1
|
Comparison of Conduits Fabricated by Fresh and Predegenerated Skeletal Muscles for Peripheral Nerve Repairing. J Craniofac Surg 2021; 33:354-359. [PMID: 34292250 DOI: 10.1097/scs.0000000000007882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Reconstruction of peripheral nerve injury remains a challenge for clinical medicine. Previous reports have confirmed that external oblique muscle-fabricated nerve conduit (EMC) could effectively be used to promote peripheral nerve regeneration. In this study, we compared between conduits fabricated from fresh muscle and conduits fabricated from predegenerated muscle for the repair of peripheral nerve defects in a mouse sciatic nerve transection model. We found that the number, diameter, and myelin sheath thickness of the myelinated nerve fibers of the regenerative nerve in the EMC group were larger than those of the predegenerated-EMC (P-EMC) group eight weeks after surgery. The sciatic function index and gastrocnemius wet-weight mass ratio in the EMC group were higher than those in the P-EMC group. The Bcl-2/Bax ratio and the number of Schwann cell nucleus in the proximal nerve stumps in the EMC group were greater than those in the P-EMC group. In conclusion, our results confirmed that the use of fresh skeletal muscle nerve conduit increased the Bcl-2/Bax ratio and promoted the survival of Schwann cells of the proximal nerve stump compared with that of predegenerated skeletal muscle nerve conduits, thus achieving better functional recovery after sciatic nerve defect.
Collapse
|
2
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
3
|
Duffy P, McMahon S, Wang X, Keaveney S, O'Cearbhaill ED, Quintana I, Rodríguez FJ, Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 2019; 7:4912-4943. [DOI: 10.1039/c9bm00246d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Implantable tubular devices known as nerve guidance conduits (NGCs) have drawn considerable interest as an alternative to autografting in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Patrick Duffy
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Seán McMahon
- Ashland Specialties Ireland Ltd
- Synergy Centre
- Dublin
- Ireland
| | - Xi Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Shane Keaveney
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Eoin D. O'Cearbhaill
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Iban Quintana
- IK4-Tekniker
- Surface Engineering and Materials Science Unit
- Eibar
- Spain
| | | | - Wenxin Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| |
Collapse
|
4
|
Sun B, Zhou Z, Li D, Wu T, Zheng H, Liu J, Wang G, Yu Y, Mo X. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:190-199. [DOI: 10.1016/j.msec.2018.09.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
|
5
|
Chitosan Tubes Enriched with Fresh Skeletal Muscle Fibers for Primary Nerve Repair. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9175248. [PMID: 30009176 PMCID: PMC6020668 DOI: 10.1155/2018/9175248] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022]
Abstract
Muscle-in-vein conduit is successfully employed for repairing nerve injuries: the vein prevents muscle fiber dispersion, while the muscle prevents the vein collapse and creates a favorable environment for Schwann cell migration and axon regrowth. However, it requires microsurgical skills. In this study we show a simple strategy to improve the performance of a chitosan hollow tube by the introduction of fresh skeletal muscle fibers. The hypothesis is to overcome the technical issue of the muscle-in-vein preparation and to take advantage of fiber muscle properties to create an easy and effective conduit for nerve regeneration. Rat median nerve gaps were repaired with chitosan tubes filled with skeletal muscle fibers (muscle-in-tube graft), hollow chitosan tubes, or autologous nerve grafts. Our results demonstrate that the fresh skeletal muscle inside the conduit is an endogenous source of soluble Neuregulin 1, a key factor for Schwann cell survival and dedifferentiation, absent in the hollow tube during the early phase of regeneration. However, nerve regeneration assessed at late time point was similar to that obtained with the hollow tube. To conclude, the muscle-in-tube graft is surgically easy to perform and we suggest that it might be a promising strategy to repair longer nerve gap or for secondary nerve repair, situations in which Schwann cell atrophy is a limiting factor for recovery.
Collapse
|
6
|
Nawrotek K, Marqueste T, Modrzejewska Z, Zarzycki R, Rusak A, Decherchi P. Thermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. J Biomed Mater Res A 2017; 105:2004-2019. [PMID: 28324618 DOI: 10.1002/jbm.a.36067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 11/06/2022]
Abstract
The present study was designed to provide an appropriate micro-environment for regenerating axotomized neurons and proliferating/migrating cells. Because of its intrinsic permissive properties, biocompatibility and biodegradability, we chose to evaluate the therapeutic effectiveness of a chitosan-based biopolymer. The biomaterial toxicity was measured through in vitro test based on fibroblast cell survival on thermogelling chitosan lactate hydrogel substrate and then polymer was implanted into a C2 hemisection of the rat spinal cord. Animals were randomized into three experimental groups (Control, Lesion and Lesion + Hydrogel) and functional tests (ladder walking and forelimb grip strength tests, respiratory assessment by whole-body plethysmography measurements) were used, once a week during 10 weeks, to evaluate post-traumatic recoveries. Then, electrophysiological examinations (reflexivity of the sub-lesional region, ventilatory adjustments to muscle fatigue known to elicit the muscle metaboreflex and phrenic nerve recordings during normoxia and temporary hypoxia) were performed. In vitro results indicated that the chitosan matrix is a non-toxic biomaterial that allowed fibroblast survival. Furthermore, implanted animals showed improvements of their ladder walking scores from the 4th week post-implantation. Finally, electrophysiological recordings indicated that animals receiving the chitosan matrix exhibited recovery of the H-reflex rate sensitive depression, the ventilatory response to repetitive muscle stimulation and an increase of the phrenic nerve activity to asphyxia compared to lesioned and nonimplanted animals. This study indicates that hydrogel based on chitosan constitute a promising therapeutic approach to repair damaged spinal cord or may be used as an adjuvant with other treatments to enhance functional recovery after a central nervous system damage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2004-2019, 2017.
