1
|
Zhou D, Petersen A, Adelöf J, Hernebring M, Zetterberg M. A Novel Primary Porcine Retinal Pigment Epithelium Cell Model with Preserved Properties. Curr Eye Res 2024; 49:97-107. [PMID: 37725007 DOI: 10.1080/02713683.2023.2259636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE To establish an ethical, reliable, and expandable retinal pigment epithelial (RPE) cell model with maintained RPE properties compatible with multifarious assays. METHODS RPE cells from abattoir-obtained porcine eyes were cultured under various conditions. Morphology, RPE cell-specific protein markers (RPE-65, CRALBP), and the tight junction marker ZO-1 were analyzed by phase-contrast microscopy, immunocytochemistry, and western blot, and transepithelial electrical resistance (TEER) was determined to assess barrier function. RESULTS The porcine RPE cells (pRPE) were best established using TrypLE Express, 10% fetal bovine serum (FBS) supplemented high-glucose media, and subculturing at semi-confluency. The pRPE cells maintained epithelioid morphology with ZO-1 positive tight junctions at the cell-to-cell borders, the ability to establish proper barrier function (TEERmax: 346/375 Ω⋅cm2 at passage I/passage VI), and expressed CRALBP and RPE-65 for several passages. The RPE characteristics decreased and disappeared with transdifferentiation. CONCLUSIONS This work describes, for the first time, a pRPE cell model that exhibits preserved RPE properties for several passages on cell culture plastic plates. Though RPE characteristics were maintained for at least 6 passages, the reduced CRALBP and RPE-65 with passaging emphasize that lower passage cells are advantageous to utilize, and that morphology, barrier function, and ZO-1 localization cannot be solely employed as a quality measure of RPE identity. Pigs are phylogenetically similar to humans, including similar physiology, anatomy and immune system. Therefore, porcine RPE cells constitute a relevant model system for studying human eye diseases, such as AMD.
Collapse
Affiliation(s)
- Dinna Zhou
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anne Petersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Adelöf
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Hernebring
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
2
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
3
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Sharma R, Faura G, Eide L, Shanker Verma R, Znaor L, Erceg S, Stieger K, Motlik J, Petrovski G, Bharti K. Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery. Stem Cells Transl Med 2023; 12:536-552. [PMID: 37459045 PMCID: PMC10427969 DOI: 10.1093/stcltm/szad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 08/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Department of Ophthalmology, Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe,” Stem Cell Therapies in Neurodegenerative Diseases Laboratory, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Seraly M, Madow B, Farkas MH. Clinical Considerations for RPE Cell Transplantation. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
6
|
Huang D, Xu C, Guo R, Ji J, Liu W. Anterior lens capsule: biomechanical properties and biomedical engineering perspectives. Acta Ophthalmol 2021; 99:e302-e309. [PMID: 32914585 DOI: 10.1111/aos.14600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Anterior lens capsule, as the thickest basement membrane in the body, has its unique physiology characteristics. In ophthalmology, many attempts have been made to culture different kinds of cells including iris pigment epithelial cells, retinal pigment epithelial cells, corneal epithelium and endothelium cells, trabecular meshwork cells etc and anterior lens capsule has been confirmed to be served as an excellent scaffold for the growth and expansion of different ocular cells. Furthermore, anterior lens capsule also has unique potential in gestation evaluation and the treatment of various ocular diseases, including corneal ulcer, glaucoma, age-related macular degeneration and macular hole, etc. Here, we provide an overview of the biomechanical properties and biomedical engineering perspectives of anterior lens capsule.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Ophthalmology Taihe Hospital Hubei University of Medicine Shiyan China
| | - Chenjia Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science Eye Institute and School of Optometry Tianjin Medical University Eye Hospital Tianjin China
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science Eye Institute and School of Optometry Tianjin Medical University Eye Hospital Tianjin China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science Eye Institute and School of Optometry Tianjin Medical University Eye Hospital Tianjin China
| | - Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science Eye Institute and School of Optometry Tianjin Medical University Eye Hospital Tianjin China
- Department of Ophthalmology University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
7
|
Sugita S, Mandai M, Kamao H, Takahashi M. Immunological aspects of RPE cell transplantation. Prog Retin Eye Res 2021; 84:100950. [PMID: 33482342 DOI: 10.1016/j.preteyeres.2021.100950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 01/12/2023]
Abstract
Retinal pigment epithelial (RPE) cells have several functions, including support of the neural retina and choroid in the eye and immunosuppression. Cultured human RPE cells directly suppress inflammatory immune cells. For instance, they directly suppress the activation of T cells in vitro. In contrast, transplanted allogeneic human RPE cells are rejected by bystander immune cells such as T cells in vivo. Recently, human embryonic stem cell-derived RPE cells have been used in several clinical trials, and human induced pluripotent stem cell (iPSC)-RPE cells have also been tested in our clinical study in patients with retinal degeneration. Major safety concerns after stem cell-based transplantation surgery include hyper-proliferation, tumorigenicity, or ectopic tissue formation, but these events have currently not been seen in any of these patients. However, if RPE cells are allogeneic, there are concerns about immune rejection issues that have been raised in previous clinical trials. We therefore performed a preclinical study of allogeneic iPSC-RPE cell transplantation in animal rejection models. We then conducted autogenic or allogeneic iPSC-RPE cell transplantation in clinical studies of patients with age-related macular degeneration. In this review, we focus on immunological studies of RPE cells, including iPSC-derived cells. iPSC-RPE cells have unique inflammatory (immunosuppressive and immunogenic) characteristics like primary cultured RPE cells. The purpose of this review is to summarize the current findings obtained from preclinical (basic research) and clinical studies in iPSC-RPE cell transplantation, especially the immunological aspects.
