1
|
Umemoto S, Furusawa T, Unuma H, Tajika M, Sekino T. In vivo bioresorbability and bone formation ability of sintered highly pure calcium carbonate granules. Dent Mater J 2021; 40:1202-1207. [PMID: 34121021 DOI: 10.4012/dmj.2020-254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium carbonate-based bone substitutes derived from natural coral exoskeleton (aragonite) are resorbed and remodeled faster than calcium phosphate-based substitutes. However, coral species with structures appropriate for use as bone substitutes are very limited. Therefore, it is important to evaluate potential of artificial calcium carbonate ceramics as a bone substitute. In this study, calcium carbonate granules with various porosities and pore sizes were prepared by sintering a highly pure (>99.98%) calcium carbonate powder (calcite), and their resorption properties and bone formation abilities were examined in vivo for the first time. The sintered calcium carbonate was resorbed faster than β-tricalcium phosphate, which has a similar structure. However, sintered calcium carbonate did not promote new bone formation during long-term implantation. Furthermore, both resorption and new bone formation were affected by the pore structure. The optimal structures of the artificially sintered calcium carbonate bone substitute were also discussed.
Collapse
Affiliation(s)
- Shota Umemoto
- Shiraishi Central Laboratories Co., Ltd.,The Institute of Scientific and Industrial Research, Osaka University
| | - Toshitake Furusawa
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | - Hidero Unuma
- Tohoku Oral Implant Association.,Graduate School of Science and Engineering, Yamagata University
| | | | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University
| |
Collapse
|
2
|
Titsinides S, Agrogiannis G, Karatzas T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:26-32. [PMID: 30733842 PMCID: PMC6354279 DOI: 10.1016/j.jdsr.2018.09.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Bone deficits of the jaws are often attributed to accidents, surgical removal of benign lesions or malignant neoplasms, congenital abnormalities, periodontal inflammation, tooth abscess or extraction and finally jaw atrophy due to advanced age or general disease. These bone defects require rehabilitation for a variety of reasons, e.g. maintaining the normal anatomic outline, eliminating empty space, aesthetic restoration and placing dental implants. Today, several techniques have been developed to eliminate these bone deformities including bone grafting, guided bone regeneration, distraction osteogenesis, use of growth factors and stem cells. Bone grafts consist of materials of natural or synthetic origin, implanted into the bone defect site, documented to possess bone healing properties. Currently, a variety of bone restorative materials with different characteristics are available, possesing different properties. Despite years of effort the 'perfect' bone reconstruction material has not yet been developed, a further effort is required to make this objective feasible. The aim of this article is to provide a contemporary and comprehensive overview of the grafting materials that can be applied in dentoalveolar reconstruction, discussing their properties, advantages and disadvantages, enlightening the present and the future perspectives in the field of bone regeneration.
Collapse
Affiliation(s)
- S. Titsinides
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| | - G. Agrogiannis
- 1st Department of Pathology, Medical School, University of Athens, Athens, Greece
| | - T. Karatzas
- 2nd Department of Propedeutic Surgery, Laiko General Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
3
|
Mineralization of electrospun gelatin/CaCO3 composites: A new approach for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:655-664. [DOI: 10.1016/j.msec.2019.03.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022]
|
4
|
Myszka B, Schüßler M, Hurle K, Demmert B, Detsch R, Boccaccini AR, Wolf SE. Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid. RSC Adv 2019; 9:18232-18244. [PMID: 35515223 PMCID: PMC9064690 DOI: 10.1039/c9ra01473j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Calcium carbonate is an abundant biomineral, and already archeological records demonstrate its bioactivity and applicability for osseo-integrative implants. Its solubility, which is generally higher than those of calcium phosphates, depends on its polymorph turning calcium carbonate into a promising biomaterial with tunable bioresorption rate. However, the phase-dependent bioactivity of calcium carbonate, i.e., its osteoconductivity, is still insufficiently characterized. In this study, we address this issue by monitoring the behavior of the four most important calcium carbonate phases, i.e., calcite, aragonite, vaterite, and amorphous calcium carbonate, in simulated body fluid solution at 37 °C. Our results demonstrate that the thermodynamically stable calcite phase is essentially inert. In contrast, the metastable phases aragonite and vaterite are bioactive, thus promoting the formation of calcium phosphate. Amorphous calcium carbonate (ACC) shows prominent bioactivity accompanied by pronounced redissolution processes. Mg-stabilized ACC was additionally tested since its increased stability eases formulation and handling in future applications. It is highly bioactive and, moreover, the additional release of Mg promotes cell viability. Overall, our results demonstrate that bioactivity of calcium carbonate is phase-dependent, allowing tailored response and bioactivity of future calcareous biomaterials. Our results also reveal that phosphate ions strongly interfere with Ostwald-Lussac step ripening of calcium carbonate, kinetically stabilizing metastable polymorphs such as vaterite and aragonite; this is a distinctive feature of the calcium carbonate mineral system which clearly has to be considered in future applications of calcium carbonate as a bioceramic.