Collapse
Affiliation(s)
- Katarzyna Nawrotek
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| | - Zofia Modrzejewska
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Roman Zarzycki
- Faculty of Process and Environmental Engineering, Department of Chemical Engineering, Lodz University of Technology, Wolczanska 175 Street, Lodz, 90-924, Poland
| | - Agnieszka Rusak
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Medico-Dental Faculty, Krakowska 26 Street, Wroclaw, Poland, 50-425
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), Institut des Sciences du Mouvement (UMR 7287), Equipe « Plasticité des Systèmes Nerveux et Musculaire », Parc Scientifique et Technologique de Luminy, CC910-163, Avenue de Luminy, F-13288, Marseille Cedex 09, France
| |
Collapse
|
7
|
Gersey ZC, Burks SS, Anderson KD, Dididze M, Khan A, Dietrich WD, Levi AD. First human experience with autologous Schwann cells to supplement sciatic nerve repair: report of 2 cases with long-term follow-up. Neurosurg Focus 2017; 42:E2. [PMID: 28245668 DOI: 10.3171/2016.12.focus16474] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Long-segment injuries to large peripheral nerves present a challenge to surgeons because insufficient donor tissue limits repair. Multiple supplemental approaches have been investigated, including the use of Schwann cells (SCs). The authors present the first 2 cases using autologous SCs to supplement a peripheral nerve graft repair in humans with long-term follow-up data. METHODS Two patients were enrolled in an FDA-approved trial to assess the safety of using expanded populations of autologous SCs to supplement the repair of long-segment injuries to the sciatic nerve. The mechanism of injury included a boat propeller and a gunshot wound. The SCs were obtained from both the sural nerve and damaged sciatic nerve stump. The SCs were expanded and purified in culture by using heregulin β1 and forskolin. Repair was performed with sural nerve grafts, SCs in suspension, and a Duragen graft to house the construct. Follow-up was 36 and 12 months for the patients in Cases 1 and 2, respectively. RESULTS The patient in Case 1 had a boat propeller injury with complete transection of both sciatic divisions at midthigh. The graft length was approximately 7.5 cm. In the postoperative period the patient regained motor function (Medical Research Council [MRC] Grade 5/5) in the tibial distribution, with partial function in peroneal distribution (MRC Grade 2/5 on dorsiflexion). Partial return of sensory function was also achieved, and neuropathic pain was completely resolved. The patient in Case 2 sustained a gunshot wound to the leg, with partial disruption of the tibial division of the sciatic nerve at the midthigh. The graft length was 5 cm. Postoperatively the patient regained complete motor function of the tibial nerve, with partial return of sensation. Long-term follow-up with both MRI and ultrasound demonstrated nerve graft continuity and the absence of tumor formation at the repair site. CONCLUSIONS Presented here are the first 2 cases in which autologous SCs were used to supplement human peripheral nerve repair in long-segment injury. Both patients had significant improvement in both motor and sensory function with correlative imaging. This study demonstrates preliminary safety and efficacy of SC transplantation for peripheral nerve repair.
Collapse
Affiliation(s)
- Zachary C Gersey
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - S Shelby Burks
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Kim D Anderson
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Marine Dididze
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Aisha Khan
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Allan D Levi
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
8
|
Mohammadi J, Delaviz H, Mohammadi B, Delaviz H, Rad P. Comparison of repair of peripheral nerve transection in predegenerated muscle with and without a vein graft. BMC Neurol 2016; 16:237. [PMID: 27876000 PMCID: PMC5120544 DOI: 10.1186/s12883-016-0768-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite substantial research into the topic and valiant surgical efforts, reconstruction of peripheral nerve injury remains a challenging surgery. This study was conducted to evaluate the effectiveness of axonal regeneration of a transected sciatic nerve through a vein conduit containing degenerated skeletal muscle compared with axonal regeneration in a transected sciatic nerve through degenerated skeletal muscle alone. METHODS In two of the three experimental rat groups, 10 mm of the left sciatic nerve was transected and removed. The proximal and distal ends of the transected sciatic nerve were then approximated and surrounded with either (a) a degenerated skeletal muscle graft; or (b) a graft containing both degenerated skeletal muscle and vein. In the group receiving the combined vein and skeletal muscle graft, the vein walls were subsequently sutured to the proximal and distal nerve stump epineurium. Sciatic functional index (SFI) was used for assessment of functional recovery. Tracing study and histological procedures were used to assess axonal regeneration. RESULTS At 60 days, the gait functional recovery as well as the mean number of myelinated axons in the middle and distal parts of the sciatic nerve significantly increased in the group with the vein graft compared to rats with only the muscular graft (P < 0.05). Mean diameter of myelinated nerve fiber of the distal sciatic nerve was also improved with the vein graft compared to the muscle graft alone (P < 0.05). The mean number of DiI-labeled motor neurons in the L4-L5 spinal segment increased in the vein with muscle group but was not significantly different between the two groups. CONCLUSIONS These findings demonstrated that a graft consisting of not only predegenerated muscle, but also predegenerated muscle with vein more effectively supported nerve regeneration, thus promoting functional recovery after sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Jamshid Mohammadi
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, P.o.Box: 7591994799, Yasuj, Iran.
| | - Bahram Mohammadi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamoun Delaviz
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Parastou Rad
- Department of Midwifery, Yasuj University of Medical, Yasuj, Iran
| |
Collapse
|
9
|
Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3856262. [PMID: 27556032 PMCID: PMC4983313 DOI: 10.1155/2016/3856262] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/29/2016] [Indexed: 01/09/2023]
Abstract
Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration.
Collapse
|
10
|
Dresner HS, King TA, Clark HB, Juhn SK, Levine SC. Peripheral Facial Nerve Regeneration Using Collagen Conduit Entubulation in a Cat Model. Ann Otol Rhinol Laryngol 2016; 115:631-42. [PMID: 16944663 DOI: 10.1177/000348940611500810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: Facial nerve (FN) injuries are functionally, psychologically, and financially debilitating. Facial nerve autograft repairs produce significant donor nerve morbidity and functional results that rarely exceed House-Brackmann (HB) grade III over VI. In this study we sought to enhance FN regeneration via collagen conduit entubulation. Methods: Five control cats underwent right (“cut-side”) FN transection and immediate microsurgical anastomosis repair. Five experimental cats underwent identical repairs plus collagen conduit entubulation of each anastomosis. Results: Postoperative behavioral observations revealed gradual FN functional recovery in all cats, who attained adapted HB grades of II to III over VI after 6 weeks. Electromyographic latencies and amplitudes from the bilateral orbicularis oculi and orbicularis oris muscles indicated restoration of FN continuity in all 10 cats. In comparison with FN repairs without conduits, repairs with conduits significantly enhanced recovery of amplitude in cut-side orbicularis oculi muscles (p = .037) and latency in cut-side orbicularis oris muscles (p = .048). In comparison with intact left (“uncut-side”) FN latencies and amplitudes, more statistically significant differences in cut-side FN function were observed in repairs without conduits than in repairs with conduits. Conduits therefore facilitated a more complete return of electrophysiological function. Histologic analyses confirmed FN continuity and revealed more organized FN regenerative architecture in conduit-implanted repairs. Conclusions: The overall results support enhanced FN regeneration with collagen conduit entubulation.
