1
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
2
|
Roseti L, Grigolo B. Current concepts and perspectives for articular cartilage regeneration. J Exp Orthop 2022; 9:61. [PMID: 35776217 PMCID: PMC9249961 DOI: 10.1186/s40634-022-00498-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Articular cartilage injuries are common in the population. The increment in the elderly people and active life results in an increasing demand for new technologies and good outcomes to satisfy longer and healthier life expectancies. However, because of cartilage's low regenerative capacity, finding an efficacious treatment is still challenging for orthopedics. Since the pioneering studies based on autologous cell transplantation, regenerative medicine has opened new approaches for cartilage lesion treatment. Tissue engineering combines cells, biomaterials, and biological factors to regenerate damaged tissues, overcoming conventional therapeutic strategies. Cells synthesize matrix structural components, maintain tissue homeostasis by modulating metabolic, inflammatory, and immunologic pathways. Scaffolds are well acknowledged by clinicians in regenerative applications since they provide the appropriate environment for cells, can be easily implanted, reduce surgical morbidity, allow enhanced cell proliferation, maturation, and an efficient and complete integration with surrounding articular cartilage. Growth factors are molecules that facilitate tissue healing and regeneration by stimulating cell signal pathways. To date, different cell sources and a wide range of natural and synthetic scaffolds have been used both in pre-clinical and clinical studies with the aim to find the suitable solution for recapitulating cartilage microenvironment and inducing the formation of a new tissue with the biochemical and mechanical properties of the native one. Here, we describe the current concepts for articular cartilage regeneration, highlighting the key actors of this process trying to identify the best perspectives.
Collapse
Affiliation(s)
- Livia Roseti
- IRCCS Istituto Ortopedico Rizzoli Bologna, Bologna, Italy
| | | |
Collapse
|
3
|
Wan S, Bao D, Li J, Lin K, Huang Q, Li Q, Li L. Extracellular Vesicles from Hypoxic Pretreated Urine-Derived Stem Cells Enhance the Proliferation and Migration of Chondrocytes by Delivering miR-26a-5p. Cartilage 2022; 13:19476035221077401. [PMID: 35548888 PMCID: PMC9137301 DOI: 10.1177/19476035221077401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Stem-cell therapy is a promising treatment for cartilage defects. The newly identified urine-derived stem cells (USCs), which have multipotency and sufficient proliferative ability, are promising candidates for several tissue engineering therapies. In this study, we investigated the role of USC extracellular vehicles (EVs) in promoting the proliferation and migration of chondrocytes. DESIGN USCs were characterized by measuring induced multipotent differentiation and flow cytometry analysis of surface marker expression. The EVs were isolated from USCs under normoxic conditions (nor-EVs) and hypoxic conditions (hypo-EVs). Transmission electron microscopy and western blot analysis characterized the EVs. The chondrocytes were cultured in the USC-EVs. CCK-8 assay and EdU staining detected the proliferation of chondrocytes, and transwell assay detected their migration. miR-26a-5p expression in EVs was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The target relationship of miR-26a-5p and phosphatase and tensin homolog (PTEN) was predicted and confirmed. The roles of EVs-miR-26a-5p and PTEN on the proliferation and migration of chondrocytes were also investigated. RESULTS Hypo-EVs showed a superior effect in promoting the proliferation and migration of chondrocytes than nor-EVs. Mechanistically, USC-EVs delivered miR-26a-5p into chondrocytes to overexpress miR-26a-5p. PTEN was identified as an miR-26a-5p target in chondrocytes. The effects of EVs-miR-26a-5p on promoting the proliferation and migration of chondrocytes were mediated by its regulation of PTEN. CONCLUSION Our study suggested that hypoxic USC-EVs may represent a promising strategy for osteoarthritis by promoting the proliferation and migration of chondrocytes via miR-26a-5p transfer.
Collapse
Affiliation(s)
- Sha Wan
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jia Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Kefu Lin
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Qi Huang
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Qiang Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
| | - Lang Li
- Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, China
- Lang Li, Department of Orthopedics, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, No. 20 Ximianqiao Cross Street, Wuhou District, Chengdu 610041, China.
| |
Collapse
|
4
|
Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:604-626. [PMID: 33267648 DOI: 10.1089/ten.teb.2020.0208] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to proteins and nucleic acids, polysaccharides are an important type of biomacromolecule widely distributed in plants, animals, and microorganisms. Polysaccharides are considered as promising biomaterials due to their significant bioactivities, natural abundance, immunoactivity, and chemical modifiability for tissue engineering (TE) applications. Due to the similarities of the biochemical properties of polysaccharides and the extracellular matrix of human bodies, polysaccharides are increasingly recognized and accepted. Furthermore, the degradation behavior of these macromolecules is generally nontoxic. Certain delicate properties, such as remarkable mechanical properties and tunable tissue response, can be obtained by modifying the functional groups on the surface of polysaccharide molecules. The applications of polysaccharide-based biomaterials in the TE field have been growing intensively in recent decades, for example, bone/cartilage regeneration, cardiac regeneration, neural regeneration, and skin regeneration. This review summarizes the main essential properties of polysaccharides, including their chemical properties, crosslinking mechanisms, and biological properties, and focuses on the association between their structures and properties. The recent progress in polysaccharide-based biomaterials in various TE applications is reviewed, and the prospects for future studies are addressed as well. We intend this review to offer a comprehensive understanding of and inspiration for the research and development of polysaccharide-based materials in TE.