Collapse
Affiliation(s)
- Barbara Myszka
- Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany
| | - Martina Schüßler
- Institute for Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nuremberg Martensstraße 5 91058 Erlangen Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern - Mineralogy, Friedrich-Alexander-University Erlangen-Nuremberg Schlossgarten 5a 91054 Erlangen Germany
| | - Benedikt Demmert
- Institute for Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nuremberg Martensstraße 5 91058 Erlangen Germany
| | - Rainer Detsch
- Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-Nuremberg Cauerstrasse 6 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-University Erlangen-Nuremberg 91058 Erlangen Germany
| | - Stephan E Wolf
- Institute for Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nuremberg Martensstraße 5 91058 Erlangen Germany
- Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-University Erlangen-Nuremberg 91058 Erlangen Germany
| |
Collapse
|
5
|
Wu X, Stroll SI, Lantigua D, Suvarnapathaki S, Camci-Unal G. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci 2019; 7:2675-2685. [DOI: 10.1039/c9bm00230h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eggshell microparticle-reinforced hydrogels have been fabricated and characterized to obtain mechanically stable and biologically active scaffolds that can direct the differentiation of cells.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Stephanie I. Stroll
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Biological Sciences
| | - Darlin Lantigua
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Gulden Camci-Unal
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
6
|
Myszka B, Hurle K, Zheng K, Wolf SE, Boccaccini AR. Mechanical improvement of calcium carbonate cements by in situ HEMA polymerization during hardening. J Mater Chem B 2019. [DOI: 10.1039/c9tb00237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The brittleness of calcium carbonate-based cements, which currently impedes their exploitation, can be overcome by a straightforward polymer-reinforcement strategy.
Collapse
Affiliation(s)
- Barbara Myszka
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern – Mineralogy
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91054 Erlangen
- Germany
| | - Kai Zheng
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
| | - Stephan E. Wolf
- Institute of Glass and Ceramics
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems (FPS)
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Friedrich-Alexander University Erlangen-Nürnberg (FAU)
- 91058 Erlangen
- Germany
- Interdisciplinary Center for Functional Particle Systems (FPS)
| |
Collapse
|
7
|
Rodríguez AP, Sánchez MA, Felice B, Zamora ML, Tsujigiwa H, Takabatake K, Kawai H, Nakano K, Nagatsuka H. In Vitro Efficacy of CaCO 3 Content in CaTiO 3– CaCO 3 Composites for Bone Growth. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Andrea Paola Rodríguez
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - María Alejandra Sánchez
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Betiana Felice
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Martín Lucas Zamora
- Laboratorio de Medios e Interfases, Departamento de Bioingeniería, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
| |
Collapse
|
8
|
Kotelnikov GP, Kolsanov AV, Shcherbovskikh AE, Nikolaenko AN, Prikhod'ko SA, Popov NV, Khassan MA. [Reconstruction of posttraumatic and postoperative defects of lower jaw]. Khirurgiia (Mosk) 2017:69-72. [PMID: 28745712 DOI: 10.17116/hirurgia2017769-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- G P Kotelnikov
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - A V Kolsanov
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - A E Shcherbovskikh
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - A N Nikolaenko
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - S A Prikhod'ko
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - N V Popov
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| | - M A Khassan
- Samara State Medical University, Health Ministry of the Russian Federation, Samara, Russia
| |
Collapse
|
9
|
Sheikh Z, Hamdan N, Ikeda Y, Grynpas M, Ganss B, Glogauer M. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater Res 2017; 21:9. [PMID: 28593053 PMCID: PMC5460509 DOI: 10.1186/s40824-017-0095-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease is categorized by the destruction of periodontal tissues. Over the years, there have been several clinical techniques and material options that been investigated for periodontal defect repair/regeneration. The development of improved biomaterials for periodontal tissue engineering has significantly improved the available treatment options and their clinical results. Bone replacement graft materials, barrier membranes, various growth factors and combination of these have been used. The available bone tissue replacement materials commonly used include autografts, allografts, xenografts and alloplasts. These graft materials mostly function as osteogenic, osteoinductive and/or osteoconductive scaffolds. Polymers (natural and synthetic) are more widely used as a barrier material in guided tissue regeneration (GTR) and guided bone regeneration (GBR) applications. They work on the principle of epithelial cell exclusion to allow periodontal ligament and alveolar bone cells to repopulate the defect before the normally faster epithelial cells. However, in an attempt to overcome complications related to the epithelial down-growth and/or collapse of the non-rigid barrier membrane and to maintain space, clinicians commonly use a combination of membranes with hard tissue grafts. This article aims to review various available natural tissues and biomaterial based bone replacement graft and membrane options used in periodontal regeneration applications.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Nader Hamdan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, Nova Scotia B3H 4R2 Canada
| | - Yuichi Ikeda
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-5810 Japan
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde St, Toronto, ON M5T 3H7 Canada
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, 150 College Street, Toronto, ON M5S 3E2 Canada
| |
Collapse
|
10
|
Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. Int J Oral Sci 2017; 9:133-138. [PMID: 28452375 PMCID: PMC5709541 DOI: 10.1038/ijos.2017.13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
In an attempt to overcome the limitations of titanium in dental and orthopaedic clinical applications, a new method has been developed to prepare calcium carbonate coatings on sandblasted and acid-etched (SA) titanium implants. The purpose of this study was to investigate the effect of calcium carbonate-SA (CC-SA) implants on osseointegration in vivo. The surfaces of SA and CC-SA implants were characterised for surface morphology and surface chemistry. Subsequently, these two kinds of implants were implanted in the femoral condyles of rabbits. The implants were retrieved and prepared for histological and histomorphometric evaluation 1, 2, 4, 8 and 12 weeks after implantation. Significantly higher values of bone-to-implant contact of the entire implant except the gap area (BIC_ALL) and the bone-to-implant contact of the gap area (BIC_GAP) were found in animals with the CC-SA implants than in those with the SA implants at 4 weeks. Higher values of total gap bone were found in those with the CC-SA implants than in those with the SA implants at 1, 2 and 4 weeks. In conclusion, the current findings demonstrate that the calcium carbonate coating can improve and accelerate the early ingrowth of bone and osseointegration at the early healing phase. This may reduce clinical healing times and thus improve implant success rates.