Collapse
Affiliation(s)
- Harley S Dresner
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Levi AD, Burks SS, Anderson KD, Dididze M, Khan A, Dietrich WD. The Use of Autologous Schwann Cells to Supplement Sciatic Nerve Repair With a Large Gap: First in Human Experience. Cell Transplant 2015; 25:1395-403. [PMID: 26610173 DOI: 10.3727/096368915x690198] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Insufficient donor nerve graft material in peripheral nerve surgery remains an obstacle for successful long-distance regeneration. Schwann cells (SCs) can be isolated from adult mammalian peripheral nerve biopsies and can be grown in culture and retain their capacity to enhance peripheral nerve regeneration within tubular repair strategies in multiple animal models. Human Schwann cells (hSCs) can be isolated, expanded in number, and retain their ability to promote regeneration and myelinate axons, but have never been tested in a clinical case of peripheral nerve injury. A sural nerve biopsy and peripheral nerve tissue from the traumatized sciatic nerve stumps was obtained after Food and Drug Administration (FDA) and Institutional Review Board (IRB) approval as well as patient consent. The SCs were isolated after enzymatic digestion of the nerve and expanded with the use of heregulin β1 (0.1 µg/ml) and forskolin (15 mM). After two passages the Schwann cell isolates were combined with sural nerve grafts to repair a large sciatic nerve defect (7.5 cm) after a traumatic nerve injury. The sural nerve and the traumatized sciatic nerve ends both served as an excellent source of purified (90% and 97%, respectively) hSCs. Using ultrasound and magnetic resonance imaging (MRI) we were able to determine continuity of the nerve graft repair and the absence of tumor formation. The patient had evidence of proximal sensory recovery and definitive motor recovery distal to the repair in the distribution of the tibial and common peroneal nerve. The patient did experience an improvement in her pain scores over time. The goals of this approach were to determine the safety and clinical feasibility of implementing a new cellular repair strategy. In summary, this approach represents a novel strategy in the treatment of peripheral nerve injury and represents the first reported use of autologous cultured SCs after human peripheral nerve injury.
Collapse
Affiliation(s)
- Allan D Levi
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lavasani M, Pollett JB, Usas A, Thompson SD, Pollett AF, Huard J. The microenvironment-specific transformation of adult stem cells models malignant triton tumors. PLoS One 2013; 8:e82173. [PMID: 24349213 PMCID: PMC3857244 DOI: 10.1371/journal.pone.0082173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice, showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation. However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic, neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable, generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.
Collapse
Affiliation(s)
- Mitra Lavasani
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| | - Jonathan B. Pollett
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Arvydas Usas
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth D. Thompson
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron F. Pollett
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| |
Collapse
|
13
|
Szarek D, Marycz K, Laska J, Bednarz P, Jarmundowicz W. Assessment of in vivo behavior of polymer tube nerve grafts simultaneously with the peripheral nerve regeneration process using scanning electron microscopy technique. SCANNING 2013; 35:232-245. [PMID: 23037803 DOI: 10.1002/sca.21056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/01/2012] [Indexed: 06/01/2023]
Abstract
In this study, scanning electron microscopy (SEM) has been applied for instantaneous assessment of processes occurring at the site of regenerating nerve. The technique proved to be especially useful when an artificial implant should have been observed but have not yet been extensively investigated before for assessment of nerve tissue. For in vivo studies, evaluation of implant's morphology and its neuroregenerative properties is of great importance when new prototype is developed. However, the usually applied histological techniques require separate and differently prepared samples, and therefore, the results are never a 100% comparable. In our research, we found SEM as a technique providing detailed data both on an implant behavior and the nerve regeneration process inside the implant. Observations were carried out during 12-week period on rat sciatic nerve injury model reconstructed with nerve autografts and different tube nerve grafts. Samples were analyzed with haematoxylin-eosin (HE), immunocytochemical staining for neurofillament and S-100 protein, SEM, TEM, and the results were compared. SEM studies enabled to obtain characteristic pictures of the regeneration process similarly to TEM and histological studies. Schwann cell transformation and communication as well as axonal outgrowth were identified, newly created and matured axons could be recognized. Concurrent analysis of biomaterial changes in the implant (degradation, collapsing of the tube wall, migration of alginate gel) was possible. This study provides the groundwork for further use of the described technique in the nerve regeneration studies.
Collapse
Affiliation(s)
- Dariusz Szarek
- Department of Neurosurgery, Wroclaw University Hospital, Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
14
|
Johnson PJ, Wood MD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 2013; 45. [PMID: 24385980 DOI: 10.1007/s10353-013-0205-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tissue engineering has been defined as "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ". Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. METHODS A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. RESULTS Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. CONCLUSIONS The field of tissue engineering should consider its challenge to not only meet the autograft "gold standard" but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Collapse
Affiliation(s)
- P J Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - M D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - A M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - S E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| |
Collapse
|
15
|
The use of poly(N-[2-hydroxypropyl]-methacrylamide) hydrogel to repair a T10 spinal cord hemisection in rat: a behavioural, electrophysiological and anatomical examination. ASN Neuro 2013; 5:149-66. [PMID: 23614684 PMCID: PMC3667642 DOI: 10.1042/an20120082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There have been considerable interests in attempting to reverse the deficit because of an SCI (spinal cord injury) by restoring neural pathways through the lesion and by rebuilding the tissue network. In order to provide an appropriate micro-environment for regrowing axotomized neurons and proliferating and migrating cells, we have implanted a small block of pHPMA [poly N-(2-hydroxypropyl)-methacrylamide] hydrogel into the hemisected T10 rat spinal cord. Locomotor activity was evaluated once a week during 14 weeks with the BBB rating scale in an open field. At the 14th week after SCI, the reflexivity of the sub-lesional region was measured. We also monitored the ventilatory frequency during an electrically induced muscle fatigue known to elicit the muscle metaboreflex and increase the respiratory rate. Spinal cords were then collected, fixed and stained with anti-ED-1 and anti-NF-H antibodies and FluoroMyelin. We show in this study that hydrogel-implanted animals exhibit: (i) an improved locomotor BBB score, (ii) an improved breathing adjustment to electrically evoked isometric contractions and (iii) an H-reflex recovery close to control animals. Qualitative histological results put in evidence higher accumulation of ED-1 positive cells (macrophages/monocytes) at the lesion border, a large number of NF-H positive axons penetrating the applied matrix, and myelin preservation both rostrally and caudally to the lesion. Our data confirm that pHPMA hydrogel is a potent biomaterial that can be used for improving neuromuscular adaptive mechanisms and H-reflex responses after SCI.
Collapse
|
16
|
Haug A, Bartels A, Kotas J, Kunesch E. Sensory recovery 1 year after bridging digital nerve defects with collagen tubes. J Hand Surg Am 2013; 38:90-7. [PMID: 23261191 DOI: 10.1016/j.jhsa.2012.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/08/2012] [Accepted: 10/11/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate digital nerve regeneration following implantation of collagen tubes in a prospective study. METHODS Forty-five digital nerve defects (≤ 2.6 cm) in the hand were reconstructed in 35 patients (6 female, 29 male; mean age, 47 y). Nerve regeneration was evaluated at 3, 6, and 12 months after surgery by applying a sum score comprising static 2-point discrimination, sensory threshold with Semmes-Weinstein monofilament mechanical stimuli, warm/cold sensation, vibration sense, sharp/dull recognition, recognition of numbers, and subjective estimation of the patient. Electroneurography and ultrasound were also performed. RESULTS In the distribution of 60% of the operated nerves, very good or good recovery was found. In contrast to basic sensory function, the more complex static 2-point discrimination was more frequently impaired after 1 year. After 6 months, the sum score correlated with electroneurography. The type of injury altered the final sensory nerve function. Circular saw and iatrogenic injuries showed a negative correlation with final sensory nerve function. Complications (infection) were observed in 2 patients. CONCLUSIONS Owing to the good functional outcome in the majority of cases, the use of collagen tubes is useful to span digital nerve defects up to 2.6 cm. TYPE OF STUDY/LEVEL OF EVIDENCE Therapeutic IV.