Collapse
Affiliation(s)
- Min Jin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China.,Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| |
Collapse
|
5
|
Guo JL, Kim YS, Orchard EA, van den Beucken JJ, Jansen JA, Wong ME, Mikos AG. A Rabbit Femoral Condyle Defect Model for Assessment of Osteochondral Tissue Regeneration. Tissue Eng Part C Methods 2020; 26:554-564. [PMID: 33050806 PMCID: PMC7698983 DOI: 10.1089/ten.tec.2020.0261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Osteochondral tissue repair represents a common clinical need, with multiple approaches in tissue engineering and regenerative medicine being investigated for the repair of defects of articular cartilage and subchondral bone. A full thickness rabbit femoral condyle defect is a clinically relevant model of an articulating and load bearing joint surface for the investigation of osteochondral tissue repair by various cell-, biomolecule-, and biomaterial-based implants. In this protocol, we describe the methodology and 1.5- to 2-h surgical procedure for the generation of a reproducible, full thickness defect for construct implantation in the rabbit medial femoral condyle. Furthermore, we describe a step-by-step procedure for osteochondral tissue collection and the assessment of tissue formation using standardized histological, radiological, mechanical, and biochemical analytical techniques. This protocol illustrates the critical steps for reproducibility and minimally invasive surgery as well as applications to evaluate the efficacy of cartilage and bone tissue engineering implants, with emphasis on the usage of histological and radiological measures of tissue growth. Impact statement Although multiple surgical techniques have been developed for the treatment of osteochondral defects, repairing the tissues to their original state remains an unmet need. Such limitations have thus prompted the development of various constructs for osteochondral tissue regeneration. An in vivo model that is both clinically relevant and economically practical is necessary to evaluate the efficacy of different tissue engineered constructs. In this article, we present a full thickness rabbit femoral condyle defect model and describe the analytical techniques to assess the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jason L. Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Mark E. Wong
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
6
|
Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ. Tissue Engineering: An Alternative to Repair Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:357-373. [PMID: 30913997 DOI: 10.1089/ten.teb.2018.0330] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype. Next, we discuss the diverse compounds and designs used for these scaffolds, including natural and synthetic biomaterials and porous, fibrous, and multilayer architectures. We then report on the mechanical properties of different cell-loaded scaffolds, and the success of these scaffolds following in vivo implantation in small animals, in terms of generating tissue that structurally and functionally resembles native tissue. Last, we highlight future trends in this field. We conclude that despite major technical advances made over the past 15 years, and continually improving results in cartilage repair experiments in animals, the development of clinically useful implants for regeneration of articular cartilage remains a challenge
Collapse
Affiliation(s)
- Yaima Campos
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Gastón Fuentes
- 1Biomaterials Center, Havana University, LA Habana, Cuba.,2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L Bloem
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric L Kaijzel
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luis J Cruz
- 2Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Yazan M, Kocyigit ID, Atil F, Tekin U, Gonen ZB, Onder ME. Effect of hyaluronic acid on the osseointegration of dental implants. Br J Oral Maxillofac Surg 2018; 57:53-57. [PMID: 30558816 DOI: 10.1016/j.bjoms.2018.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 08/26/2018] [Indexed: 11/18/2022]
Abstract
The mechanism of osseointegration is related to many factors, including the quality of the bone, the biocompatibility and surface characteristics of the implant material, the surgical technique, and functional loading. The purpose of this study was to investigate the effects of hyaluronic acid gel on the osseointegration of implants placed in defined areas of the mandible in rabbits. Hyaluronic acid is known to have an osteoinductive effect during regeneration of bony defects, and we thought that it might also have a favourable effect on osseointegration, a specialised mechanism to heal bone. Ten New Zealand rabbits aged 10 weeks and weighing 2.5-3.0kg were used, and sites for implants that were far enough from the apices of the teeth in the mandibular molar area were chosen. Two cavities were prepared in each rabbit, one (anterior) for the control implant, and one (posterior) for the implant with hyaluronic acid gel (Medical Instinct GmbH, Bovenden). New bone and the osteoid matrix content around the dental implants were evaluated histologically and histomorphometrically two months after the operation, and no significant difference was found between the two groups.
Collapse
Affiliation(s)
- M Yazan
- Biruni University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery.
| | - I D Kocyigit
- Kirikkale University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery
| | - F Atil
- Kirikkale University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery
| | - U Tekin
- Kirikkale University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery
| | - Z B Gonen
- Erciyes University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery
| | - M E Onder
- Kirikkale University, Dentistry Faculty, Department of Oral and Maxillofacial Surgery
| |
Collapse
|
8
|
Chen P, Xia C, Mo J, Mei S, Lin X, Fan S. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:190-200. [DOI: 10.1016/j.msec.2018.05.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 02/13/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
|
9
|
Koo Y, Choi EJ, Lee J, Kim HJ, Kim G, Do SH. 3D printed cell-laden collagen and hybrid scaffolds for in vivo articular cartilage tissue regeneration. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.049] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly. Int J Mol Sci 2018; 19:E2700. [PMID: 30208585 PMCID: PMC6164936 DOI: 10.3390/ijms19092700] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
A correct articular cartilage ultrastructure regarding its structural components and cellularity is important for appropriate performance of tissue-engineered articular cartilage. Various scaffold-based, as well as scaffold-free, culture models have been under development to manufacture functional cartilage tissue. Even decellularized tissues have been considered as a potential choice for cellular seeding and tissue fabrication. Pore size, interconnectivity, and functionalization of the scaffold architecture can be varied. Increased mechanical function requires a dense scaffold, which also easily restricts cellular access within the scaffold at seeding. High pore size enhances nutrient transport, while small pore size improves cellular interactions and scaffold resorption. In scaffold-free cultures, the cells assemble the tissue completely by themselves; in optimized cultures, they should be able to fabricate native-like tissue. Decellularized cartilage has a native ultrastructure, although it is a challenge to obtain proper cellular colonization during cell seeding. Bioprinting can, in principle, provide the tissue with correct cellularity and extracellular matrix content, although it is still an open question as to how the correct molecular interaction and structure of extracellular matrix could be achieved. These are challenges facing the ongoing efforts to manufacture optimal articular cartilage.