Collapse
|
11
|
Ramos AP, Cruz MAE, Tovani CB, Ciancaglini P. Biomedical applications of nanotechnology. Biophys Rev 2017; 9:79-89. [PMID: 28510082 PMCID: PMC5425815 DOI: 10.1007/s12551-016-0246-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/26/2016] [Indexed: 02/03/2023] Open
Abstract
The ability to investigate substances at the molecular level has boosted the search for materials with outstanding properties for use in medicine. The application of these novel materials has generated the new research field of nanobiotechnology, which plays a central role in disease diagnosis, drug design and delivery, and implants. In this review, we provide an overview of the use of metallic and metal oxide nanoparticles, carbon-nanotubes, liposomes, and nanopatterned flat surfaces for specific biomedical applications. The chemical and physical properties of the surface of these materials allow their use in diagnosis, biosensing and bioimaging devices, drug delivery systems, and bone substitute implants. The toxicology of these particles is also discussed in the light of a new field referred to as nanotoxicology that studies the surface effects emerging from nanostructured materials.
Collapse
Affiliation(s)
- Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil.
| | - Marcos A E Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Abstract
Xenogeneic bone graft materials are an alternative to autologous bone grafting. Among such implants, coralline-derived bone grafts substitutes have a long track record as safe, biocompatible and osteoconductive graft materials. In this review, we present the available literature surrounding their use with special focus on the commercially available graft materials. Corals thanks to their chemical and structural characteristics similar to those of the human cancellous bone have shown great potential but clinical data presented to date is ambiguous with both positive and negative outcomes reported. Correct formulation and design of the graft to ensure adequate osteo-activity and resorption appear intrinsic to a successful outcome.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, United Kingdom.
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
13
|
Tovani CB, Zancanela DC, Faria AN, Ciancaglini P, Ramos AP. Bio-inspired synthesis of hybrid tube-like structures based on CaCO3 and type I-collagen. RSC Adv 2016. [DOI: 10.1039/c6ra18984a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tube-like hybrid particles based on calcium carbonate, a biocompatible mineral, and collagen, enhance osteoblasts viability.
Collapse
Affiliation(s)
- C. B. Tovani
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - D. C. Zancanela
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - A. N. Faria
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - P. Ciancaglini
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - A. P. Ramos
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| |
Collapse
|
14
|
Sheikh Z, Sima C, Glogauer M. Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation. MATERIALS 2015. [PMCID: PMC5455762 DOI: 10.3390/ma8062953] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Collapse
Affiliation(s)
- Zeeshan Sheikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-514-224-7490
| | - Corneliu Sima
- Department of Applied Oral Sciences, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA; E-Mail:
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Room 221, Fitzgerald Building, 150 College Street, Toronto, ON M5S 3E2, Canada; E-Mail:
| |
Collapse
|
15
|
Müller WEG, Neufurth M, Huang J, Wang K, Feng Q, Schröder HC, Diehl-Seifert B, Muñoz-Espí R, Wang X. Nonenzymatic Transformation of Amorphous CaCO3into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo Hydroxyapatite Bone Formation. Chembiochem 2015; 16:1323-32. [DOI: 10.1002/cbic.201500057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/11/2022]
|
16
|
Carinci F, Santarelli A, Laino L, Pezzetti F, De Lillo A, Parisi D, Bambini F, Procaccini M, Testa N, Cocchi R, Muzio LL. Pre-Clinical Evaluation of a New Coral-Based Bone Scaffold. Int J Immunopathol Pharmacol 2014; 27:221-34. [DOI: 10.1177/039463201402700209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coral is used worldwide for bone reconstruction. The favorable characteristics that make this material desirable for implantation are (i) osteoinduction, (ii) and osteoconduction. These proprieties have been demonstrated by in vivo studies with animal models and clinical trials over a twenty-year period. Also poly(2-hydroxyethylmethacrylate) [poly(HEMA)] is a widely used biomaterial. By using coral and poly(HEMA), a scaffold for bone reconstruction application has been recently synthesized. Cytological, histological and genetic analyses were performed to characterize this new alloplastic material. Four samples were analyzed: (a) white coral (WC), (b) red coral (RC), (c) WC plus polymer (WCP) and (d) RC plus polymer (RCP). Quantification of mitochondrial dehydrogenase activity by MTT assay was performed as indirect detector of cytotoxicity. In vivo effects were revealed by implanting corals and coral-based polymers in rabbit tibia. Samples were collected after 4 weeks and subjected to histological analysis. To evaluate the genetic response of cells to corals and coral-derived polymers an osteoblast-like cell line (i.e. MG63) was cultured in wells containing (a) medium, (b) medium plus corals and (c) medium plus two types of scaffolds (RCP or WCP). RNAs extracted from cells were retro-transcribed and hybridized on DNA 19.2K microarrays. No cytotoxicity was detected in corals and coral-based biopolymers. No inflammation or adverse effect was revealed by histological examination. By microarray analysis 154 clones were differentially expressed between RC and WC (81 up and 73 down regulated) whereas only 15 clones were repressed by the polymer. Histological evaluation not only confirmed that coral is a biocompatible material, but also that the polymer has no adverse effect. Microarray results were in agreement with cytological and histological analyses and provided further data regarding the genetic effects of RC, WC and the new polymer.