Collapse
Affiliation(s)
- Sunao Sugita
- Laboratory for Retinal Regeneration, Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research Kobe, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research Kobe, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Hiroyuki Kamao
- Department of Ophthalmology, Kawasaki Medical School, Okayama, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research Kobe, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| |
Collapse
|
8
|
Cell-Based Therapies for Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:265-293. [PMID: 33848006 DOI: 10.1007/978-3-030-66014-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. The pathogenesis of AMD involves dysfunction and loss of the retinal pigment epithelium (RPE), a monolayer of cells that provide nourishment and functional support for the overlying photoreceptors. RPE cells in mammals are not known to divide, renew or regenerate in vivo, and in advanced AMD, RPE loss leads to degeneration of the photoreceptors and impairment of vision. One possible therapeutic approach would be to support and replace the failing RPE cells of affected patients, and indeed moderate success of surgical procedures in which relatively healthy autologous RPE from the peripheral retina of the same eye was transplanted under the retina in the macular area suggested that RPE replacement could be a means to attenuate photoreceptor cell loss. This prompted exploration of the possibility to use pluripotent stem cells (PSCs) as a potential source for "healthy and young" RPE cells for such cell-based therapy of AMD. Various approaches ranging from the use of allogeneic embryonic stem cells to autologous induced pluripotent stem cells are now being tested within early clinical trials. Such PSC-derived RPE cells are either injected into the subretinal space as a suspension, or transplanted as a monolayer patch upon scaffold support. Although most of these approaches are at early clinical stages, safety of the RPE product has been demonstrated by several of these studies. Here, we review the concept of cell-based therapy of AMD and provide an update on current progress in the field of RPE transplantation.
Collapse
|
9
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part II: Cell and Tissue Engineering Therapies. Front Bioeng Biotechnol 2020; 8:588014. [PMID: 33363125 PMCID: PMC7758210 DOI: 10.3389/fbioe.2020.588014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 y.o. people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting on intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, different treatment options have to be considered. Cell therapy is a very promising alternative to drug-based approaches for AMD treatment. Cells delivered to the affected tissue as a suspension have shown poor retention and low survival rate. A solution to these inconveniences has been the encapsulation of these cells on biomaterials, which contrive to their protection, gives them support, and favor their retention of the desired area. We offer a two-papers critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In this second part we review the preclinical and clinical cell-replacement approaches aiming at the development of efficient AMD-therapies, the employed cell types, as well as the cell-encapsulation and cell-implant systems. We discuss their advantages and disadvantages and how they could improve the survival and integration of the implanted cells.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V. Guinea
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - José Perez-Rigueiro
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcon, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital, Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
10
|
Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020; 17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration is an incurable chronic neurodegenerative disease, causing progressive loss of the central vision and even blindness. Up-to-date therapeutic approaches can only slow down he progression of the disease. OBJECTIVE Feasibility study for a multilayered, silk fibroin-based, 3D biohybrid retina. APPROACH Fabrication of silk fibroin-based biofilms; culture of different types of cells: retinal pigment epithelium, retinal neurons, Müller and mesenchymal stem cells ; creation of a layered structure glued with silk fibroin hydrogel. MAIN RESULTS In vitro evidence for the feasibility of layered 3D biohybrid retinas; primary culture neurons grow and develop neurites on silk fibroin biofilms, either alone or in presence of other cells cultivated on the same biomaterial; cell organization and cellular phenotypes are maintained in vitro for the seven days of the experiment. SIGNIFICANCE 3D biohybrid retina can be built using silk silkworm fibroin films and hydrogels to be used in cell replacement therapy for AMD and similar retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing & Neuro-robotics Research Group, Complutense University of Madrid, Spain. Innovation Research Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain. These authors equally contributed to this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Murphy AR, Truong YB, O'Brien CM, Glattauer V. Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomater 2020; 104:1-16. [PMID: 31945506 DOI: 10.1016/j.actbio.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.
Collapse
Affiliation(s)
- Ashley R Murphy
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yen B Truong
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
12
|
Harris TI, Paterson CA, Farjood F, Wadsworth ID, Caldwell L, Lewis RV, Jones JA, Vargis E. Utilizing Recombinant Spider Silk Proteins To Develop a Synthetic Bruch's Membrane for Modeling the Retinal Pigment Epithelium. ACS Biomater Sci Eng 2019; 5:4023-4036. [PMID: 33448804 DOI: 10.1021/acsbiomaterials.9b00183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spider silks are intriguing biomaterials that have a high potential as innovative biomedical processes and devices. The intent of this study was to evaluate the capacity of recombinant spider silk proteins (rSSps) as a synthetic Bruch's membrane. Nonporous silk membranes were prepared with comparable thicknesses (<10 μm) to that of native Bruch's membrane. Biomechanical characterization was performed prior to seeding cells. The ability of RPE cells (ARPE-19) to attach and grow on the membranes was then evaluated with bright-field and electron microscopy, intracellular DNA quantification, and immunocytochemical staining (ZO-1 and F-actin). Controls were cultured on permeable Transwell support membranes and characterized with the same methods. A size-dependent permeability assay, using FITC-dextran, was used to determine cell-membrane barrier function. Compared to Transwell controls, RPE cells cultured on rSSps membranes developed more native-like "cobblestone" morphologies, exhibited higher intracellular DNA content, and expressed key organizational proteins more consistently. Comparisons of the membranes to native structures revealed that the silk membranes exhibited equivalent thicknesses, biomechanical properties, and barrier functions. These findings support the use of recombinant spider silk proteins to model Bruch's membrane and develop more biomimetic retinal models.