Collapse
Affiliation(s)
- Mikko J Lammi
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning, Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Juha Piltti
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
- Nordlab Kokkola, Keski-Pohjanmaa Central Hospital Soite, 40620 Kokkola, Finland.
| | - Juha Prittinen
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| | - Chengjuan Qu
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden.
| |
Collapse
|
11
|
Evaluation of the Effectiveness of Esterified Hyaluronic Acid Fibers on Bone Regeneration in Rat Calvarial Defects. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3874131. [PMID: 30050929 PMCID: PMC6046155 DOI: 10.1155/2018/3874131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/03/2018] [Indexed: 01/26/2023]
Abstract
Hyaluronic acid (HA) constitutes one of the major components of the extracellular matrix domain in almost all mammals. The aim of this study was to evaluate the regenerative capacity of HA matrix in rat calvarial bone defects and compare with those of different combinations of resorbable collagen membrane (M) and bovine-derived xenograft (G). Twenty-four 3-month-old male Sprague-Dawley rats weighing 200-250 g were included. Control group was created by leaving one defect empty from 2 critical size defects with 5 mm diameter formed in the calvarial bones of 8 rats. In the same rats, the other defect was treated with HA matrix alone. One of the 2 defects formed in other 8 rats was treated with HA+G and the other with HA+M. One of the 2 defects formed in the remaining 8 rats was treated with G+M and the other with HA+G+M. The animals were sacrificed at 4 weeks. Histologic, histomorphometric, and immunohistochemical analyses were performed. Both HA matrix alone and its combinations with G and M supported new bone formation (NBF). However, NBF was significantly greater in G+M and HA+G+M groups compared to control and HA alone (P<0.001). Bone morphogenetic protein-2 was expressed with varying degrees in all groups, without any difference among them. Within the limitations of the present study, HA matrix, used alone or in combination with G and M, did not contribute significantly to bone regeneration in rat calvarial bone defects.
Collapse
|
12
|
Li J, Li X, Luo T, Wang R, Liu C, Chen S, Li D, Yue J, Cheng SH, Sun D. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot 2018; 3:3/19/eaat8829. [DOI: 10.1126/scirobotics.aat8829] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
|
13
|
De Moor L, Merovci I, Baetens S, Verstraeten J, Kowalska P, Krysko DV, De Vos WH, Declercq H. High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication 2018; 10:035009. [PMID: 29798932 DOI: 10.1088/1758-5090/aac7e6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Overcoming the problem of vascularization remains the main challenge in the field of tissue engineering. As three-dimensional (3D) bioprinting is the rising technique for the fabrication of large tissue constructs, small prevascularized building blocks were generated that can be incorporated throughout a printed construct, answering the need for a microvasculature within the small micron range (<10 μm). Uniform spheroids with an ideal geometry and diameter for bioprinting were formed, using a high-throughput non-adhesive agarose microwell system. Since monoculture spheroids of endothelial cells were unable to remain stable, coculture spheroids combining endothelial cells with fibroblasts and/or adipose tissue derived mesenchymal stem cells (ADSC) as supporting cells, were created. When applying the favorable coculture ratio, viable spheroids were obtained and endothelial cells spontaneously formed a capillary-like network and lumina, as shown by immunohistochemistry and transmission electron microscopy. Especially the presence of ADSC led to a higher vascularization and extracellular matrix production of the microtissue. Moreover, spheroids were able to assemble at random in suspension and in a hydrogel, creating a macrotissue. During at random assembly, cells reorganized, creating a branched capillary-network throughout the entire fused construct by inoculating with capillaries of adjacent spheroids. Combining the advantage of this natural capacity of microtissues to self-assemble and the controlled organization by bioprinting technologies, these prevascularized spheroids can be useful as building blocks for the engineering of large vascularized 3D tissues.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Human Urine-Derived Stem Cells: Potential for Cell-Based Therapy of Cartilage Defects. Stem Cells Int 2018; 2018:4686259. [PMID: 29765413 PMCID: PMC5932456 DOI: 10.1155/2018/4686259] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/25/2018] [Accepted: 03/19/2018] [Indexed: 02/05/2023] Open
Abstract
Stem cell therapy is considered an optimistic approach to replace current treatments for cartilage defects. Recently, human urine-derived stem cells (hUSCs), which are isolated from the urine, are studied as a promising candidate for many tissue engineering therapies due to their multipotency and sufficient proliferation activities. However, it has not yet been reported whether hUSCs can be employed in cartilage defects. In this study, we revealed that induced hUSCs expressed chondrogenic-related proteins, including aggrecan and collagen II, and their gene expression levels were upregulated in vitro. Moreover, we combined hUSCs with hyaluronic acid (HA) and injected hUSCs-HA into a rabbit knee joint with cartilage defect. Twelve weeks after the injection, the histologic analyses (HE, toluidine blue, and Masson trichrome staining), immunohistochemistry (aggrecan and collagen II), and histologic grade of the sample indicated that hUSCs-HA could stimulate much more neocartilage formation compared with hUSCs alone, pure HA, and saline, which only induced the modest cartilage regeneration. In this study, we demonstrated that hUSCs could be a potential cell source for stem cell therapies to treat cartilage-related defects in the future.