Collapse
Affiliation(s)
- F. Carinci
- Department of Experimental Morphology, Surgery and Medicine, Ferrara University, Ferrara, Italy
| | - A. Santarelli
- Department of Clinic Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Laino
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - F. Pezzetti
- Department of Specialistic, Diagnostic and Experimental Medicine, Bologna University, Bologna, Italy
| | - A. De Lillo
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - D. Parisi
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - F. Bambini
- Department of Clinic Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - M. Procaccini
- Department of Clinic Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - N.F. Testa
- Interdisciplinary Department of Medicine, Bari University, Bari, Italy
| | - R. Cocchi
- IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Foggia, Italy
| | - L. Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| |
Collapse
|
17
|
Evaluation of Centrifuged Bone Marrow on Bone Regeneration Around Implants in Rabbit Tibia. IMPLANT DENT 2012; 21:481-5. [DOI: 10.1097/id.0b013e31826916b6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Obata A, Hasegawa D, Nakamura J, Jones JR, Kasuga T. Induction of hydroxycarbonate apatite formation on polyethylene or alumina substrates by spherical vaterite particles deposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1976-1981. [PMID: 34062684 DOI: 10.1016/j.msec.2012.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/10/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
Hydroxycarbonate apatite (HCA) layers were formed on polyethylene (PE) or alumina substrates by depositing spherical sub-micron vaterite particles and then immersing in simulated body fluid (SBF). HCA formation on vaterite-coated PE was faster than that on coated alumina (3days for PE and 7days for alumina). The adsorption of phosphate ions on the vaterite particles in SBF was studied by monitoring changes in the concentration of phosphorous in SBF and the surface charges of vaterite during the SBF immersion. The phosphorous concentration of SBF in which a vaterite-coated PE was immersed for 1h was lower than that in which a vaterite-coated alumina was immersed. Zeta potential of the vaterite surface deposited on PE drastically decreased after 1h immersion in SBF. The vaterite particles deposited on each substrate immediately adsorbed phosphate ions in SBF. The amount of ions adsorbing on the vaterite surfaces deposited on PE was larger than that on alumina. This was attributed to differences in the surface charges between PE (-16mV) and alumina (+38mV). The phosphate adsorption was predominantly electrostatic therefore related to the surface charge of vaterite particles. The surface charges of substrates may affect the charge of vaterite particles.
Collapse
Affiliation(s)
- Akiko Obata
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan; Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Daiki Hasegawa
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Jin Nakamura
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Toshihiro Kasuga
- Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
19
|
|
20
|
Kim BS, Kim JS, Sung HM, You HK, Lee J. Cellular attachment and osteoblast differentiation of mesenchymal stem cells on natural cuttlefish bone. J Biomed Mater Res A 2012; 100:1673-9. [PMID: 22447716 PMCID: PMC3489057 DOI: 10.1002/jbm.a.34113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/10/2012] [Accepted: 02/01/2012] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to describe an approach that aims to provide fundamental information for the application of natural cuttlefish bone. Before applying cuttlefish bone as a bone defect filling material, we evaluated proliferation, adhesion, and cell viability of human mesenchymal stem cells (hMSCs) cultured on cuttlefish bone. Cuttlefish bone was separated into two parts (dorsal shield and lamellar region) and each part was used. Cell proliferation and viability were assessed using the MTS assay and live/dead fluorescence staining method. The morphology was observed using scanning electron microscopy (SEM). hMSCs were stimulated with osteogenic medium and osteoblast differentiation was evaluated. The fluorescence images showed that the seeded cells grew well and that cell distribution was in accordance with the surface morphology of the cuttlefish bone. Compared with the dorsal shield, cells penetrated deeper into the three-dimensional inner space of the lamellar part. Furthermore, under osteogenic differentiation conditions, alkaline phosphatase activity increased and the mRNA expression of ALP, runt-related transcription factor 2, and collagen type I α1 was increased in hMSCs cultured on both the dorsal shield and lamellar block. These results indicate the potential of cuttlefish bone as an ideal scaffold for bone regenerative materials. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.