Collapse
|
13
|
Engineering retinal pigment epithelial cells regeneration for transplantation in regenerative medicine using PEG/Gellan gum hydrogels. Int J Biol Macromol 2019; 130:220-228. [DOI: 10.1016/j.ijbiomac.2019.01.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
|
14
|
Shang P, Stepicheva NA, Hose S, Zigler JS, Sinha D. Primary Cell Cultures from the Mouse Retinal Pigment Epithelium. J Vis Exp 2018. [PMID: 29608155 DOI: 10.3791/56997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinal pigment epithelium (RPE) is a highly polarized multi-functional epithelium that is located between the neural retina and the choroid of the eye. It is a single sheet of pigmented cells that are hexagonally packed and connected by tight junctions. The main functions of the RPE include absorption of light, phagocytosis of the shed photoreceptor outer segments, spatial buffering of ions, transport of nutrients, ions and water as well as active involvement in the visual cycle. With such important and diverse functions, it is critically important to study the biology of RPE cells. A number of RPE cell lines have been established; however, passaged and immortalized cells are known to quickly lose some of the morphological and physiological characteristics of natural RPE cells. Thus, primary cells are more suitable for studying different aspects of RPE cell biology and function. Mouse primary RPE cell culture is very useful to researchers since mouse models are widely used in biological studies, however collecting RPE cells from mouse is also very challenging due to their small size. Here, we present a protocol for establishing primary mouse RPE cell cultures which includes enucleation and dissection of the eyes and isolation of the RPE sheets to yield the cells for culturing. This method enables efficient cell recovery. The RPE cells obtained from two mice can reach confluency on one 12 mm polyester membrane insert pre-loaded in culture plate after one week of culture and display some of the original properties of bona fide RPE cells such as hexagonal shape and pigmentation after two weeks of culture.
Collapse
Affiliation(s)
- Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine;
| | | | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine; Wilmer Eye Institute, The Johns Hopkins University School of Medicine
| |
Collapse
|
15
|
Gandhi JK, Manzar Z, Bachman LA, Andrews-Pfannkoch C, Knudsen T, Hill M, Schmidt H, Iezzi R, Pulido JS, Marmorstein AD. Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers. Acta Biomater 2018; 67:134-146. [PMID: 29233750 DOI: 10.1016/j.actbio.2017.11.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
Abstract
Recent phase 1 trials of embryonic stem cell and induced pluripotent stem cell (iPSCs) derived RPE transplants for the treatment of macular degeneration have demonstrated the relative safety of this process. However, there is concern over clumping, thickening, folding, and wrinkling of the transplanted RPE. To deliver a flat RPE monolayer, current phase 1 trials are testing synthetic substrates for RPE transplantation. These substrates, however, cause localized inflammation and fibrosis in animal models due to long degradation times. Here we describe the use of thin fibrin hydrogels as a support material for the transplantation of RPE. Fibrin was formed into a mechanically rigid support that allow for easy manipulation with standard surgical instruments. Using fibrinolytic enzymes, fibrin hydrogels were degraded on the scale of hours. The rate of degradation could be controlled by varying the fibrinolytic enzyme concentration used. RPE cells degraded fibrin spontaneously. To preserve the fibrin support during differentiation of iPSCs to RPE, media was supplemented with the protease inhibitor aprotinin. iPSC-RPE on fibrin gels remained viable, generated monolayers with characteristic cobblestone appearance and dark pigmentation, and expressed mRNA and protein markers characteristic of RPE in the eye. Following differentiation of the cells, addition of fibrinolytic enzymes fully and rapidly degraded the fibrin support leaving behind an intact, viable iPSC-RPE monolayer. In conclusion, human fibrin hydrogels provide a xeno-free support on which iPSCs can be differentiated to RPE cells for transplant which can be rapidly degraded under controlled conditions using fibrinolytic enzymes without adverse effects to the cells. STATEMENT OF SIGNIFICANCE Stem cell-derived retinal pigment epithelial (RPE) cell transplantation is currently in phase 1 clinical trials for macular degeneration (MD). A major obstacle in these studies is delivering the RPE as a living, flat sheets without leaving behind foreign materials in the retina. Here we investigate the suitability of using hydrogels made from human blood-derived proteins for RPE transplant. Our data shows that these fibrin hydrogels are rigid enough for use in surgery, support growth of stem cell-derived RPE, and are easily degraded within hours without damage to the RPE sheet. These fibrin hydrogels offer a promising solution to transplant RPE for patients with MD.
