogel Matrices as Scaffolds for Bone Tissue Engineering. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amm.679.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel photopolymerised composite hydrogels based on PEGDMA, maleic chitosan and maleic PVA were investigated for their suitability in bone tissue engineering applications. Initial swelling and compression studies revealed that the hydrogels permitted the retention of aqueous solution while still maintaining structural integrity. Promising cytotoxicity data was obtained during direct and indirect contact exposure of composite hydrogels to pre-osteoblast (MC3T3-E1) cells. Hybrid hydrogels displayed minimal cytotoxic properties and allow tailoring of mechanical properties by variation of the loading of the maleic component in the composite. Scanning electron microscopy and live-dead staining of composite hydrogels also revealed that maleic chitosan based gels supported the adhesion of MC3T3-E1 cells and may have potential as bone tissue engineering scaffolds.
Collapse
|
47
|
Śmiga-Matuszowicz M, Jaszcz K, Łukaszczyk J, Kaczmarek M, Staszuk M. Preliminary Studies on the Properties of Novel Polymeric Composite Materials Based on Polysuccinates. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2013.854220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Ito A, Knight TE, Stewart DJ, Brennaman MK, Meyer TJ. Rigid medium effects on photophysical properties of MLCT excited states of polypyridyl Os(II) complexes in polymerized poly(ethylene glycol)dimethacrylate monoliths. J Phys Chem A 2014; 118:10326-32. [PMID: 24720473 DOI: 10.1021/jp5019873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Higher-energy emissions from the metal-to-ligand charge-transfer (MLCT) excited states of a series of polypyridyl Os(II) complexes were observed at the fluid-to-film transition in PEG-DMA550. The higher-energy excited states, caused by a "rigid medium effect" in the film, led to enhanced emission quantum yields and longer excited-state lifetimes. Detailed analyses of spectra and excited-state dynamics by Franck-Condon emission spectral analysis and application of the energy gap law for nonradiative excited-state decay reveal that the rigid medium effect arises from the inability of part of the local medium dielectric environment to respond to the change in charge distribution in the excited state during its lifetime. Enhanced excited-state lifetimes are consistent with qualitative and quantitative predictions of the energy gap law.
Collapse
Affiliation(s)
- Akitaka Ito
- Department of Chemistry, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | |
Collapse
|
49
|
Prieto EM, Page JM, Harmata AJ, Guelcher SA. Injectable foams for regenerative medicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:136-54. [PMID: 24127230 PMCID: PMC3945605 DOI: 10.1002/wnan.1248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/13/2013] [Accepted: 09/17/2013] [Indexed: 12/21/2022]
Abstract
The design of injectable biomaterials has attracted considerable attention in recent years. Many injectable biomaterials, such as hydrogels and calcium phosphate cements (CPCs), have nanoscale pores that limit the rate of cellular migration and proliferation. While introduction of macroporosity has been suggested to increase cellular infiltration and tissue healing, many conventional methods for generating macropores often require harsh processing conditions that preclude their use in injectable foams. In recent years, processes such as porogen leaching, gas foaming, and emulsion-templating have been adapted to generate macroporosity in injectable CPCs, hydrogels, and hydrophobic polymers. While some of the more mature injectable foam technologies have been evaluated in clinical trials, there are challenges remaining to be addressed, such as the biocompatibility and ultimate fate of the sacrificial phase used to generate pores within the foam after it sets in situ. Furthermore, while implantable scaffolds can be washed extensively to remove undesirable impurities, all of the components required to synthesize injectable foams must be injected into the defect. Thus, every compound in the foam must be biocompatible and noncytotoxic at the concentrations utilized. As future research addresses these critical challenges, injectable macroporous foams are anticipated to have an increasingly significant impact on improving patient outcomes for a number of clinical procedures.
Collapse
Affiliation(s)
- Edna M Prieto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
50
|
Han Y, Zeng Q, Li H, Chang J. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 2013; 9:9107-17. [PMID: 23796407 DOI: 10.1016/j.actbio.2013.06.022] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/09/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
In this study, an injectable calcium silicate (CS)/sodium alginate (SA) hybrid hydrogel was prepared using a novel material composition design. CS was incorporated into an alginate solution and internal in situ gelling was induced by the calcium ions directly released from CS with the addition of d-gluconic acid δ-lactone (GDL). The gelling time could be controlled, from about 30s to 10 min, by varying the amounts of CS and GDL added. The mechanical properties of the hydrogels with different amounts of CS and GDL were systematically analyzed. The compressive strength of 5% CS/SA hydrogels was higher than that of 10% CS/SA for the same amount of GDL. The swelling behaviors of 5% CS/SA hydrogels with different contents of GDL were therefore investigated. The swelling ratios of the hydrogels decreased with increasing GDL, and 5% CS/SA hydrogel with 1% GDL swelled by only less than 5%. Scanning electron microscopy (SEM) observation of the scaffolds showed an optimal interconnected porous structure, with the pore size ranging between 50 and 200 μm. Fourier transform infrared spectroscopy and SEM showed that the CS/SA composite hydrogel induced the formation of hydroxyapatite on the surface of the materials in simulated body fluid. In addition, rat bone mesenchymal stem cells (rtBMSCs) cultured in the presence of hydrogels and their ionic extracts were able to maintain the viability and proliferation. Furthermore, the CS/SA composite hydrogel and its ionic extracts stimulated rtBMSCs to produce alkaline phosphatase, and its ionic extracts could also promote angiogenesis of human umbilical vein endothelial cells. Overall, all these results indicate that the CS/SA composite hydrogel efficiently supported the adhesion, proliferation and differentiation of osteogenic and angiogenic cells. Together with its porous three-dimensional structure and injectable properties, CS/SA composite hydrogel possesses great potential for bone regeneration and tissue engineering applications.
Collapse
|