Collapse
Affiliation(s)
- Beom-Su Kim
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | |
Collapse
|
21
|
El Malti W, Laurencin D, Guerrero G, Smith ME, Mutin PH. Surface modification of calcium carbonate with phosphonic acids. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm13555d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liu Y, Jiang T, Zhou Y, Zhang Z, Wang Z, Tong H, Shen X, Wang Y. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Zhang X, Yan F, Guo C, Li F, Chen G, Huang Z, Yuan G. Preparation and structure of calcium peroxide-templated porous calcium carbonate crystals. CRYSTAL RESEARCH AND TECHNOLOGY 2011. [DOI: 10.1002/crat.201100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
|
25
|
Marukawa K, Ueki K, Okabe K, Nakagawa K, Yamamoto E. Use of self-setting α-tricalcium phosphate for maxillary sinus augmentation in rabbit. Clin Oral Implants Res 2010; 22:606-12. [DOI: 10.1111/j.1600-0501.2010.02023.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Okabe K, Ueki K, Marukawa K, Mukozawa A, Miyazaki M, Nakagawa K. An experimental study of use of absorbable plate in combination with self-setting α-tricalcium phosphate for orthognathic surgery. ACTA ACUST UNITED AC 2010; 110:560-9. [PMID: 20573533 DOI: 10.1016/j.tripleo.2010.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 02/10/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this study was to histologically and immunohistochemically evaluate bone formation using both self-setting α-tricalcium phosphate (α-TCP; Biopex) and absorbable plate (Super Fixsorb-MX) in rabbit cranium bone. STUDY DESIGN Twelve adult male Japanese white rabbits (12-16 wk, 2.5-3.0 kg) were used. The surgical defects were made in the nasal bone of a rabbit, and Biopex was implanted in the left side and no material in the right side. Two-hole absorbable plate and 2 screws (Super Fixsorb-MX) were fixed across the defect in each side. The rabbits were killed at 1, 4, 12, and 24 weeks after surgery, and formalin-fixed specimens were embedded in acrylic resin. The specimens were stained with hematoxylin and eosin. For immunohistochemical analysis, the specimens were treated with bone morphogenetic protein 2 (BMP-2) antibodies. Finally, these were evaluated microscopically. RESULTS New bone formation was observed in the region of absorbable plate and nasal membrane after >4 weeks. The area of new bone with Biopex was significantly larger than that of the control side after 1, 4, and 12 weeks (P < .05). The number of BMP-2-stained cells in the experimental side was significantly larger than in the control side after 4 and 12 weeks (P < .05). CONCLUSION This study suggests that the use of absorbable plate (Super Fixsorb-MX) in combination with Biopex could be useful and that both of Super Fixsorb-MX and Biopex could provide adequate bone regeneration.
Collapse
Affiliation(s)
- Katsuhiko Okabe
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Liang X, Xiang J, Zhang F, Xing L, Song B, Chen S. Fabrication of hierarchical CaCO3 mesoporous spheres: particle-mediated self-organization induced by biphase interfaces and SAMs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5882-5888. [PMID: 20020762 DOI: 10.1021/la9037815] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly ordered hierarchical calcium carbonate is an important phase involved in calcification by a wide variety of invertebrate organisms, and its formation is of technological interest in the development of functional materials. In this article, porous CaCO(3) hierarchical microspheres with a hedgehoglike appearance have been fabricated on the flexible substrate under mild conditions. There are two points that play important roles in the regular organization of the terminal products: one is the biphase interfaces, which are generated by organic solvent n-hexane and an aqueous saturated solution of Ca(OH)(2), and the other is hydroxyl-terminated monolayers assembled on the flexible PET (poly(ethylene terephthalate)) substrate. The SEM images show that novel CaCO(3) hierarchical microspheres consist of densely stacked "shuttles" by the oriented self-organization of CaCO(3) nanoparticles. The IR and XRD spectra indicate that the as-synthesized products are composed of a calcite phase obtained by an ACC (amorphous calcium carbonate)-to-calcite transformation. In view of the results, a nanoparticle-mediated self-organization process induced by biphase interfaces and SAMs template is proposed for the integration of functional materials and nanodevices.
Collapse
Affiliation(s)
- Xiaohong Liang
- College of Chemistry and Chemical Engineering, Graduate University of the Chinese Academy of Sciences, Beijing, 100049 China
| | | | | | | | | | | |
Collapse
|
28
|
Outcome of 47 Consecutive Sinus Lift Operations Using Aragonitic Calcium Carbonate Associated With Autologous Platelet-Rich Plasma. J Craniofac Surg 2009; 20:2067-74. [DOI: 10.1097/scs.0b013e3181be88ab] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Xianmiao C, Yubao L, Yi Z, Li Z, Jidong L, Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.05.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Huan Z, Chang J. Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2913-2918. [PMID: 18347949 DOI: 10.1007/s10856-008-3423-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/29/2008] [Indexed: 05/26/2023]
Abstract
In this article, a novel bone cement composed of tricalcium silicate (Ca(3)SiO(5); C(3)S) and calcium carbonate (CaCO(3)) was prepared with the weight percent of CaCO(3) in the range of 0, 10, 20, 30, and 40%. The initial setting time was dramatically reduced from 90 to 45 min as the content of CaCO(3) increased from 0 to 40%, and the workable paste with a liquid/powder (L/P) ratio of 0.8 ml/g could be injected between 2 and 20 min (nozzle diameter 2.0 mm). The composite cement showed higher mechanical strength (24-27 MPa) than that of the pure Ca(3)SiO(5) paste (14-16 MPa). Furthermore, the composite cement could induce apatite formation and degrade in the phosphate buffered saline. The results indicated that the Ca(3)SiO(5)-CaCO(3) paste had better hydraulic properties than pure Ca(3)SiO(5) paste, and also the composite cement was bioactive and degradable. The novel bone cement could be a potential candidate as a bone substitute.