Collapse
Affiliation(s)
- Adina Haug
- Clinic of Hand Surgery, Helios Kliniken Schwerin; and the Clinic of Neurology, Bezirksklinikum Mainkofen, Germany.
| | | | | | | |
Collapse
|
17
|
Gambarotta G, Fregnan F, Gnavi S, Perroteau I. Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:223-56. [PMID: 24083437 DOI: 10.1016/b978-0-12-410499-0.00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuregulin 1 (NRG1) is a multifunctional and versatile protein: its numerous isoforms can signal in a paracrine, autocrine, or juxtacrine manner, playing a fundamental role during the development of the peripheral nervous system and during the process of nerve repair, suggesting that the treatment with NRG1 could improve functional outcome following injury. Accordingly, the use of NRG1 in vivo has already yielded encouraging results. The aim of this review is to focus on the role played by the different NRG1 isoforms during peripheral nerve regeneration and remyelination and to identify good candidates to be used for the development of tissue engineered medical devices delivering NRG1, with the objective of promoting better nerve repair.
Collapse
Affiliation(s)
- Giovanna Gambarotta
- Nerve Regeneration Group, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
18
|
FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012; 43:553-72. [PMID: 21269624 DOI: 10.1016/j.injury.2010.12.030] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 02/02/2023]
Abstract
Several nerve guidance conduits (NGCs) and nerve protectant wraps are approved by the US Food and Drug Administration (FDA) for clinical use in peripheral nerve repair. These devices cover a wide range of natural and synthetic materials, which may or may not be resorbable. This review consolidates the data pertaining to all FDA approved materials into a single reference, which emphasizes material composition alongside pre-clinical and clinical safety and efficacy (where possible). This article also summarizes the key advantages and limitations for each material as noted in the literature (with respect to the indication considered). In this context, this review provides a comprehensive reference for clinicians which may facilitate optimal material/device selection for peripheral nerve repair. For materials scientists, this review highlights predicate devices and evaluation methodologies, offering an insight into current deficiencies associated with state-of-the-art materials and may help direct new technology developments and evaluation methodologies thereof.
Collapse
|
19
|
Szarek D, Laska J, Jarmundowicz W, Blazewicz S, Tabakow P, Marycz K, Wozniak Z, Mierzwa J. Influence of Alginates on Tube Nerve Grafts of Different Elasticity - Preliminary <i>in Vivo</i> Study. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.31004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Dornseifer U, Fichter AM, Leichtle S, Wilson A, Rupp A, Rodenacker K, Ninkovic M, Biemer E, Machens HG, Matiasek K, Papadopulos NA. Peripheral nerve reconstruction with collagen tubes filled with denatured autologous muscle tissue in the rat model. Microsurgery 2011; 31:632-41. [PMID: 22072584 DOI: 10.1002/micr.20926] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/24/2011] [Accepted: 04/29/2011] [Indexed: 12/17/2022]
Abstract
Conventional nerve conduits lack cellular and extracellular guidance structures critical for bridging larger defects. In this study, an exogenous matrix for axonal regeneration was provided by pretreated muscle tissue. In 24 rats, 14-mm sciatic nerve segments were resected and surgically reconstructed using one of the following methods: autograft (AG); bovine type I collagen conduit; (MDM) collagen tube filled with modified denatured autologous muscle tissue. For 8 weeks, functional regeneration was evaluated by footprint and video gait analysis. Evaluation was complemented by electrophysiology, as well as qualitative and quantitative structural assessment of nerves and target muscles. Group AG was superior both structurally and functionally, showing higher axon counts, a more normal gait pattern, and less severe muscle atrophy. Fiber quality (fiber size and myelin thickness) was highest in group MDM, possibly related to the myelin-producing effect of muscular laminin. However, axon count was lowest in this group, and ultrastructural analysis of the denatured muscle tissue showed areas of incomplete denaturation that had acted as a mechanical barrier for regenerating axons. In light of these results, the often advocated use of muscular exogenous matrix for peripheral nerve reconstruction is reviewed in the literature, and its clinical application is critically discussed. In conclusion, combined muscle tubes may have a positive influence on nerve fiber maturation. However, muscle pretreatment is not without risks, and denaturation processes need to be further refined.
Collapse
Affiliation(s)
- Ulf Dornseifer
- Department of Plastic, Reconstructive, Hand and Burn Surgery, Academic Hospital Bogenhausen, Munich 81925, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
Bridging nerve gaps with suitable grafts is a major clinical problem. The autologous nerve graft is considered to be the gold standard, providing the best functional results; however, donor site morbidity is still a major disadvantage. Various attempts have been made to overcome the problems of autologous nerve grafts with artificial nerve tubes, which are “ready-to-use” in almost every situation. A wide range of materials have been used in animal models but only few have been applied to date clinically, where biocompatibility is an inevitable prerequisite. This review gives an idea about artificial nerve tubes with special focus on their biocompatibility in animals and humans.
Collapse
Affiliation(s)
- Felix Stang
- Department of Plastic, Reconstructive and Hand Surgery, University of Luebeck, 23538 Luebeck, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-451-5002061; Fax: +49-451-5002190
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, 39120 Magdeburg, Germany; E-Mail:
| | - Hisham Fansa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld-Mitte, 33604 Bielefeld, Germany; E-Mail:
| |
Collapse
|
23
|
Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A, Chen B, Yaszemski MJ, Windebank AJ. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Part A 2009; 15:1797-805. [PMID: 19191513 DOI: 10.1089/ten.tea.2008.0364] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Biodegradable polymer scaffolds provide an excellent approach to quantifying critical factors necessary for restoration of function after a transection spinal cord injury. Neural stem cells (NSCs) and Schwann cells (SCs) support axonal regeneration. This study examines the compatibility of NSCs and SCs with the poly-lactic-co-glycolic acid polymer scaffold and quantitatively assesses their potential to promote regeneration after a spinal cord transection injury in rats. NSCs were cultured as neurospheres and characterized by immunostaining for nestin (NSCs), glial fibrillary acidic protein (GFAP) (astrocytes), betaIII-tubulin (immature neurons), oligodendrocyte-4 (immature oligodendrocytes), and myelin oligodendrocyte (mature oligodendrocytes), while SCs were characterized by immunostaining for S-100. Rats with transection injuries received scaffold implants containing NSCs (n=17), SCs (n=17), and no cells (control) (n=8). The degree of axonal regeneration was determined by counting neurofilament-stained axons through the scaffold channels 1 month after transplantation. Serial sectioning through the scaffold channels in NSC- and SC-treated groups revealed the presence of nestin, neurofilament, S-100, and betaIII tubulin-positive cells. GFAP-positive cells were only seen at the spinal cord-scaffold border. There were significantly more axons in the NSC- and SC- treated groups compared to the control group. In conclusion, biodegradable scaffolds with aligned columns seeded with NSCs or SCs facilitate regeneration across the transected spinal cord. Further, these multichannel biodegradable polymer scaffolds effectively serve as platforms for quantitative analysis of axonal regeneration.