Collapse
|
16
|
White CE, Olabisi RM. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng 2017; 8:2041731417720841. [PMID: 28794849 PMCID: PMC5524239 DOI: 10.1177/2041731417720841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
In several retinal degenerative diseases, including age-related macular degeneration, the retinal pigment epithelium, a highly functionalized cell monolayer, becomes dysfunctional. These retinal diseases are marked by early retinal pigment epithelium dysfunction reducing its ability to maintain a healthy retina, hence making the retinal pigment epithelium an attractive target for treatment. Cell therapies, including bolus cell injections, have been investigated with mixed results. Since bolus cell injection does not promote the proper monolayer architecture, scaffolds seeded with retinal pigment epithelium cells and then implanted have been increasingly investigated. Such cell-seeded scaffolds address both the dysfunction of the retinal pigment epithelium cells and age-related retinal changes that inhibit the efficacy of cell-only therapies. Currently, several groups are investigating retinal therapies using seeded cells from a number of cell sources on a variety of scaffolds, such as degradable, non-degradable, natural, and artificial substrates. This review describes the variety of scaffolds that have been developed for the implantation of retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Corina E White
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
17
|
Tian Y, Zonca MR, Imbrogno J, Unser AM, Sfakis L, Temple S, Belfort G, Xie Y. Polarized, Cobblestone, Human Retinal Pigment Epithelial Cell Maturation on a Synthetic PEG Matrix. ACS Biomater Sci Eng 2017; 3:890-902. [PMID: 33429561 DOI: 10.1021/acsbiomaterials.6b00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell attachment is essential for the growth and polarization of retinal pigment epithelial (RPE) cells. Currently, surface coatings derived from biological proteins are used as the gold standard for cell culture. However, downstream processing and purification of these biological products can be cumbersome and expensive. In this study, we constructed a library of chemically modified nanofibers to mimic the Bruch's membrane of the retinal pigment epithelium. Using atmospheric-pressure plasma-induced graft polymerization with a high-throughput screening platform to modify the nanofibers, we identified three polyethylene glycol (PEG)-grafted nanofiber surfaces (PEG methyl ether methacrylate, n = 4, 8, and 45) from a library of 62 different surfaces as favorable for RPE cell attachment, proliferation, and maturation in vitro with cobblestone morphology. Compared with the biologically derived culture matrices such as vitronectin-based peptide Synthemax, our newly discovered synthetic PEG surfaces exhibit similar growth and polarization of retinal pigment epithelial (RPE) cells. However, they are chemically defined, are easy to synthesize on a large scale, are cost-effective, are stable with long-term storage capability, and provide a more physiologically accurate environment for RPE cell culture. To our knowledge, no one has reported that PEG derivatives directly support attachment and growth of RPE cells with cobblestone morphology. This study offers a unique PEG-modified 3D cell culture system that supports RPE proliferation, differentiation, and maturation with cobblestone morphology, providing a new avenue for RPE cell culture, disease modeling, and cell replacement therapy.
Collapse
Affiliation(s)
- Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Michael R Zonca
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Joseph Imbrogno
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Lauren Sfakis
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Sally Temple
- Neural Stem Cell Institute, One Discovery Drive, Rensselaer, New York 12144, United States
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute (RPI), Troy, New York 12180, United States
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
18
|
Fronk AH, Vargis E. Methods for culturing retinal pigment epithelial cells: a review of current protocols and future recommendations. J Tissue Eng 2016; 7:2041731416650838. [PMID: 27493715 PMCID: PMC4959307 DOI: 10.1177/2041731416650838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/23/2016] [Indexed: 12/17/2022] Open
Abstract
The retinal pigment epithelium is an important part of the vertebrate eye, particularly in studying the causes and possible treatment of age-related macular degeneration. The retinal pigment epithelium is difficult to access in vivo due to its location at the back of the eye, making experimentation with age-related macular degeneration treatments problematic. An alternative to in vivo experimentation is cultivating the retinal pigment epithelium in vitro, a practice that has been going on since the 1970s, providing a wide range of retinal pigment epithelial culture protocols, each producing cells and tissue of varying degrees of similarity to natural retinal pigment epithelium. The purpose of this review is to provide researchers with a ready list of retinal pigment epithelial protocols, their effects on cultured tissue, and their specific possible applications. Protocols using human and animal retinal pigment epithelium cells, derived from tissue or cell lines, are discussed, and recommendations for future researchers included.
Collapse
Affiliation(s)
- Aaron H Fronk
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|
19
|
Hotaling NA, Khristov V, Wan Q, Sharma R, Jha BS, Lotfi M, Maminishkis A, Simon CG, Bharti K. Nanofiber Scaffold-Based Tissue-Engineered Retinal Pigment Epithelium to Treat Degenerative Eye Diseases. J Ocul Pharmacol Ther 2016; 32:272-85. [PMID: 27110730 PMCID: PMC4904235 DOI: 10.1089/jop.2015.0157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Clinical-grade manufacturing of a functional retinal pigment epithelium (RPE) monolayer requires reproducing, as closely as possible, the natural environment in which RPE grows. In vitro, this can be achieved by a tissue engineering approach, in which the RPE is grown on a nanofibrous biological or synthetic scaffold. Recent research has shown that nanofiber scaffolds perform better for cell growth and transplantability compared with their membrane counterparts and that the success of the scaffold in promoting cell growth/function is not heavily material dependent. With these strides, the field has advanced enough to begin to consider implementation of one, or a combination, of the tissue engineering strategies discussed herein. In this study, we review the current state of tissue engineering research for in vitro culture of RPE/scaffolds and the parameters for optimal scaffold design that have been uncovered during this research. Next, we discuss production methods and manufacturers that are capable of producing the nanofiber scaffolds in such a way that would be biologically, regulatory, clinically, and commercially viable. Then, a discussion of how the scaffolds could be characterized, both morphologically and mechanically, to develop a testing process that is viable for regulatory screening is performed. Finally, an example of a tissue-engineered RPE/scaffold construct is given to provide the reader a framework for understanding how these pieces could fit together to develop a tissue-engineered RPE/scaffold construct that could pass regulatory scrutiny and can be commercially successful.