Collapse
Affiliation(s)
- Zhiguang Huan
- Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China
| | | |
Collapse
|
31
|
Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 2007; 80:85-93. [PMID: 16960828 DOI: 10.1002/jbm.a.30840] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue engineered bone has become a bone substitute for the treatment of bone defects in animal research. This study investigated the osteogenesis capacity of coral-MSCs-rhBMP-2 composite with the auto-bone-graft as control. Coral-MSCs-rhBMP-2 composite were fabricated by coral (as main scaffold), rhBMP-2 (as growth factor), and MSCs (cultured from iliac marrow as seed cells). Critical-sized defects (d = 15 mm) were made on forty rabbits crania and treated by different composite scaffolds: iliac autograft (n = 8), coral (n = 8), rhBMP-2/coral (n = 8), and MSCs/rhBMP-2/coral (n = 8). The defects were evaluated by gross observation, radiographic examination, histological examination, and histological fluorescence examinations after 8 and 16 weeks. The results showed that repair of bone defect was the least in coral group, and significant ingrowth of new bone formation and incorporation could be seen with 77.45% +/- 0.52% in radiopacity in MSCs/rhBMP-2/coral group, which was similar to that in iliac autograft group (84.61% +/- 0.56% in radiopacity). New bone formation in MSCs/rhBMP-2/coral group was more than that in rhBMP-2/coral group. And osteogenesis rate in MSCs/rhBMP-2/coral group (10.23 +/- 1.45 microm) was much faster than that in rhBMP-2/coral group (5.85 +/- 2.19 microm) according to histological fluorescence examination. Newly formed bone partly came from induced MSCs in composite scaffold according to bromodeoxyuridine immunohistochemical examination. These data implicated that MSCs could produce synergic effect with coral-rhBMP-2, and the tissue engineered bone of coral-MSCs-rhBMP-2 is comparable to auto-bone-graft for the repair of critical-sized bone defect.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oral and Maxillofacial Surgery, Stomatological College, Fourth Military Medical University, ChangLe West Road, 145 Xi'an, Shaanxi 710032, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Combes C, Bareille R, Rey C. Calcium carbonate–calcium phosphate mixed cement compositions for bone reconstruction. J Biomed Mater Res A 2006; 79:318-28. [PMID: 16817210 DOI: 10.1002/jbm.a.30795] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The feasibility of making calcium carbonate-calcium phosphate (CaCO(3)-CaP) mixed cements, comprising at least 40% (w/w) CaCO(3) in the dry powder ingredients, has been demonstrated. Several original cement compositions were obtained by mixing metastable crystalline CaCO(3) phases with metastable amorphous or crystalline CaP powders in aqueous medium. The cements set within at most 1 h at 37 degrees C in atmosphere saturated with water. The hardened cement is microporous and exhibits weak compressive strength. The setting reaction appeared to be essentially related to the formation of a highly carbonated nanocrystalline apatite phase by reaction of the metastable CaP phase with part or almost all of the metastable CaCO(3) phase. The recrystallization of metastable CaP varieties led to a final cement consisting of a highly carbonated poorly crystalline apatite analogous to bone mineral associated with various amounts of vaterite and/or aragonite. The presence of controlled amounts of CaCO(3) with a higher solubility than that of the apatite formed in the well-developed CaP cements might be of interest to increase resorption rates in biomedical cement and favors its replacement by bone tissue. Cytotoxicity testing revealed excellent cytocompatibility of CaCO(3)-CaP mixed cement compositions.
Collapse
Affiliation(s)
- C Combes
- CIRIMAT, UMR CNRS 5085, Equipe Physico-Chimie des Phosphates, ENSIACET, 118 route de Narbonne, 31077 Toulouse cedex 4, France.
| | | | | |
Collapse
|
33
|
Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G, Caputi S, Perrotti V, Mangano C, Piattelli A. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. IMPLANT DENT 2006; 15:197-207. [PMID: 16766904 DOI: 10.1097/01.id.0000220120.54308.f3] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Rehabilitation of the edentulous posterior maxilla with dental implants can be difficult because of insufficient bone volume caused by pneumatization of the maxillary sinus and crestal bone resorption. Different biomaterials have been used for sinus augmentation. The aim of the study was to compare different materials in maxillary sinus augmentation in man. METHODS A total of 94 patients participated in this study. Inclusion criteria were maxillary partial (unilateral or bilateral) edentulism involving the premolar/molar areas, and the presence of 3-5-mm crestal bone between the sinus floor and alveolar ridge. A total of 362 implants were inserted. There were 9 biomaterials used in the sinus augmentation procedures. Each patient underwent 1 biopsy after 6 months. A total of 144 specimens were retrieved. RESULTS None of the 94 patients had complications. All implants were stable, and x-ray examination showed dense bone around the implants. Mean follow-up was 4 years. There were 7 implants that failed. Histologic resultsshowed that almost all the particles of the different biomaterials (i.e., autologous bone, demineralized freeze-dried bone allograft Biocoral [Inoteb, St. Gonnery, France], Bioglass [US Biomaterials, Alachua, FL], Fisiograft [Ghimas, Bologna, Italy], PepGen P-15 [Dentsply Friadent CeraMed, Lakewood, CO], calcium sulfate, Bio-Oss [Geistlich Pharma AG, Wohlhusen, Switzerland], and hydroxyapatite) were surrounded by bone. Some biomaterials were more resorbable than others. Included are the histomorphometry clarified features of the newly formed bone around the different grafted particles. CONCLUSION All biomaterials examined resulted in being biocompatible and seemed to improve new bone formation in maxillary sinus lift. No signs of inflammation were present. The data are very encouraging because of the high number of successfully treated patients and the good quality of bone found in the retrieved specimens.