Collapse
|
15
|
Xia C, Chen P, Mei S, Ning L, Lei C, Wang J, Zhang J, Ma J, Fan S. Photo-crosslinked HAMA hydrogel with cordycepin encapsulated chitosan microspheres for osteoarthritis treatment. Oncotarget 2018; 8:2835-2849. [PMID: 27926509 PMCID: PMC5356846 DOI: 10.18632/oncotarget.13748] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a protective mechanism in normal cartilage. The present study aimed to investigate the synergistic therapeutic effect of promotion of chondrocyte autophagy via exposure to cordycepin encapsulated by chitosan microspheres (CM-cordycepin) and photo-crosslinked hyaluronic acid methacrylate (HAMA) hydrogel, with the goal of evaluating CM-cordycepin as a treatment for patients with osteoarthritis. First, we developed and evaluated the characteristics of HAMA hydrogels and chitosan microspheres. Next, we measured the effect of cordycepin on cartilage matrix degradation induced by IL1-β in chondrocytes and an ex vivo model. Cordycepin protects cartilage from degradation partly by activation of autophagy. Moreover, we surgically induced osteoarthritis in mice, which were injected intra-articularly with CM-cordycepin and HAMA. The combination of CM-cordycepin and HAMA hydrogel retarded the progression of surgically induced OA. Cordycepin ameliorated cartilage matrix degradation at least partially by inducing autophagy in vivo. Our results demonstrate that the combination of cordycepin encapsulated by CMs and photo-crosslinked HAMA hydrogel could be a promising strategy for treating patients with osteoarthritis.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Pengfei Chen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Lei Ning
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Chenyang Lei
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jianfeng Zhang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jianjun Ma
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Pulkkinen H, Tiitu V, Valonen P, Hämäläinen ER, Lammi M, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2018; 31:960-9. [DOI: 10.1177/039139880803101106] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
Collapse
Affiliation(s)
- H.J. Pulkkinen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - V. Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - P. Valonen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - E.-R. Hämäläinen
- Bioprocess Engineering Laboratory, University of Oulu, Oulu - Finland
| | - M.J. Lammi
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio - Finland
| | - I. Kiviranta
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki - Finland
| |
Collapse
|
17
|
Casentini G, Di Paola L, Marrelli L, Palma F. Rheological Characterization of an Artificial Synovial Fluid. Int J Artif Organs 2018; 28:711-7. [PMID: 16049905 DOI: 10.1177/039139880502800710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rheological measurements on two classes of artificial synovial fluids have been carried out in the attempt to get a suitable but cheap lubricant for wear tests of prosthetic materials. Fluids of both classes are solutions of hyaluronic acid (HA) that, for one class, is dissolved into a simple Ringer solution whereas, for the other class, into a mixture of human serum and Ringer solution. Similar rheological properties have been observed for both classes of fluids. Experimental results have been interpreted by two classical models that are commonly used in the literature to describe the rheological behavior of colloidal systems and of polymer solutions with high entanglement density, respectively. The quality of correlations shows that, at high HA concentrations, entagled structures are largely present and cannot be neglected.
Collapse
Affiliation(s)
- G Casentini
- Department of Chemical Engineering, University of Rome La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
18
|
Li L, Yu F, Shi J, Shen S, Teng H, Yang J, Wang X, Jiang Q. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep 2017; 7:9416. [PMID: 28842703 PMCID: PMC5572706 DOI: 10.1038/s41598-017-10060-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional (3D) printing is a rapidly emerging technology that promises to transform tissue engineering into a commercially successful biomedical industry. However, the use of robotic bioprinters alone is not sufficient for disease treatment. This study aimed to report the combined application of 3D scanning and 3D printing for treating bone and cartilage defects. Three different kinds of defect models were created to mimic three orthopedic diseases: large segmental defects of long bones, free-form fracture of femoral condyle, and International Cartilage Repair Society grade IV chondral lesion. Feasibility of in situ 3D bioprinting for these diseases was explored. The 3D digital models of samples with defects and corresponding healthy parts were obtained using high-resolution 3D scanning. The Boolean operation was used to achieve the shape of the defects, and then the target geometries were imported in a 3D bioprinter. Two kinds of photopolymerized hydrogels were synthesized as bioinks. Finally, the defects of bone and cartilage were restored perfectly in situ using 3D bioprinting. The results of this study suggested that 3D scanning and 3D bioprinting could provide another strategy for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing City, Jiangsu Sheng, China.,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu Sheng, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Jiangsu Sheng, China
| | - Jianping Shi
- School of Mechanical Engineering, Southeast University, Nanjing City, Jiangsu Sheng, China
| | - Sheng Shen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu Sheng, China
| | - Huajian Teng
- Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Jiangsu Sheng, China
| | - Jiquan Yang
- School of Electrical and Automation Engineering, Nanjing Normal University, Jiangsu Sheng, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing City, Jiangsu Sheng, China.
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital affiliated to Medical School of Nanjing University, Jiangsu Sheng, China. .,Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Jiangsu Sheng, China.
| |
Collapse
|
19
|
Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A 2017; 105:2343-2354. [PMID: 28387995 DOI: 10.1002/jbm.a.36087] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022]
Abstract
Osteoarthritis results in irreparable loss of articular cartilage. Due to its avascular nature and low mitotic activity, cartilage has little intrinsic capacity for repair. Cartilage loss leads to pain, physical disability, movement restriction, and morbidity. Various treatment strategies have been proposed for cartilage regeneration, but the optimum treatment is yet to be defined. Tissue engineering with engineered constructs aimed towards developing a suitable substrate may help in cartilage regeneration by providing the mechanical, biological and chemical support to the cells. The use of scaffold as a substrate to support the progenitor cells or autologous chondrocytes has given promising results. Leakage of cells, poor cell survival, poor cell differentiation, inadequate integration into the host tissue, incorrect distribution of cells, and dedifferentiation of the normal cartilage are the common problems in tissue engineering. Current research is focused on improving mechanical and biochemical properties of scaffold to make it more efficient. The aim of this review is to provide a critical discussion on existing challenges, scaffold type and properties, and an update on ongoing recent developments in the architecture and composition of scaffold to enhance the proliferation and viability of mesenchymal stem cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2343-2354, 2017.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Matthew F Dilisio
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
- Department of Orthopedics, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Nicholas E Dietz
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska, 68178
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska, 68178
| |
Collapse
|
20
|
Flórez Cabrera A, González Duque MI, Fontanlla MR. Terapias Celulares y Productos de Ingeniería de Tejidos para el Tratamiento de Lesiones Condrales de Rodilla. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n2.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El cartílago articular es un tejido vulnerable a las lesiones de diferente etiología; siendo uno de los más afectados, el cartílago de la rodilla. Aunque la mayoría de los tratamientos convencionales reducen los síntomas, generalmente conducen a la formación de fibrocartílago; el cual, posee características diferentes a las del cartílago hialino de las articulaciones. Son pocas las aproximaciones terapéuticas que promueven el reemplazo del tejido dañado por cartílago hialino funcional; las más exitosas son las denominadas terapias avanzadas, que aplican células y productos de ingeniería de tejidos con el fin de estimular la regeneración del cartílago. La mayoría de ellas se basan en colocar soportes hechos con biomateriales de diferente origen, que sembrados o no con células exógenas o endógenas, reemplazan al cartílago dañado y promueven su regeneración. Este trabajo revisa algunas de las aproximaciones terapéuticas enfocadas en la regeneración del cartílago articular de rodilla; así como, los biomateriales más empleados en la elaboración de soportes para terapia celular e ingeniería de tejido cartilaginoso.