Collapse
Affiliation(s)
- Nathan A. Hotaling
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Khristov
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Qin Wan
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruchi Sharma
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Balendu Shekhar Jha
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mostafa Lotfi
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Arvydas Maminishkis
- Section of Epithelial and Retinal Physiology and Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Carl G. Simon
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - Kapil Bharti
- Unit on Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
20
|
Delplace V, Payne S, Shoichet M. Delivery strategies for treatment of age-related ocular diseases: From a biological understanding to biomaterial solutions. J Control Release 2015; 219:652-668. [PMID: 26435454 DOI: 10.1016/j.jconrel.2015.09.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/24/2022]
Abstract
Age-related ocular diseases, such as age-related macular degeneration (AMD), diabetic retinopathy, and glaucoma, result in life-long functional deficits and enormous global health care costs. As the worldwide population ages, vision loss has become a major concern for both economic and human health reasons. Due to recent research into biomaterials and nanotechnology major advances have been gained in the field of ocular delivery. This review provides a summary and discussion of the most recent strategies employed for the delivery of both drugs and cells to the eye to treat a variety of age-related diseases. It emphasizes the current challenges and limitations to ocular delivery and how the use of innovative materials can overcome these issues and ultimately provide treatment for age-related degeneration and regeneration of lost tissues. This review also provides critical considerations and an outlook for future studies in the field of ophthalmic delivery.
Collapse
Affiliation(s)
- Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Samantha Payne
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada
| | - Molly Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
21
|
Sorkio A, Porter PJ, Juuti-Uusitalo K, Meenan BJ, Skottman H, Burke GA. Surface Modified Biodegradable Electrospun Membranes as a Carrier for Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Tissue Eng Part A 2015; 21:2301-14. [PMID: 25946229 DOI: 10.1089/ten.tea.2014.0640] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier holds great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material that could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation, and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analyzed with an Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy, and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, reverse transcription-polymerase chain reaction, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements, and in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue-engineered construct for regenerative retinal repair applications.
Collapse
Affiliation(s)
- Anni Sorkio
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - Patrick J Porter
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | | | - Brian J Meenan
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| | - Heli Skottman
- 1 BioMediTech, University of Tampere , Tampere, Finland
| | - George A Burke
- 2 Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, University of Ulster , Newtownabbey, Northern Ireland
| |
Collapse
|
22
|
McHugh KJ, Tao SL, Saint-Geniez M. Porous poly(ε-caprolactone) scaffolds for retinal pigment epithelium transplantation. Invest Ophthalmol Vis Sci 2014; 55:1754-62. [PMID: 24550370 DOI: 10.1167/iovs.13-12833] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Retinal pigment epithelium (RPE) transplantation is a promising strategy for the treatment of dry age-related macular degeneration (AMD). However, previous attempts at subretinal RPE cell transplantation have experienced limited success due to poor adhesion, organization, and function on aged or diseased Bruch's membrane. Instead, cell-based strategies may benefit from a synthetic scaffold that mimics the functions of healthy Bruch's membrane to promote the formation of a functional RPE monolayer while maintaining metabolite exchange between the vasculature and outer retina. METHODS This study evaluated the behavior of human RPE on nanopatterned porous poly(ε-caprolactone) (PCL) film as a potential scaffold for therapeutic transplantation. Fetal human RPE (fhRPE) was cultured on porous PCL, nonporous PCL, or Costar porous polyester transwells for up to 8 weeks and assessed using light microscopy, fluorescent microscopy, transepithelial resistance, quantitative PCR, ELISAs, and phagocytosis assays. RESULTS fhRPE on porous PCL displayed improved markers of maturity and function compared with both porous polyester transwells and nonporous PCL, including pigmentation, increased cell density, superior barrier function, up-regulation of RPE-specific genes, and polarized growth factor secretion. CONCLUSIONS This study indicates that porous PCL is an attractive scaffold for RPE transplantation. In addition to being biocompatible with the subretinal space, porous PCL also allows for trans-scaffold metabolite transport and significantly improves RPE cell behavior compared to nonporous PCL or porous polyester transwells.
Collapse
|
23
|
Mechanical properties of murine and porcine ocular tissues in compression. Exp Eye Res 2014; 121:194-9. [PMID: 24613781 DOI: 10.1016/j.exer.2014.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/24/2022]
Abstract
Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo.
Collapse
|
24
|
Sheridan C, Krishna Y, Williams R, Mason S, Wong D, Heimann H, Kent D, Grierson I. Transplantation in the treatment of age-related macular degeneration: past, present and future directions. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2.3.497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Chen YM, Liu ZQ, Feng ZH, Xu F, Liu JK. Adhesive protein-free synthetic hydrogels for retinal pigment epithelium cell culture with low ROS level. J Biomed Mater Res A 2013; 102:2258-67. [DOI: 10.1002/jbm.a.34904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 07/24/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Yong Mei Chen
- Department of Chemistry; School of Science; MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
- Biomedical Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Zhen Qi Liu
- Department of Chemistry; School of Science; MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
- Biomedical Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Zhi Hui Feng
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Feng Xu
- Biomedical Engineering and Biomechanics Center; Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| | - Jian Kang Liu
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology and Frontier Institute of Life Science, FIST, Xi'an Jiaotong University; Xi'an 710049 People's Republic of China
| |
Collapse
|
26
|
Li Z, Wei Z, Xu F, Li YH, Lu TJ, Chen YM, Zhou GJ. Novel Phosphorescent Hydrogels Based on an IrIII
Metal Complex. Macromol Rapid Commun 2012; 33:1191-6. [DOI: 10.1002/marc.201200136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/09/2012] [Indexed: 11/11/2022]
|
27
|
Treharne AJ, Thomson HAJ, Grossel MC, Lotery AJ. Developing methacrylate-based copolymers as an artificial Bruch's membrane substitute. J Biomed Mater Res A 2012; 100:2358-64. [PMID: 22528296 DOI: 10.1002/jbm.a.34178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 11/11/2022]
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the developed world. There is currently no treatment for the cellular loss, which is characteristic of AMD. Transplantation of retinal pigment epithelium (RPE) cells represents a potential therapy. Because of AMD-related pathology in the native support, Bruch's membrane, transplanted RPE cells require a scaffold to reside on. We present here the development of an electrospun fibrous scaffold derived from methyl methacrylate and poly(ethylene glycol) (PEG) methacrylate for novel application as an RPE scaffold. Scaffolds were chemically modified to improve cell adhesion by functionalization not previously reported for this type of copolymer system. A human RPE cell line was used to investigate cell-scaffold interactions for up to two weeks in vitro. Scanning electron microscopy was used to characterize the fibrous scaffolds and confirm cell attachment. By day 15, cell area was significantly (p < 0.001) enhanced on scaffolds with chemical modification of the PEG chain terminus. In addition, significantly, less-apoptotic cell death was demonstrable on these modified surfaces.