Collapse
Affiliation(s)
- Heather E Olson
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 2009; 26:E5. [PMID: 19435445 DOI: 10.3171/foc.2009.26.2.e5] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair.
Collapse
|
25
|
Rupp A, Dornseifer U, Rodenacker K, Fichter A, Jütting U, Gais P, Papadopulos N, Matiasek K. Temporal progression and extent of the return of sensation in the foot provided by the saphenous nerve after sciatic nerve transection and repair in the rat—implications for nociceptive assessments. Somatosens Mot Res 2009; 24:1-13. [PMID: 17558918 DOI: 10.1080/08990220601116329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sensory testing, by providing stimuli for nociceptors of the foot, is a popular method of evaluating sensory regeneration after damage to the sciatic nerve in the rat. In the following study, 20 rats were submitted to double transection of the sciatic nerve. The subsequent 14 mm gap was repaired through guidance interponation. In order to evaluate nerve regeneration, sensory testing was performed additionally to other methods, which included motor testing, morphometry, and electron microscopic assessments of nerves. Somatosensory testing revealed that all animals exhibited next to the same amount of sensory reinnervation on their foot regardless of their experimental group. In motor tests, however, two out of the three experimental groups did not improve at all. These groups also failed to show neural regrowth in morphometric and electron microscopic assessments of the associated nerve. Retrograde tracing was able to prove the saphenous nerve as an alternative source of sensory reinnervation in animals with failed sciatic regeneration. This means that results of sensory testing in the rat should be treated with caution, taking into account the areas tested and the likelihood that in these areas saphenous sprouting could have taken place. Furthermore, it is strongly advised that somatosensory testing should be conducted only on toe 5.
Collapse
Affiliation(s)
- Angie Rupp
- Chair of General Pathology & Neuropathology, Institute of Veterinary Pathology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun M, Downes S. Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:1181-1192. [PMID: 19132511 DOI: 10.1007/s10856-008-3671-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/15/2008] [Indexed: 05/27/2023]
Abstract
In this study, the physicochemical properties of microporous poly (epsilon-caprolactone) (PCL) films and a composite material made of PCL and polylactic acid (PLA) blend were tested. Fabricated by solvent casting using dichloromethane, these ultra-thin films (60 +/- 5 microm in thickness) have a novel double-sided surface topography, i.e. a porous surface with pores 1-10 microm in diameter and a relatively smooth surface with nano-scaled texture. Porous surfaces were found to be associated with increased protein adsorption and the treatment of these polyester scaffolds with NaOH rendered them more hydrophilic. Differential Scanning Calorimetry (DSC) showed that the incorporation of PLA reduced the crystallinity of the original homopolymer. Chemical changes were investigated by means of Fourier Transform Infrared Spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Average surface roughness (Ra), hydrophilicity/hydrophobicity and mechanical properties of these materials were also assessed for the suitability of these materials as nerve conduits.
Collapse
Affiliation(s)
- Mingzhu Sun
- Department of Engineering and Physical Sciences, Materials Science Centre, The University of Manchester, Manchester, UK
| | | |
Collapse
|
27
|
Piskin A, Kaplan S, Aktaş A, Ayyildiz M, Raimondo S, Aliç T, Bozkurt HH, Geuna S. Platelet gel does not improve peripheral nerve regeneration: An electrophysiological, stereological, and electron microscopic study. Microsurgery 2008; 29:144-53. [DOI: 10.1002/micr.20599] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Di Benedetto G, Grassetti L, Mazzucchelli R, Scarpelli M, Bertani A. Peripheral nerve regeneration: autologous conduit of vein plus perineurium. EUROPEAN JOURNAL OF PLASTIC SURGERY 2008. [DOI: 10.1007/s00238-008-0302-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Amado S, Simões MJ, Armada da Silva PAS, Luís AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejão ASP, Maurício AC, Geuna S. Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials 2008; 29:4409-19. [PMID: 18723219 DOI: 10.1016/j.biomaterials.2008.07.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/31/2008] [Indexed: 12/22/2022]
Abstract
Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to develop and test hybrid chitosan membranes to use in peripheral nerve reconstruction, either alone or enriched with N1E-115 neural cells. Hybrid chitosan membranes were tested in vitro, to assess their ability in supporting N1E-115 cell survival and differentiation, and in vivo to assess biocompatibility as well as to evaluate their effects on nerve fiber regeneration and functional recovery after a standardized rat sciatic nerve crush injury. Functional recovery was evaluated using the sciatic functional index (SFI), the static sciatic index (SSI), the extensor postural thrust (EPT), the withdrawal reflex latency (WRL) and ankle kinematics. Nerve fiber regeneration was assessed by quantitative stereological analysis and electron microscopy. All chitosan membranes showed good biocompatibility and proved to be a suitable substrate for plating the N1E-115 cellular system. By contrast, in vivo nerve regeneration assessment after crush injury showed that the freeze-dried chitosan type III, without N1E-115 cell addition, was the only type of membrane that significantly improved posttraumatic axonal regrowth and functional recovery. It can be thus suggested that local enwrapping with this type of chitosan membrane may represent an effective approach for the improvement of the clinical outcome in patients receiving peripheral nerve surgery.
Collapse
Affiliation(s)
- S Amado
- Faculty of Human Kinetics (FMH), Technical University of Lisbon (UTL), Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 2008; 8:39. [PMID: 18405347 PMCID: PMC2358889 DOI: 10.1186/1472-6750-8-39] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 04/11/2008] [Indexed: 12/22/2022] Open
Abstract
Background Although many nerve prostheses have been proposed in recent years, in the case of consistent loss of nervous tissue peripheral nerve injury is still a traumatic pathology that may impair patient's movements by interrupting his motor-sensory pathways. In the last few decades tissue engineering has opened the door to new approaches;: however most of them make use of rigid channel guides that may cause cell loss due to the lack of physiological local stresses exerted over the nervous tissue during patient's movement. Electrospinning technique makes it possible to spin microfiber and nanofiber flexible tubular scaffolds composed of a number of natural and synthetic components, showing high porosity and remarkable surface/volume ratio. Results In this study we used electrospun tubes made of biodegradable polymers (a blend of PLGA/PCL) to regenerate a 10-mm nerve gap in a rat sciatic nerve in vivo. Experimental groups comprise lesioned animals (control group) and lesioned animals subjected to guide conduits implantated at the severed nerve stumps, where the tubular scaffolds are filled with saline solution. Four months after surgery, sciatic nerves failed to reconnect the two stumps of transected nerves in the control animal group. In most of the treated animals the electrospun tubes induced nervous regeneration and functional reconnection of the two severed sciatic nerve tracts. Myelination and collagen IV deposition have been detected in concurrence with regenerated fibers. No significant inflammatory response has been found. Neural tracers revealed the re-establishment of functional neuronal connections and evoked potential results showed the reinnervation of the target muscles in the majority of the treated animals. Conclusion Corroborating previous works, this study indicates that electrospun tubes, with no additional biological coating or drug loading treatment, are promising scaffolds for functional nervous regeneration. They can be knitted in meshes and various frames depending on the cytoarchitecture of the tissue to be regenerated. The versatility of this technique gives room for further scaffold improvements, like tuning the mechanical properties of the tubular structure or providing biomimetic functionalization. Moreover, these guidance conduits can be loaded with various fillers like collagen, fibrin, or self-assembling peptide gels or loaded with neurotrophic factors and seeded with cells. Electrospun scaffolds can also be synthesized in different micro-architectures to regenerate lesions in other tissues like skin and bone.