Collapse
|
21
|
|
22
|
Looze CA, Capo J, Ryan MK, Begly JP, Chapman C, Swanson D, Singh BC, Strauss EJ. Evaluation and Management of Osteochondral Lesions of the Talus. Cartilage 2017; 8:19-30. [PMID: 27994717 PMCID: PMC5154424 DOI: 10.1177/1947603516670708] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Osteochondral lesions of the talus are common injuries that affect a wide variety of active patients. The majority of these lesions are associated with ankle sprains and fractures though several nontraumatic etiologies have also been recognized. Patients normally present with a history of prior ankle injury and/or instability. In addition to standard ankle radiographs, magnetic resonance imaging and computed tomography are used to characterize the extent of the lesion and involvement of the subchondral bone. Symptomatic nondisplaced lesions can often be treated conservatively within the pediatric population though this treatment is less successful in adults. Bone marrow stimulation techniques such as microfracture have yielded favorable results for the treatment of small (<15 mm) lesions. Osteochondral autograft can be harvested most commonly from the ipsilateral knee and carries the benefit of repairing defects with native hyaline cartilage. Osteochondral allograft transplant is reserved for large cystic lesions that lack subchondral bone integrity. Cell-based repair techniques such as autologous chondrocyte implantation and matrix-associated chondrocyte implantation have been increasingly used in an attempt to repair the lesion with hyaline cartilage though these techniques require adequate subchondral bone. Biological agents such as platelet-rich plasma and bone marrow aspirate have been more recently studied as an adjunct to operative treatment but their use remains theoretical. The present article reviews the current concepts in the evaluation and management of osteochondral lesions of the talus, with a focus on the available surgical treatment options.
Collapse
Affiliation(s)
- Christopher A. Looze
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Jason Capo
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Michael K. Ryan
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - John P. Begly
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Cary Chapman
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - David Swanson
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Brian C. Singh
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| | - Eric J. Strauss
- Division of Sports Medicine, Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, NY, USA
| |
Collapse
|
23
|
Hastar N, Arslan E, Guler MO, Tekinay AB. Peptide-Based Materials for Cartilage Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1030:155-166. [PMID: 29081053 DOI: 10.1007/978-3-319-66095-0_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cartilaginous tissue requires structural and metabolic support after traumatic or chronic injuries because of its limited capacity for regeneration. However, current techniques for cartilage regeneration are either invasive or ineffective for long-term repair. Developing alternative approaches to regenerate cartilage tissue is needed. Therefore, versatile scaffolds formed by biomaterials are promising tools for cartilage regeneration. Bioactive scaffolds further enhance the utility in a broad range of applications including the treatment of major cartilage defects. This chapter provides an overview of cartilage tissue, tissue defects, and the methods used for regeneration, with emphasis on peptide scaffold materials that can be used to supplement or replace current medical treatment options.
Collapse
Affiliation(s)
- Nurcan Hastar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Elif Arslan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
- Neuroscience Graduate Program, Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
24
|
Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int 2016; 2016:3187491. [PMID: 27725838 PMCID: PMC5048051 DOI: 10.1155/2016/3187491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.
Collapse
|
25
|
Bauer C, Berger M, Baumgartner RR, Höller S, Zwickl H, Niculescu-Morzsa E, Halbwirth F, Nehrer S. A Novel Cross-Linked Hyaluronic Acid Porous Scaffold for Cartilage Repair: An In Vitro Study With Osteoarthritic Chondrocytes. Cartilage 2016; 7:265-73. [PMID: 27375842 PMCID: PMC4918062 DOI: 10.1177/1947603515611949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE An important feature of biomaterials used in cartilage regeneration is their influence on the establishment and stabilization of a chondrocytic phenotype of embedded cells. The purpose of this study was to examine the effects of a porous 3-dimensional scaffold made of cross-linked hyaluronic acid on the expression and synthesis performance of human articular chondrocytes. MATERIALS AND METHODS Osteoarthritic chondrocytes from 5 patients with a mean age of 74 years were passaged twice and cultured within the cross-linked hyaluronic acid scaffolds for 2 weeks. Analyses were performed at 3 different time points. For estimation of cell content within the scaffold, DNA-content (CyQuant cell proliferation assay) was determined. The expression of chondrocyte-specific genes by embedded cells as well as the total amount of sulfated glycosaminoglycans produced during the culture period was analyzed in order to characterize the synthesis performance and differentiation status of the cells. RESULTS Cells showed a homogenous distribution within the scaffold. DNA quantification revealed a reduction of the cell number. This might be attributed to loss of cells from the scaffold during media exchange connected with a stop in cell proliferation. Indeed, the expression of cartilage-specific genes and the production of sulfated glycosaminoglycans were increased and the differentiation index was clearly improved. CONCLUSIONS These results suggest that the attachment of osteoarthritic P2 chondrocytes to the investigated material enhanced the chondrogenic phenotype as well as promoted the retention.