Collapse
Affiliation(s)
- Andrew J Treharne
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | | |
Collapse
|
28
|
Rowland TJ, Buchholz DE, Clegg DO. Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 2012; 227:457-66. [PMID: 21520078 DOI: 10.1002/jcp.22814] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advancements made in our understanding of ocular biology, therapeutic options for many debilitating retinal diseases remain limited. Stem cell-based therapies are a potential avenue for treatment of retinal disease, and this mini-review will focus on current research in this area. Cellular therapies to replace retinal pigmented epithelium (RPE) and/or photoreceptors to treat age-related macular degeneration (AMD), Stargardt's macular dystrophy, and retinitis pigmentosa are currently being developed. Over the past decade, significant advancements have been made using different types of human stem cells with varying capacities to differentiate into these target retinal cell types. We review and evaluate pluripotent stem cells, both human embryonic stem cells and human induced pluripotent stem cells, as well as protocols for differentiation of ocular cells, and culture and transplant techniques that might be used to deliver cells to patients.
Collapse
Affiliation(s)
- Teisha J Rowland
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, California, USA
| | | | | |
Collapse
|
29
|
Polyurethanes as supports for human retinal pigment epithelium cell growth. Int J Artif Organs 2011; 34:198-209. [PMID: 21374562 DOI: 10.5301/ijao.2011.6398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE The transplant of retinal pigment epithelium (RPE) cells on supports may well be an effective therapeutic approach to improve the visual results of patients with age-related macular degeneration. In this study, two biodegradable polyurethanes were investigated as supports for human RPE cells (ARPE-19). METHODS Polyurethane aqueous dispersions based on poly(caprolactone) and/or poly(ethylene glycol) as soft segments, and isophorone diisocyanate and hydrazine as hard segments were prepared. Polyurethane films were produced by casting the dispersions and allowing them to dry at room temperature for one week. The ARPE-19 cells were seeded onto the polyurethane films and they were investigated as supports for in vitro adhesion, proliferation, and uniform distribution of differentiated ARPE-19 cells. Additionally, the in vivo ocular biocompatibility of the polyurethane films was evaluated. RESULTS The RPE adhered to and proliferated onto the polyurethane supports, thus establishing cell-PUD surface interactions. Upon confluence, the cells formed an organized monolayer, exhibited a polygonal appearance, and displayed actin filaments which ran along the upper cytoplasm. At 15 days of seeding, the occluding expression was confirmed between adjacent cells, representing the barrier functionality of epithelial cells on polymeric surfaces and the establishment of cell-cell interactions. Results from the in vivo study indicated that polyurethanes exhibited a high degree of short-term intraocular biocompatibility. CONCLUSIONS Biodegradable polyurethane films display the proper mechanical properties for an easy transscleral-driven subretinal implantation and can be considered as biocompatible supports for a functional ARPE-19 monolayer.
Collapse
|
30
|
Thomson HA, Treharne AJ, Backholer LS, Cuda F, Grossel MC, Lotery AJ. Biodegradable poly(α-hydroxy ester) blended microspheres as suitable carriers for retinal pigment epithelium cell transplantation. J Biomed Mater Res A 2010; 95:1233-43. [DOI: 10.1002/jbm.a.32940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 11/06/2022]
|
31
|
Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL. Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 22:443-56. [PMID: 20566039 DOI: 10.1163/092050610x487738] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinal degenerations are the leading cause of irreversible visual disability among the adult population. Stem-cell-based therapy has the potential to preserve and restore vision in these conditions. In addition to replacing lost or diseased cells, transplanted cells may be able to rescue dying photoreceptors of the host retina. To fully realize the potential of these cells, improved methods for cell delivery are needed. Utilizing microfabrication processes, a novel biodegradeable thin-film cell encapsulation scaffold was developed in polycaprolactone (PCL) as a possible cell transplantation vehicle. Individual thin-film 2-2.5-D PCL layers (<10 μm thin) were structured with varying micro- and nano-geometries (protrusions, cavities, pores, particles) utilizing a modified spin-assisted solvent casting and melt templating technique. Thin-film layers were aligned and thermally bonded to form the 3-D cell encapsulation scaffold (<30 μm thin) and these were found to promote retinal progenitor cell (RPC) retention and provide appropriate permeability. The resulting scaffolds provide a novel platform for the delivery of cells to the outer retina that addresses critical biological constraints related to transplantation to this anatomical location.