Collapse
Affiliation(s)
- Silvia Panseri
- Bioscience and Biotechnology Department, University of Milan-Bicocca, Piazza della Scienza 2, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tos P, Battiston B, Nicolino S, Raimondo S, Fornaro M, Lee JM, Chirila L, Geuna S, Perroteau I. Comparison of fresh and predegenerated muscle-vein-combined guides for the repair of rat median nerve. Microsurgery 2007; 27:48-55. [PMID: 17211839 DOI: 10.1002/micr.20306] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last 10 years, we have investigated a particular type of bioengineered nerve guide, the muscle-vein-combined tube, which is made by filling a vein with skeletal muscle. In our previous studies we have always used fresh skeletal muscle to fill vein conduits. In the present study we compared the use of fresh and predegenerated (freeze-thawed) skeletal muscle for muscle-vein-combined nerve guides. In this study, a 10-mm-long rat median nerve defect was repaired using either type of nerve guide. The samples were analyzed 5 and 30 days after surgery by light and electron microscopy. In addition, reverse transcription polymerase chain reaction (RT-PCR) was carried out to investigate the expression of mRNAs coding for glial markers, as well as glial growth factor (NRG1) and its receptors (erbB2 and erbB3). Results showed differences between the two types of nerve guides at postoperative day 5; however, no difference was detected at day 30 suggesting that both types of tissue-engineered conduit are effective for repairing peripheral nerve defects in this experimental model.
Collapse
Affiliation(s)
- P Tos
- UOD Reconstructive Microsurgery, Orthopaedic Department, C.T.O. Hospital, Via Zuretti 29, 10100 Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alluin O, Feron F, Desouches C, Dousset E, Pellissier JF, Magalon G, Decherchi P. Metabosensitive Afferent Fiber Responses after Peripheral Nerve Injury and Transplantation of an Acellular Muscle Graft in Association with Schwann Cells. J Neurotrauma 2006; 23:1883-94. [PMID: 17184196 DOI: 10.1089/neu.2006.23.1883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies dedicated to the repair of peripheral nerve focused almost exclusively on motor or mechanosensitive fiber regeneration. Poor attention has been paid to the metabosensitive fibers from group III and IV (also called ergoreceptor). Previously, we demonstrated that the metabosensitive response from the tibialis anterior muscle was partially restored when the transected nerve was immediately sutured. In the present study, we assessed motor and metabosensitive responses of the regenerated axons in a rat model in which 1 cm segment of the peroneal nerve was removed and immediately replaced by an autologous nerve graft or an acellular muscle graft. Four groups of animals were included: control animals (C, no graft), transected animals grafted with either an autologous nerve graft (Gold Standard-GS) or an acellular muscle filled with Schwann Cells (MSC) or Culture Medium (MCM). We observed that (1) the tibialis anterior muscle was atrophied in GS, M(SC) and M(CM) groups, with no significant difference between grafted groups; (2) the contractile properties of the reinnervated muscles after nerve stimulation were similar in all groups; (3) the metabosensitive afferent responses to electrically induced fatigue was smaller in M(SC) and MCM groups; and (4) the metabosensitive afferent responses to two chemical agents (KCl and lactic acid) was decreased in GS, M(SC) and M(CM) groups. Altogether, these data indicate a motor axonal regeneration and an immature metabosensitive afferent fiber regrowth through acellular muscle grafts. Similarities between the two groups grafted with acellular muscles suggest that, in our conditions, implanted Schwann cells do not improve nerve regeneration. Future studies could include engineered conduits that mimic as closely as possible the internal organization of uninjured nerve.
Collapse
Affiliation(s)
- Olivier Alluin
- Laboratoire des Déterminants Physiologiques de l'Activité Physique (UPRES EA 3285), Institut Fédératif de Recherche (IFR) 107, Faculté des Sciences du Sport, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Carone TW, Hasenwinkel JM. Mechanical and morphological characterization of homogeneous and bilayered poly(2-hydroxyethyl methacrylate) scaffolds for use in CNS nerve regeneration. J Biomed Mater Res B Appl Biomater 2006; 78:274-82. [PMID: 16447165 DOI: 10.1002/jbm.b.30483] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homogeneous and bilayered macroporous poly(2-hydroxyethyl methacrylate), p(HEMA), hydrogel scaffolds were examined as possible matrices for nerve regeneration in the CNS. An important issue to consider for a CNS scaffold is that it must be able to closely mimic the natural tissue it is replacing, while remaining intact, and mechanically stable enough to allow for regenerating axons to elongate through it. Phase-separated homogeneous and bilayered p(HEMA) scaffolds were fabricated, by varying water, crosslinking, and initiating agents; all of which directly affected the mechanical properties of the polymer. An increase in water concentration resulted in a decrease in the modulus for a given crosslinking and initiating concentration for all homogenous scaffolds, but the same result was not evident in the bilayered scaffolds. The distinct regions within the bilayered scaffolds generate a matrix, containing both a highly porous region with modulus values representative of spinal cord tissue, as well as a nonporous region that provides overall mechanical stability to the entire implant. The overall result is a composite matrix for possible use in CNS nerve regeneration, which mimics the mechanical properties of spinal tissue, but can withstand the forces that it will be subjected to in the injury site.
Collapse
Affiliation(s)
- Terrance W Carone
- Department of Biomedical and Chemical Engineering, Syracuse University, 121 Link Hall, New York 13244, USA.
| | | |
Collapse
|
34
|
Weyn B, van Remoortere M, Nuydens R, Meert T, van de Wouwer G. A multiparametric assay for quantitative nerve regeneration evaluation. J Microsc 2005; 219:95-101. [PMID: 16159345 DOI: 10.1111/j.1365-2818.2005.01495.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We introduce an assay for the semi-automated quantification of nerve regeneration by image analysis. Digital images of histological sections of regenerated nerves are recorded using an automated inverted microscope and merged into high-resolution mosaic images representing the entire nerve. These are analysed by a dedicated image-processing package that computes nerve-specific features (e.g. nerve area, fibre count, myelinated area) and fibre-specific features (area, perimeter, myelin sheet thickness). The assay's performance and correlation of the automatically computed data with visually obtained data are determined on a set of 140 semithin sections from the distal part of a rat tibial nerve from four different experimental treatment groups (control, sham, sutured, cut) taken at seven different time points after surgery. Results show a high correlation between the manually and automatically derived data, and a high discriminative power towards treatment. Extra value is added by the large feature set. In conclusion, the assay is fast and offers data that currently can be obtained only by a combination of laborious and time-consuming tests.