Collapse
Affiliation(s)
- Christoph Bauer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria,Christoph Bauer, Center for Regenerative Medicine and Orthopedics, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, Krems, 3500, Austria.
| | - Manuela Berger
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria
| | | | | | - Hannes Zwickl
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria
| | - Eugenia Niculescu-Morzsa
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria
| | - Florian Halbwirth
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria
| | - Stefan Nehrer
- Center for Regenerative Medicine and Orthopedics, Department for Health Sciences and Biomedicine, Danube University, Krems, Austria
| |
Collapse
|
26
|
Pfeifer CG, Berner A, Koch M, Krutsch W, Kujat R, Angele P, Nerlich M, Zellner J. Higher Ratios of Hyaluronic Acid Enhance Chondrogenic Differentiation of Human MSCs in a Hyaluronic Acid-Gelatin Composite Scaffold. MATERIALS 2016; 9:ma9050381. [PMID: 28773501 PMCID: PMC5503045 DOI: 10.3390/ma9050381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/26/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) seeded on specific carrier materials are a promising source for the repair of traumatic cartilage injuries. The best supportive carrier material has not yet been determined. As natural components of cartilage’s extracellular matrix, hyaluronic acid and collagen are the focus of biomaterial research. In order to optimize chondrogenic support, we investigated three different scaffold compositions of a hyaluronic acid (HA)-gelatin based biomaterial. Methods: Human MSCs (hMSCs) were seeded under vacuum on composite scaffolds of three different HA-gelatin ratios and cultured in chondrogenic medium for 21 days. Cell-scaffold constructs were assessed at different time points for cell viability, gene expression patterns, production of cartilage-specific extracellular matrix (ECM) and for (immuno-)histological appearance. The intrinsic transforming growth factor beta (TGF-beta) uptake of empty scaffolds was evaluated by determination of the TGF-beta concentrations in the medium over time. Results: No significant differences were found for cell seeding densities and cell viability. hMSCs seeded on scaffolds with higher ratios of HA showed better cartilage-like differentiation in all evaluated parameters. TGF-beta uptake did not differ between empty scaffolds. Conclusion: Higher ratios of HA support the chondrogenic differentiation of hMSCs seeded on a HA-gelatin composite scaffold.
Collapse
Affiliation(s)
- Christian G Pfeifer
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Arne Berner
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Matthias Koch
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Werner Krutsch
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Richard Kujat
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Peter Angele
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
- Sporthopaedicum, Straubing/Regensburg, Hildegard-von-Bingen-Str. 1, Regensburg 93053, Germany.
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical CentreRegensburg, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| |
Collapse
|
27
|
Im GI. Endogenous Cartilage Repair by Recruitment of Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:160-71. [DOI: 10.1089/ten.teb.2015.0438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gun-Il Im
- Department of Orthopedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
28
|
Stoddart MJ, Bara J, Alini M. Cells and secretome--towards endogenous cell re-activation for cartilage repair. Adv Drug Deliv Rev 2015; 84:135-45. [PMID: 25174306 DOI: 10.1016/j.addr.2014.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/26/2014] [Accepted: 08/20/2014] [Indexed: 01/01/2023]
Abstract
Regenerative medicine approaches to cartilage tissue repair have mainly been concerned with the implantation of a scaffold material containing monolayer expanded cells into the defect, with the aim to differentiate the cells into chondrocytes. While this may be a valid approach, the secretome of the implanted cells and its effects on the endogenous resident cells, is gaining in interest. This review aims to summarize the knowledge on the secretome of mesenchymal stem cells, including knowledge from other tissues, in order to indicate how these mechanisms may be of value in repairing articular cartilage defects. Potential therapies and their effects on the repair of articular cartilage defects will be discussed, with a focus on the transition from classical cell therapy to the implantation of cell free matrices releasing specific cytokines.
Collapse
|
29
|
Mačiulaitis J, Deveikytė M, Rekštytė S, Bratchikov M, Darinskas A, Šimbelytė A, Daunoras G, Laurinavičienė A, Laurinavičius A, Gudas R, Malinauskas M, Mačiulaitis R. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 2015; 7:015015. [PMID: 25797444 DOI: 10.1088/1758-5090/7/1/015015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.
Collapse
Affiliation(s)
- Justinas Mačiulaitis
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania. Institute of Sports, Medical Academy, Lithuanian University of Health Science, Kalniečių 231, LT 44307 Kaunas, Lithuania. Orthopaedic and Trauma Department, Lithuanian Health Science University, Mickevičiaus 9, LT 44307 Kaunas, Lithuania
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang ZZ, Jiang D, Wang SJ, Qi YS, Ding JX, Yu JK, Chen XS. Scaffolds drive meniscus tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra13859k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The review focuses on the recent research trend on scaffold types and biomedical applications, and perspectives in meniscus tissue engineering.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Dong Jiang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Shao-Jie Wang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Yan-Song Qi
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Jian-Xun Ding
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jia-Kuo Yu
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
31
|
Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials 2014; 35:3527-40. [DOI: 10.1016/j.biomaterials.2014.01.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
|
32
|
Willers C, Partsalis T, Zheng MH. Articular cartilage repair: procedures versus products. Expert Rev Med Devices 2014; 4:373-92. [PMID: 17488231 DOI: 10.1586/17434440.4.3.373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review discusses the current perspectives and practices regarding the treatment of articular cartilage injury. Specifically, the authors have delineated and examined articular cartilage repair techniques as either surgical procedures or manufactured products. Although both methodologies are used to treat articular cartilage injury, there are obvious advantages and disadvantages to the application of both, with the literature providing few recommendations on the most suitable regimen for the patient and surgeon. In recent times, cell-based tissue engineering products, predominantly autologous chondrocyte implantation, have been the subject of much research and have become clinically popular. Herein, we review the most used procedures and products in cartilage repair, compare and contrast their outcomes, and evaluate the issues that must be overcome in order to improve patient efficacy in the future.