Collapse
Affiliation(s)
- Sonal Sodha
- Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
32
|
A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 2010; 248:763-78. [PMID: 20169358 DOI: 10.1007/s00417-009-1263-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 11/16/2009] [Accepted: 11/26/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several mechanisms of retina degeneration result in the deterioration of the outer retina and can lead to blindness. Currently, with the exception of anti-angiogenic treatments for wet age-related macular degeneration, there are no treatments that can restore lost vision. There is evidence that photoreceptors and embryonic retinal tissue, transplanted to the subretinal space, can form new synapses with surviving host neurons. However, these transplants have yet to result in a clinical treatment for retinal degeneration. METHODS This article reviews the current literature on the transplantation of scaffolds with retinal and retinal pigmented epithelial (RPE) cells to the subretinal space. We discuss the types of cells and materials that have been investigated for transplantation to the subretinal space, summarize the current findings, and present opportunities for future research and the next generation of scaffolds for retinal repair. RESULTS Challenges to cell transplantation include limited survival upon implantation and the formation of abnormal cell architectures in vivo. Scaffolds have been shown to enhance cell survival and direct cell differentiation and organization in a number of models of retinal degeneration. CONCLUSIONS The transplantation of cells within a scaffold represents a possible treatment to repair retinal degeneration and restore vision in effected patients. Materials have been developed for the delivery of retinal and RPE cells separately however, the development of a combined tissue-engineered scaffold targeting both cell populations represents a promising direction for retinal repair.
Collapse
|
33
|
Thumann G, Viethen A, Gaebler A, Walter P, Kaempf S, Johnen S, Salz AK. The in vitro and in vivo behaviour of retinal pigment epithelial cells cultured on ultrathin collagen membranes. Biomaterials 2008; 30:287-94. [PMID: 18929407 DOI: 10.1016/j.biomaterials.2008.09.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/02/2008] [Indexed: 11/19/2022]
Abstract
The transplantation of pigment epithelial cells as a therapeutic modality for retinal degeneration requires that the transplanted cells form a monolayer in the subretinal space that will establish communication with photoreceptors. Since previous studies have shown that transplanted cells in suspension do not form a monolayer, it will be necessary to transplant preformed pigment epithelial cell monolayers at the location of the exposed photoreceptors. To establish cell monolayers, retinal pigment epithelial (RPE) cells were cultured on ultrathin collagen membranes. Cells were examined for morphology, for characteristics of differentiation and viability. Membrane degradation and long-term biocompatibility in vivo were assessed following subconjunctival and subretinal implantation in rabbits. These studies have shown that RPE cells adhere, proliferate, form monolayers, and acquire differentiated properties on a collagen membrane that has features similar to Bruch's membrane. Membranes transplanted subconjunctivally and subretinally exhibit excellent biocompatibility without any evidence of inflammation or rejection. RPE cells cultured on collagen membranes acquire differentiated characteristics similar to those of RPE cells in vivo and form complete monolayers that are amenable to be transplanted to the subretinal space. The collagen membranes are non-toxic and do not elicit any rejection or inflammatory response when implanted subconjunctivally or subretinally in rabbits.
Collapse
Affiliation(s)
- Gabriele Thumann
- Department of Ophthalmology, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sargan DR, Withers D, Pettitt L, Squire M, Gould DJ, Mellersh CS. Mapping the Mutation Causing Lens Luxation in Several Terrier Breeds. J Hered 2007; 98:534-8. [PMID: 17573382 DOI: 10.1093/jhered/esm029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Primary lens luxation (PLL), a painful and blinding inherited condition, is common in several breeds of terrier. Here we have examined the Veterinary Medical Database of patient encounters and Canine Eye Registration Foundation (CERF) cases records for the last 10 years and found the diagnosis recorded in 85 breeds. We have performed association analysis using a genome-wide microsatellite screen to map mutations underlying the condition in miniature bull terriers and Lancashire heelers. These studies show microsatellite alleles in disequilibrium with disease status with highest support in a 6.3-Mbp region in the central part of chromosome 3 (-log P(max) = 6.4). The same region also shows an association to the disease in Tibetan terriers. Tight junction protein-1 (TJP1) is a positional candidate to contain the PLL mutation. All recognized exons and splice junctions of TJP1 have been sequenced from affected, obligate carrier and control Lancashire heeler dogs. Several polymorphisms have been found, but these are not likely to cause the disease.
Collapse
Affiliation(s)
- David R Sargan
- Department of Veterinary Medicine, University of Cambridge Veterinary School, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Woerly S, Fort S, Heyraud A. Sialic Acid Engineering of Thin Hydrogel Membranes. Macromol Rapid Commun 2007. [DOI: 10.1002/marc.200700024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Abstract
The retinal pigment epithelium (RPE) maintains retinal function as the metabolic gatekeeper between photoreceptors (PRs) and the choriocapillaries. The RPE and Bruch's membrane (BM) suffer cumulative damage over lifetime, which is thought to induce age-related macular degeneration (AMD) in susceptible individuals. Unlike palliative pharmacologic treatments, replacement of the RPE has a curative potential for AMD. This article reviews mechanisms leading to RPE dysfunction in aging and AMD, laboratory studies on RPE transplantation, and surgical techniques used in AMD patients. Future strategies using ex vivo steps prior to transplantation, BM prosthetics, and stem cell applications are discussed. The functional peculiarity of the macular region, epigenetic phenomena leading to an age-related shift in protein expression, along with the accumulation of lipofuscin may affect the metabolism in the central RPE. Thickening of BM with age decreases its hydraulic conductivity. Drusen are deposits of extracellular material and formed in part by activation of the alternative complement pathway in individuals carrying a mutant allele of complement factor H. AMD likely represents an umbrella term for a disease entity with multifactorial etiology and manifestations. Presently, a slow progressing (dry) non-neovascular atrophic form and a rapidly blinding neovascular (wet) form are discerned. No therapy is currently available for the former, while RPE transplantation and promising (albeit non-causal) anti-angiogenic therapies are available for the latter. The potential of RPE transplantation was demonstrated in animal models. Rejection of allogeneic homologous transplants in patients focused further studies on autologous sources. In vitro studies elucidated cell adhesion and wound healing mechanisms on aged human BM. Currently, autologous RPE, harvested from the midperiphery, is being transplanted as a cell suspension or a patch of RPE and choroid in AMD patients. These techniques have been evaluated from several groups. Autologous RPE transplants may have the disadvantage of carrying the same genetic information that may have led to AMD manifestation. An intermittent culturing step would allow for in vitro therapy of the RPE, its rejuvenation and prosthesis of BM to improve the success RPE transplants. Recent advances in stem cell biology when combined with lessons learned from studies of RPE transplantation are intriguing future therapeutic modalities for AMD patients.