Collapse
|
34
|
Combes C, Miao B, Bareille R, Rey C. Preparation, physical–chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials 2006; 27:1945-54. [PMID: 16219345 DOI: 10.1016/j.biomaterials.2005.09.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
The feasibility of calcium carbonate cements involving the recrystallisation of metastable calcium carbonate varieties has been demonstrated. Calcium carbonate cement compositions presented in this paper can be prepared straightforwardly by simply mixing water (liquid phase) with two calcium carbonate phases (solid phase) which can be easily obtained by precipitation. An original cement composition was obtained by mixing amorphous calcium carbonate and vaterite with an aqueous medium. The cement set and hardened within 2h at 37 degrees C in an atmosphere saturated with water and the final composition of the cement consisted mostly of aragonite. The hardened cement was microporous and showed poor mechanical properties. Cytotoxicity tests revealed excellent cytocompatibility of calcium carbonate cement compositions. Calcium carbonates with a higher solubility than the apatite formed for most of the marketed calcium phosphate cements might be of interest to increase biomedical cement resorption rates and to favour its replacement by bone tissue.
Collapse
Affiliation(s)
- C Combes
- CIRIMAT, UMR CNRS 5085, Equipe Physico-Chimie des Phosphates, ENSIACET, 118 route de Narbonne, 31077 Toulouse Cedex 4, France.
| | | | | | | |
Collapse
|
35
|
Nair PNR, Luder HU, Maspero FA, Fischer JH, Schug J. Biocompatibility of b-Tricalcium Phosphate Root Replicas in Porcine Tooth Extraction Sockets - A Correlative Histological, Ultrastructural, and X-ray Microanalytical Pilot Study. J Biomater Appl 2006; 20:307-24. [PMID: 16443623 DOI: 10.1177/0885328206054167] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This investigation studies porcine tissue response in tooth extraction sockets treated with root replicas made out of β-tricalcium phosphate (β-TCP; β-Ca3(PO4)2) granules, molded and held together by thermal fusion of a thin film of polyglycolic-polylactic acid copolymer. Six left mandibular third incisors (n 1/4 6) of experimental pigs are treated with the root replicas and four contralateral incisors are used as nontreated controls (n 1/4 4). Two animals each were killed at 20, 40, and 60 weeks of observation periods. The mandibular jaw segments were prepared in toto for light microscopy by resin embedding and serial ground sectioning. Additionally, one β-TCP-treated socket at 60 weeks was thoroughly investigated by correlative light, electron microscopic and electron probe X-ray microanalysis to assess the bioabsorbability and host removal of the replica material from the implant site. The extraction wounds of the animals healed satisfactorily with very little histologically observable differences in the healing pattern of the test and control sites. The β-TCP was completely removed from extracellular sites, but at 60 weeks, remnants of it were found in the cytoplasm of multinucleated giant cells. The root replicas made out of β-TCP were biocompatible and bioabsorbable. Osseous healing occurred both in the test and control sockets, but the healing process was delayed due to the presence of β-TCP particles.
Collapse
Affiliation(s)
- P N Ramachandran Nair
- Institute of Oral Biology, Section for Oral Structures and Development, Centre of Dental and Oral Medicine, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
36
|
Fujihara K, Kotaki M, Ramakrishna S. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 2005; 26:4139-47. [PMID: 15664641 DOI: 10.1016/j.biomaterials.2004.09.014] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/10/2004] [Indexed: 11/23/2022]
Abstract
In this study, new type of guided bone regeneration (GBR) membranes were fabricated by polycaprolactone (PCL)/CaCO3 composite nano-fibers with two different PCL to calcium carbonate (CaCO3) ratios (PCL:CaCO3=75:25 wt% and 25:75 wt%). The composite nano-fibers were successfully fabricated by electrospinning method and CaCO3 nano-particles on the surface of nano-fibers were confirmed by energy disperse X-ray (EDX) analysis. In order to achieve mechanical stability of GBR membranes, composite nano-fibers were spun on PCL nano-fibrous membranes which has high tensile strength, i.e., the membranes consist of two layers of functional layer (PCL/CaCO3) and mechanical support layer (PCL). Two different GBR membranes were prepared, i.e., GBR membrane (A)=PCL:CaCO3=75:25 wt%+PCL, GBR membrane (B)=PCL:CaCO3=25:75 wt%+PCL. Osteoblast attachment and proliferation of GBR membrane (A) and (B) were discussed by MTS assay and scanning electron microscope (SEM) observation. As a result, absorbance intensity of GBR membrane (A) and tissue culture polystyrene (TCPS) increased during 5 days seeding time. In contrast, although absorbance intensity of GBR membrane (B) also increased, its value was lower than membrane (A). SEM observation showed that no significant difference in osteoblast attachment manner was seen on GBR membrane (A) and (B). Because of good cell attachment manner, there is a potential to utilize PCL/CaCO3 composite nano-fibers to GBR membranes.
Collapse
Affiliation(s)
- K Fujihara
- Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576.
| | | | | |
Collapse
|
37
|
Kim CS, Choi SH, Cho KS, Chai JK, Wikesjö UME, Kim CK. Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial. J Clin Periodontol 2005; 32:583-9. [PMID: 15882215 DOI: 10.1111/j.1600-051x.2005.00729.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Autogenous bone grafts and bone biomaterials are being used as part of protocols aiming at reconstruction of periodontal defects. There is a limited biologic information on the effect of such materials on periodontal healing, in particular aberrant healing events that may prevent their general use. The objective of this study was, using histological techniques, to evaluate periodontal healing with focus on root resorption and ankylosis following implantation of autogenous bone and a coral-derived biomaterial into intra-bony defects in dogs. METHODS One-wall intra-bony periodontal defects were surgically created at the distal aspect of the second and the mesial aspect of the fourth mandibular premolars in either right or left jaw quadrants in four Beagle dogs. Each animal received particulated autogenous bone and the resorbable calcium carbonate biomaterial into discrete one-wall intra-bony defects. The mucoperiosteal flaps were positioned and sutured to their pre-surgery position. The animals were euthanized 8 weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis. RESULTS There were no significant differences in periodontal healing between sites receiving autograft bone and the coral-derived biomaterial. A well-organized periodontal ligament bridging new bone and cementum regeneration was observed extending coronal to a notch prepared to delineate the apical extent of the defect. Osteoid and bone with enclosed osteocytes were formed onto the surface of both autograft and coral particles. Although small resorption pits were evident in most teeth, importantly none of the biomaterials provoked marked root resorption. Ankylosis was not observed. CONCLUSION Particulated autogenous bone and the coral-derived biomaterial may be implanted into periodontal defects without significant healing aberrations such as root resorption and ankylosis. The histopathological evaluation suggests that the autogenous bone graft has a limited osteogenic potential as demonstrated in this study model.