Collapse
Affiliation(s)
- Craig Willers
- Department of Orthopaedics, School of Pathology and Surgery, University of Western Australia, 2nd Floor, M-block, QEII Medical Centre, Nedlands, Perth, WA 6009, Australia.
| | | | | |
Collapse
|
33
|
Khan F, Ahmad SR. Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration. Biomimetics (Basel) 2013. [DOI: 10.1002/9781118810408.ch1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
34
|
Articular cartilage tissue regeneration—current research strategies and outlook for the future. Eur Surg 2013. [DOI: 10.1007/s10353-013-0217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
36
|
Chiang H, Liao CJ, Hsieh CH, Shen CY, Huang YY, Jiang CC. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation. Osteoarthritis Cartilage 2013; 21:589-98. [PMID: 23333470 DOI: 10.1016/j.joca.2013.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Matrix-associated autologous chondrocyte implantation has been used to treat cartilage defects. We developed a biphasic cylindrical osteochondral composite construct for such use, and conducted this study to determine its feasibility for treating osteochondral lesions in human knees. METHOD Ten patients with symptomatic osteochondral lesions at femoral condyles were treated by replacing pathological tissue with the construct of dl-poly-lactide-co-glycolide, whose lower body was impregnated with β-tricalcium phosphate and served as osseous phase. The construct had a chamber to load double-minced autologous cartilage, serving as source of chondrocytes. Osteochondral lesion was drill-fashioned a pit of identical dimension as the construct. Chondrocyte-laden construct was press-fit to fill the pit. Postoperative outcome was evaluated using Knee Injury and Osteoarthritis Outcome Score (KOOS) scale up to 24 months. Magnetic resonance image was taken, and sample tissue was collected with second-look arthroscopic needle biopsy at 12 months. Outcome parameters were primarily safety of surgery, and secondarily postoperative change in KOOS and regeneration of hyaline cartilage and cancellous bone. RESULTS No patient experienced serious adverse events. Postoperative mean KOOS in "symptoms" subscale had not changed significantly from pre-operation until 24 months; whereas those in the other four subscales were significantly higher than pre-operation at 12 and 24 months. Second-look arthroscopy showed completely filled grafted sites, with regenerate cartilaginous surfaces flushed with surrounding native joint surface. Microscopically, regenerated cartilage appeared hyaline. CONCLUSION This novel construct for chondrocyte implantation is safe for surgical application in knee. It repairs osteochondral lesions of femoral condyles by successful regeneration of hyaline cartilage.
Collapse
Affiliation(s)
- H Chiang
- National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Khan F, Ahmad SR. Polysaccharides and Their Derivatives for Versatile Tissue Engineering Application. Macromol Biosci 2013; 13:395-421. [DOI: 10.1002/mabi.201200409] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/06/2013] [Indexed: 12/13/2022]
|
38
|
Whu SW, Hung KC, Hsieh KH, Chen CH, Tsai CL, Hsu SH. In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:2855-63. [PMID: 23623106 DOI: 10.1016/j.msec.2013.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/21/2013] [Accepted: 03/01/2013] [Indexed: 11/28/2022]
Abstract
Chitosan-gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan-gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187±0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329±0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Shu Wen Whu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital at Keelung, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Duda GN, Eniwumide JO, Sittinger M. Constraints to Articular Cartilage Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Klangjorhor J, Nimkingratana P, Settakorn J, Pruksakorn D, Leerapun T, Arpornchayanon O, Rojanasthien S, Kongtawelert P, Pothacharoen P. Hyaluronan production and chondrogenic properties of primary human chondrocyte on gelatin based hematostatic spongostan scaffold. J Orthop Surg Res 2012; 7:40. [PMID: 23253362 PMCID: PMC3554561 DOI: 10.1186/1749-799x-7-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Autologous chondrocyte transplantation is a promising technique for treatment of cartilage defects. Three dimensional chondrocyte cultures on a scaffold are widely used to retain the chondrogenic phenotype. Using a biodegradable gelatin scaffold is one option for the cell delivery system, but molecular and histological studies of the method have not yet been done. METHODS We evaluated the chondrogenic property of the primary human chondrocyte on a gelatin scaffold as compared to a collagen scaffold over a period of 21 days. We examined the production of glycosaminoglycan by quantitative and histological analysis. Gene expression of cartilage-associated molecules was assessed by quantitative RT-PCR. RESULTS The gelatin scaffold showed the ability to promote chondrocyte expansion, chondrogenic phenotype retention at molecular and mRNA levels. CONCLUSIONS This scaffold is thus suitable for use as an in vitro model for chondrocyte 3D culture.
Collapse
Affiliation(s)
- Jeerawan Klangjorhor
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Puwapong Nimkingratana
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Taninnit Leerapun
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Olarn Arpornchayanon
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Sattaya Rojanasthien
- Musculoskeletal Research Laboratory, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Faculty of Medicine, Chiang Mai University, Intravarorot Road, Sripoom, Chiang Mai, 50200, Thailand
| |
Collapse
|
41
|
Cavallo C, Desando G, Columbaro M, Ferrari A, Zini N, Facchini A, Grigolo B. Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: Rationale for its use in the treatment of cartilage lesions. J Biomed Mater Res A 2012; 101:1559-70. [DOI: 10.1002/jbm.a.34460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/07/2012] [Accepted: 09/14/2012] [Indexed: 01/22/2023]
|
42
|
Fong EL, Watson BM, Kasper FK, Mikos AG. Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4995-5013. [PMID: 22821772 PMCID: PMC3706713 DOI: 10.1002/adma.201201762] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/28/2012] [Indexed: 05/22/2023]
Abstract
Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.