Collapse
Affiliation(s)
- Susanne Binder
- Department of Ophthalmology, Rudolf Foundation Clinic, Hospital of the City of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
37
|
Lee CJ, Fishman HA, Bent SF. Spatial cues for the enhancement of retinal pigment epithelial cell function in potential transplants. Biomaterials 2007; 28:2192-201. [PMID: 17267030 DOI: 10.1016/j.biomaterials.2007.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 01/04/2007] [Indexed: 12/27/2022]
Abstract
Retinal pigment epithelial (RPE) cellular morphology and function are vital to the health of the retina. In age-related macular degeneration, RPE dysfunction and changes in Bruch's membrane occur. Thus, a potential cure is a dual-layer biomimetic transplant consisting of a layer of healthy RPE cells cultured on a support membrane. In this study, we investigated human anterior lens capsule as a replacement for Bruch's membrane and also explored different seeding methods as ways of inducing the desired cellular morphology and function. Using in vitro assays, we demonstrated that RPE cells cultured on lens capsule exhibited epithelial characteristics, such as the presence of actin belts and the formation of tight junctions in the monolayer. Bovine photoreceptor outer segments were also incubated with the RPE cells in order to quantify the binding and ingestion activity of the RPE cells. With these assays, we determined that cells seeded by centrifugation appeared to possess the most epithelial-like morphology, with the shortest overall length and the smallest elongation. They also exhibited enhanced metabolic activity, with a 1.5-fold increase over conventional gravity seeding. Thus, the spatial cues provided by centrifugation may assist cells in assuming native RPE function. Therefore, a dual-layer transplant, with RPE cells organized by centrifugation onto lens capsule, appears promising in achieving native retinal function.
Collapse
Affiliation(s)
- Christina J Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
| | | | | |
Collapse
|
38
|
Thumann G, Hueber A, Dinslage S, Schaefer F, Yasukawa T, Kirchhof B, Yafai Y, Eichler W, Bringmann A, Wiedemann P. Characteristics of iris and retinal pigment epithelial cells cultured on collagen type I membranes. Curr Eye Res 2006; 31:241-9. [PMID: 16531281 DOI: 10.1080/02713680600556966] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Transplantation of pigment epithelial cells is a promising treatment modality to repair retinal damage in age-related macular degeneration. For this purpose, it is necessary to establish cell culture techniques that allow acquisition of proper functional and morphological characteristics by the cells to be transplanted. METHODS Primary retinal pigment epithelial (RPE) and iris pigment epithelial (IPE) cells grown to confluence on collagen membranes were examined for morphology, adhesion, proliferation, apoptosis, as well as viability after ex vivo transplantation. RESULTS Pigment epithelial cells adhere, proliferate, form monolayers, acquire differentiated properties, and remain viable during transplantation to the subretinal space. CONCLUSIONS Pigment epithelial cells cultured on collagen membranes acquire differentiated characteristics and are amenable to be transplanted as cell monolayers.
Collapse
Affiliation(s)
- Gabriele Thumann
- Department of Ophthalmology and IZKF BIOMAT., RHWTH Aachen University, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang H, Yagi F, Cheewatrakoolpong N, Sugino IK, Zarbin MA. Short-term study of retinal pigment epithelium sheet transplants onto Bruch's membrane. Exp Eye Res 2004; 78:53-65. [PMID: 14667827 DOI: 10.1016/j.exer.2003.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study is to investigate the survival and behaviour of retinal pigment epithelium sheets transplanted onto hydraulically debrided Bruch's membrane. Uncultured retinal pigment epithelium sheets obtained from male cats and sandwiched between two gelatin sheets were transplanted onto the tapetal area of female cats after native retinal pigment epithelium was debrided. For controls, the gelatin carrier was transplanted after debridement. Each transplant or control specimen was analyzed histologically and immunohistochemically. Transplanted male retinal pigment epithelial cells were identified by in situ labelling of the cat Y chromosome. Over half of the transplants appeared as retinal pigment epithelium multilayers in the subretinal space. Retinal pigment epithelium pigment dispersion into the subretinal space was seen in most of the transplants, and retinal pigment epithelium pigment infiltration into the neural retina was seen in all 7-day survival transplants. A few condensed darkly stained retinal pigment epithelium nuclei and Terminal Transferase dUTP Nick End Labelling-positive retinal pigment epithelium cells were observed in all transplants. Cellular retinaldehyde-binding protein was present up to day-7 in most transplanted RPE cells. In both transplant and control specimens, the antibody against the Ki-67 nuclear antigen labelled a few retinal pigment epithelium cells at day-3. Terminal Transferase dUTP Nick End Labelling-positive outer nuclear layer nuclei were most frequently observed at day-1 but were much less frequent at day-3 in both transplants and controls. The survival and effectiveness of retinal pigment epithelium sheet transplants appeared similar to the retinal pigment epithelium microaggregates transplants conducted previously in this model.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ophthalmology, Institute of Ophthalmology and Visual Science, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 90 Bergen Street, 6th floor, Newark, NJ 07101-1709, USA
| | | | | | | | | |
Collapse
|