Collapse
Affiliation(s)
- B Weyn
- Visielab, Department of Physics, University of Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Battiston B, Geuna S, Ferrero M, Tos P. Nerve repair by means of tubulization: literature review and personal clinical experience comparing biological and synthetic conduits for sensory nerve repair. Microsurgery 2005; 25:258-67. [PMID: 15934044 DOI: 10.1002/micr.20127] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nerve repair is usually accomplished by direct suture when the two stumps can be approximated without tension. In the presence of a nerve defect, the placement of an autologous nerve graft is the current gold standard for nerve restoration. However, over the last 20 years, an increasing number of research articles reported on the use of non-nervous tubes (tubulization) for repairing nerve defects. The clinical employment of tubes (both biological and synthetic) as an alternative to autogenous nerve grafts is mainly justified by the limited availability of donor tissue for nerve autografts and the related morbidity. In addition, tubulization was proposed as an alternative to direct nerve sutures in order to create optimal conditions for nerve regeneration over the short empty space intentionally left between two nerve stumps. This paper outlines recent important advances in this field. Different tubulization techniques proposed so far are described, focusing in particular on studies that reported on the employment of tubes with patients. Our personal clinical experience on tubulization repair of sensory nerve lesions (digital nerves), using both biological and synthetic tubes, is presented, and the clinical results are compared. In our case series, both types of tubes led to good clinical results. Finally, we speculate about the prospects in the clinical application of tubulization for peripheral nerve repair.
Collapse
Affiliation(s)
- Bruno Battiston
- UOD Reconstructive Microsurgery, Department of Orthopedics, C.T.O. Hospital, Turin, Italy.
| | | | | | | |
Collapse
|
36
|
Nichols CM, Myckatyn TM, Rickman SR, Fox IK, Hadlock T, Mackinnon SE. Choosing the correct functional assay: A comprehensive assessment of functional tests in the rat. Behav Brain Res 2005; 163:143-58. [PMID: 15979168 DOI: 10.1016/j.bbr.2005.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/16/2005] [Accepted: 05/18/2005] [Indexed: 11/19/2022]
Abstract
While there are several ways to quantify peripheral nerve regeneration; the true measure of successful outcome is functional recovery. Functional tests are relatively easily conducted in human subjects; however it is more difficult in a laboratory animal. The laboratory rat is an excellent animal model of peripheral nerve injury and has been used extensively in the field of peripheral nerve research. Due to the intense interest in the rat as an experimental model, functional assays have been reported. In an effort to provide a resource to which investigators can refer when considering the most appropriate functional assay for a given experiment, the authors have compiled and tabulated the available functional tests applicable to various models of rat nerve injury.
Collapse
Affiliation(s)
- Chris M Nichols
- Washington University School of Medicine, Division of Plastic and Reconstructive Surgery, Campus Box 8238, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
37
|
IJkema-Paassen J, Meek MF, Gramsbergen A. Long-term reinnervation effects after sciatic nerve lesions in adult rats. Ann Anat 2005; 187:113-20. [PMID: 15900695 DOI: 10.1016/j.aanat.2004.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Transection of the sciatic nerve in adult rats induces drastic changes in hindleg muscles. Earlier, we demonstrated that the reinnervated soleus (SOL) muscle, 21 weeks after a transection mainly contains type II fibers. This is in striking contrast to normal muscle, which consists to 80% of type I muscle fibers. Also we observed 13.9% of the fibers to be polyneurally innervated. The problem of the present study is whether these changes are reversible after Longer survival periods. Therefore, the SOL was studied 60 weeks after transection and reconstruction by an autologous nerve graft. In six rats, we studied muscle fiber distributions by monoclonal antibodies, and innervation patterns by cholinesterase staining and AgNO3 impregnation. Still at 60 weeks, only 20% of the muscle fibers are of type I and this is similar to results at 21 weeks, indicating that no recovery to the normal has been reached by that age. Furthermore, 20% of the endplates in the reinnervated SOL were polyneurally innervated, but we also observed this in 10% of the endplates on the control side. These increases, compared to data at 21 weeks, are interpreted as an aging effect.
Collapse
Affiliation(s)
- Jos IJkema-Paassen
- Medical Physiology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
38
|
Higuchi A, Watanabe T, Matsubara Y, Matsuoka Y, Hayashi S. Regulation of Neurite Outgrowth by Intermittent Irradiation of Visible Light. J Phys Chem B 2005; 109:11033-6. [PMID: 16852344 DOI: 10.1021/jp0508554] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of neurite outgrowth of PC12 cells on collagen-coated glass plates under intermittent light irradiation at 525 nm and 0.4 mW/cm2 of intensity was investigated. Neurite outgrowth of PC12 cells was significantly suppressed when PC12 cells were cultivated under intermittent light irradiation with a total irradiation time of more than 2 min/h. No temperature increase was observed in the culture medium under either continuous or intermittent light irradiation. Therefore, suppression of neurite outgrowth under light irradiation was not due to the increase of temperature in the culture medium, but rather the effect of light on the PC12 cells, especially the signal transmittance of light to PC12 cells. The light irradiation interval also affected the neurite outgrowth of PC12 cells when the total irradiation time was constant. A high extension ratio of neurite outgrowth was observed under a long time interval of nonirradiation between light irradiations (1 min of irradiation every hour) as compared with frequent light irradiation intervals (5 s of irradiation every 5 min) with the same total irradiation period per hour. The neurite outgrowth ratio was thought to be dependent on the light intensity, the total time of light irradiation in the intermittent light irradiation, and the interval of light irradiation in the intermittent light irradiation.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Applied Chemistry, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 180-8633, Japan.
| | | | | | | | | |
Collapse
|
39
|
Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:367-375. [PMID: 15803283 DOI: 10.1007/s10856-005-0637-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 07/19/2004] [Indexed: 05/24/2023]
Abstract
The technique of microbraiding with modification was employed as a novel method for the fabrication of fibrous tubular scaffolds for nerve tissue engineering purposes. The biodegradable polymers used in this study were poly(L-lactide-co-glycolide) (10:90) and chitosan. The polymeric fibers were microbraided around a Teflon mandrel to make it as a tubular construct. The conduits were then studied for their surface morphology, swelling behaviour and biocompatibility. The surface morphology was analysed by scanning electron microscope, swelling behaviour by weight increase due to water uptake and biocompatibility by in vitro cytotoxicity assessment in terms of cell morphology and cell viability by the MTT assay of polymer extract treated cells. These conduits may also be used for regeneration of tissues, which require tubular scaffolds such as blood vessel, spinal cord, intestine etc.