Collapse
Affiliation(s)
| | | | - F. Kurtis Kasper
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Lee JC, Lee SY, Min HJ, Han SA, Jang J, Lee S, Seong SC, Lee MC. Synovium-derived mesenchymal stem cells encapsulated in a novel injectable gel can repair osteochondral defects in a rabbit model. Tissue Eng Part A 2012; 18:2173-86. [PMID: 22765885 DOI: 10.1089/ten.tea.2011.0643] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We developed a novel injectable type I collagen/hyaluronic acid/fibrinogen (COL/HA/FG) composite gel that encapsulated synovium-derived mesenchymal stem cells (SDSCs) for the repair of damaged articular cartilage. We first analyzed the suitability of the composite gel as a three-dimensional injectable cell carrier in vitro. In an in vivo rabbit model, the COL/HA/FG composite gel displayed the potential to regenerate and repair osteochondral defects in the knee. Culture of the SDSCs encapsulated COL/HA/FG composite gel in a chondrogenic medium resulted in high viability of the SDSCs and high expressions of type II collagen, aggrecan, and sox 9 mRNA. Moreover, glycosaminoglycans and type II collagen were accumulated within the extracellular matrix. In the animal model, the SDSCs encapsulated COL/HA/FG composite gel produced a hyaline-like cartilage construct. Twenty-four weeks after transplantation, the defects had been repaired with hyaline cartilage-like tissue that was densely stained by safranin-O and immunostained by a type II collagen antibody. This data suggest that the SDSC-encapsulated COL/HA/FG composite gel can be a good therapeutic candidate/strategy for repairing of damaged articular cartilage.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hong HJ, Lee JS, Choi JW, Min BH, Lee HB, Kim CH. Transplantation of Autologous Chondrocytes Seeded on a Fibrin/Hyaluronan Composite Gel Into Tracheal Cartilage Defects in Rabbits: Preliminary Results. Artif Organs 2012; 36:998-1006. [DOI: 10.1111/j.1525-1594.2012.01486.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Lee GW, Son JH, Kim JD, Jung GH. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2012; 23:581-7. [PMID: 23412171 DOI: 10.1007/s00590-012-1038-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 11/24/2022]
|
46
|
CHIANG HONGSEN, HUANG YIYOU, JIANG CHINGCHUAN. REPAIR OF ARTICULAR CARTILAGE INJURY. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237205000366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Articular cartilage defects heal poorly and lead to consequences as osteoarthritis. Clinical experience has indicated that no existing medication would substantially promote the healing process, and the cartilage defect requires surgical replacement. Allograft decays quickly for multiple reasons including the preparation process and immune reaction, and the outcome is disappointing. The extreme shortage of sparing in articular cartilage has much discouraged the use of autograft, which requires modification. The concept that constructs a chondral or osteochondral construct for the replacement of injured native tissue introduces that of tissue engineering. Limited number of cells are expanded either in vitro or in vivo, and resided temporally on a scaffold of biomaterial, which also acts as a vehicle to transfer the cells to the recipient site. Three core elements constitute this technique: the cell, a biodegradable scaffold, and an environment suitable for cells to present their proposed activity. Modern researches have kept updating those elements for a better performance of such cultivation of living tissue.
Collapse
Affiliation(s)
- HONGSEN CHIANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - CHING-CHUAN JIANG
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Trimborn M, Endres M, Bommer C, Janke U, Krüger JP, Morawietz L, Kreuz PC, Kaps C. Karyotyping of human chondrocytes in scaffold-assisted cartilage tissue engineering. Acta Biomater 2012; 8:1519-29. [PMID: 22214539 DOI: 10.1016/j.actbio.2011.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/09/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022]
Abstract
Scaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors scheduled for ACI were expanded, cryopreserved and re-arranged in polyglycolic acid (PGA)-fibrin scaffolds for tissue culture. Chondrocyte redifferentiation was analyzed by electron microscopy, histology and gene expression analysis. Karyotyping was performed using GTG banding and fluorescence in situ hybridization on a single cell basis. Chondrocytes showed de- and redifferentiation accompanied by the formation of extracellular matrix and induction of typical chondrocyte marker genes like type II collagen in PGA-fibrin scaffolds. Post mortem chondrocytes showed up to 1.7% structural and high numbers of numerical (up to 26.7%) chromosomal aberrations, while chondrocytes from living donors scheduled for ACI showed up to 1.8% structural and up to 1.3% numerical alterations. Cytogenetically, cell culture procedures and PGA-fibrin scaffolds did not significantly alter chromosomal integrity of the chondrocyte genome. Human chondrocytes derived from living donors subjected to regenerative medicine cell culture procedures like cell expansion, cryopreservation and culture in resorbable polymer-based scaffolds show normal chromosomal integrity and normal karyotypes.
Collapse
Affiliation(s)
- Marc Trimborn
- Institut für Medizinische Genetik und Humangenetik, Charité Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Muramatsu K, Ide M, Miyawaki F. Biological Evaluation of Tissue-Engineered Cartilage Using Thermoresponsive Poly(<i>N</i>-isopropylacrylamide)-Grafted Hyaluronan. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.31001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 2011; 32:8927-37. [PMID: 21906805 DOI: 10.1016/j.biomaterials.2011.08.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/09/2011] [Indexed: 11/22/2022]
Abstract
The repair of articular cartilage defects poses a continuing challenge. Cartilage tissue engineering through the culture of chondrocytes seeded in 3D porous scaffolds has the potential for generating constructs that repair successfully. It also provides a platform to study scaffold-cell and cell-cell interactions. The scaffold affects the growth and morphology of cells growing on it, and concomitantly, cells affect the properties of the resultant tissue construct. Silk fibroin protein from Antheraea mylitta, a non-mulberry Indian tropical tasar silkworm, is a potential biomaterial for diverse applications due to its widespread versatility as a mechanically robust, biocompatible, tissue engineering material. Analysis of silk fibroin scaffolds seeded with varying initial densities (25, 50 and 100 million cells/ml) and cultured for 2 weeks showed that thickness and wet weight increased by 60-70% for the highest cell density, and DNA, GAG and collagen content of the cartilaginous constructs increased with increasing cell density. Mechanical characterization of the constructs elucidated that the highest density constructs had compressive stiffness and modulus 4-5 times that of cell-free scaffolds. The present results indicate the importance of cell seeding density in the rapid formation of a functional cartilaginous tissue.
Collapse
|
50
|
Magill P, Byrne DP, Baker JF, Mulhall KJ. Review article: Osteochondral reconstruction and grafting. J Orthop Surg (Hong Kong) 2011; 19:93-8. [PMID: 21519087 DOI: 10.1177/230949901101900122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteochondral defects are a challenging problem. Osteochondral reconstruction and grafting techniques potentially benefit both young athletes and elderly osteoarthritis patients. Research on the treatment of osteochondral defects has been carried out, particularly on surgical options, but none shows lasting benefit. More objective evaluation of cartilage injuries and outcomes is needed. We present a review of surgical and non-surgical treatments for osteochondral defects, and their outcomes and costs.
Collapse
Affiliation(s)
- Paul Magill
- Orthopaedic Research and Innovation Foundation, Sports Surgery Clinic, Santry, Dublin, Ireland
| | | | | | | |
Collapse
|