Collapse
Affiliation(s)
- T B Bini
- Bioengineering Division, Mechanical Engineering Department, National University of Singapore, Singapore 119260
| | | | | | | |
Collapse
|
40
|
Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng 2004; 1:151-7. [PMID: 15876634 DOI: 10.1088/1741-2560/1/3/004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.
Collapse
Affiliation(s)
- Gregory E Rutkowski
- Chemical Engineering Department, University of Minnesota, 215 Engineering Building, Duluth, MN 55812-3025, USA
| | | | | | | |
Collapse
|
41
|
Bini TB, Gao S, Xu X, Wang S, Ramakrishna S, Leong KW. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J Biomed Mater Res A 2004; 68:286-95. [PMID: 14704970 DOI: 10.1002/jbm.a.20050] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tiny tubes with fiber architecture were developed by a novel method of fabrication upon introducing some modification to the microbraiding technique, to function as nerve guide conduit and the feasibility of in vivo nerve regeneration was investigated through several of these conduits. Poly(L-lactide-co-glycolide) (10:90) polymer fibers being biocompatible and biodegradable were used for the fabrication of the conduits. The microbraided nerve guide conduits (MNGCs) were characterized using scanning electron microscopy to study the surface morphology and fiber arrangement. Degradation tests were performed and the micrographs of the conduit showed that the degradation of the conduit is by fiber breakage indicating bulk hydrolysis of the polymer. Biological performances of the conduits were examined in the rat sciatic nerve model with a 12-mm gap. After implantation of the MNGC to the right sciatic nerve of the rat, there was no inflammatory response. One week after implantation, a thin tissue capsule was formed on the outer surface of the conduit, indicating good biological response of the conduit. Fibrin matrix cable formation was seen inside the MNGC after 1 week implantation. One month after implantation, 9 of 10 rats showed successful nerve regeneration. None of the implanted tubes showed tube breakage. The MNGCs were flexible, permeable, and showed no swelling apart from its other advantages. Thus, these new poly(L-lactide-co-glycolide) microbraided conduits can be effective aids for nerve regeneration and repair and may lead to clinical applications.
Collapse
Affiliation(s)
- T B Bini
- Bioengineering Division, Mechanical Engineering Department, National University of Singapore, Singapore 119260.
| | | | | | | | | | | |
Collapse
|
42
|
IJkema-Paassen J, Jansen K, Gramsbergen A, Meek MF. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 2004; 25:1583-92. [PMID: 14697860 DOI: 10.1016/s0142-9612(03)00504-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Disruption of peripheral nerves due to trauma is a frequently occurring clinical problem. Gaps in the nerve are bridged by guiding the regenerating nerves along autologous grafts or artificial guides. This review gives an overview on the different methods of nerve repair techniques. Conventional suturing techniques are discussed as well as the use of e.g. biological, synthetic, non-degradable or degradable nerve guides. Functional assessment showed that repair of a gap with a bio-degradable guide is superior to that with autologous grafts. But still, long lasting changes were observed in the Sciatic Function Index (SFI), abnormal walking patterns, disturbed Electro Myo Graphic (EMG) patterns, next to shifts in the histochemical properties of the muscles and longlasting abnormalities in neuromuscular contacts. These phenomena are explained by an at-random reinnervation. When transecting the nerve at young ages, this did not lead to enhanced recovery. Rearing rats operated at adult age in an enriched environment, also had no beneficial effect. Future research should aim at developing longer guides, possibly lined with Schwann cells, or additives, improving specific reinnervation of the former target areas.
Collapse
Affiliation(s)
- J IJkema-Paassen
- Department of Medical Physiology, University of Groningen, Ant. Deusinglaan 1, bldg 3215, Groningen 9713 AV, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Meek MF, Varejão ASP, Geuna S. Use of Skeletal Muscle Tissue in Peripheral Nerve Repair: Review of the Literature. ACTA ACUST UNITED AC 2004; 10:1027-36. [PMID: 15363160 DOI: 10.1089/ten.2004.10.1027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, necessitates a donor nerve and corresponding deficit. Many alternative techniques have thus been developed. The use of skeletal muscle tissue as graft material for nerve repair is one example. The rationale regarding the use of the skeletal muscle tissue technique is the availability of a longitudinally oriented basal lamina and extracellular matrix components that direct and enhance regenerating nerve fibers. These factors provide superiority over other bridging methods as vein grafts or (non)degradable nerve conduits. The main disadvantages of this technique are the risk that nerve fibers can grow out of the muscle tissue during nerve regeneration, and that a donor site is necessary to harvest the muscle tissue. Despite publications on nerve conduits as an alternative for peripheral nerve repair, autologous nerve grafting is still the standard care for treatment of a nerve gap in the clinical situation; however, the use of the skeletal muscle tissue technique can be added to the surgeon's arsenal of peripheral nerve repair tools, especially for bridging short nerve defects or when traditional nerve autografts cannot be employed. This technique has been investigated both experimentally and clinically and, in this article, an overview of the literature on skeletal muscle grafts for bridging peripheral nerve defects is presented.
Collapse
Affiliation(s)
- Marcel F Meek
- Department of Plastic Surgery, University Hospital Groningen, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
44
|
Varejão ASP, Cabrita AM, Meek MF, Fornaro M, Geuna S, Giacobini-Robecchi MG. Morphology of nerve fiber regeneration along a biodegradable poly (DLLA-epsilon-CL) nerve guide filled with fresh skeletal muscle. Microsurgery 2004; 23:338-45. [PMID: 12942524 DOI: 10.1002/micr.10147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Previous morphological and morphometrical studies showed that fresh-skeletal-muscle-enriched vein segments are good conduits for leading peripheral nerve regeneration. In the present study, we investigated the morphological features of peripheral nerve fibers regenerated along a 10-mm-long biodegradable poly (DLLA-epsilon-CL) nerve guide enriched with fresh skeletal muscle, comparing them to nerve fiber regeneration along 10-mm-long phosphate-buffered saline (PBS)-enriched poly (DLLA-epsilon-CL) tubes. Repaired nerves were analyzed at weeks 6 and 24 postoperatively. Structural and ultrastructural observation showed that good nerve fiber regeneration occurred in both PBS-enriched and fresh-skeletal-muscle-enriched nerve guides, and histomorphometrical analysis of regenerated myelinated fibers revealed no statistically significant differences between the two experimental groups at week 24 after surgery. The employment of fresh-muscle-enriched conduits for the repair of nerve defects is critically discussed in the light of these results.
Collapse
Affiliation(s)
- Artur S P Varejão
- Department of Pathology and Veterinary Clinics, CETAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
45
|
Zhao J, Yuan X, Cui Y, Ge Q, Yao K. Preparation and characterization of poly(L-lactide)/ poly(?-caprolactone) fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 2003. [DOI: 10.1002/app.13323] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Meek MF, Robinson PH, Coert JH. Bridging a peripheral nerve defect using collagen filaments. J Hand Surg Am 2002; 27:361; author reply 361-2. [PMID: 11901403 DOI: 10.1053/jhsu.2002.32085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|