Collapse
Affiliation(s)
- Chang-Sung Kim
- Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The feasibility of calcium carbonate-based cements involving the re-crystallization of
metastable calcium carbonate varieties has been demonstrated. Two cement compositions were obtained by mixing either calcium carbonate phases (cement A) or a calcium carbonate and a calcium phosphate phase (cement B) with an aqueous media. These cements set and hardened after 30 minutes and 90 minutes respectively. The final composition of cement A was calcite and aragonite whereas cement B lead to a carbonated apatite analogous to bone mineral. Despite poor
mechanical properties the presence of a high carbonate content in the final phase might be of interest to increase the cement resorption rate and to favour its replacement by bone tissue. First assays of implantation performed on fresh anatomical pieces (fresh cadavers) at 37°C revealed important advantages of such cement compositions: easiness of use, rapid setting, good adhesion to
bone, very good homogeneity and stability of the cement.
Collapse
|
39
|
Koo KT, Polimeni G, Qahash M, Kim CK, Wikesjö UME. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial. J Clin Periodontol 2005; 32:104-10. [PMID: 15642067 DOI: 10.1111/j.1600-051x.2004.00632.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Previous studies suggest that a bioresorbable calcium carbonate coral implant (CI) supports space provision and bone formation for guided tissue regeneration (GTR). However, it could not be discerned whether observed effects were because of GTR or whether the CI possessed osteoconductive properties enhancing bone formation. The objective of this study was to evaluate bone formation associated with the CI biomaterial in the presence and absence of provisions for GTR. METHODS Routine, critical size, 6 mm, supra-alveolar periodontal defects were created in 12 young adult Beagle dogs. Five animals received the CI alone (Biocoral 1000). Seven animals received the CI/GTR combination using an expanded polytetrafluoroethylene barrier (GORE-TEX Regenerative Material). The animals were euthanized at 4 weeks postsurgery and tissue blocks of the experimental sites were collected and processed for histometric analysis. RESULTS Clinical healing was uneventful. The histopathologic and histometric analysis revealed significantly increased bone formation (height and area) in sites receiving the CI/GTR combination compared with CI alone (2.3+/-0.6 versus 1.2+/-0.9 mm; and 3.1+/-0.8 versus 1.2+/-1.1 mm2; p<0.05). The CI biomaterial appeared to be mostly unassociated with new bone formation; the CI particles were observed sequestered in newly formed bone, fibrovascular marrow, and in the supra-alveolar connective tissue. Cementum formation was limited and observed in few sites for both treatment protocols. CONCLUSION While GTR promoted new bone formation, the CI contributed limited, if any, osteoconductive effects.
Collapse
Affiliation(s)
- Ki-Tae Koo
- Laboratory for Applied Periodontal and Craniofacial Regeneration, Department of Periodontology, Temple University School of Dentistry, Philadelphia, PA 19140, USA
| | | | | | | | | |
Collapse
|
40
|
Guarnieri R, Pecora G, Fini M, Aldini NN, Giardino R, Orsini G, Piattelli A. Medical grade calcium sulfate hemihydrate in healing of human extraction sockets: clinical and histological observations at 3 months. J Periodontol 2004; 75:902-8. [PMID: 15295959 DOI: 10.1902/jop.2004.75.6.902] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Following tooth extraction, remodeling and resorption of the alveolar bone at the extraction site characterize wound healing. This produces a reduction in ridge volume and difficulties in delayed placement of implants in an ideal position. Medical grade calcium sulfate hemihydrate (MGCSH) has been proposed as a graft material in extraction sockets to minimize the reduction in ridge volume. The aim of the present study was to investigate the influence of MGCSH on the histopathologic pattern of intrasocket regenerated bone and to evaluate histologically the healed MGCSH grafted extraction socket site 3 months postextraction METHODS MGCSH was grafted in 10 fresh human extraction sockets in 10 patients. Five post-extraction sockets were used as controls. At 3 months a cylindrical tissue specimen, 2.5 mm in diameter, was trephined from the previously grafted site followed by implant placement. Non-decalcified specimens were sectioned at a cross-horizontal plane and stained with fast green, toluidine blue, and Van Kossa stains for histological and histomorphometrical examination. RESULTS Histologically, MGCSH was not observed in most of the specimens. Newly formed bone with lamellar arrangements was identified in all the horizontal sections with no difference between apical, medium, and coronal areas. The mean trabecular area in the coronal sections was 58.6% +/- 9.2%; in the medium sections, 58.1% +/- 6.2%; and in the apical sections, 58.3% +/- 7.8%. The differences were not statistically significant. CONCLUSION MGCSH seems to be an ideal graft material in extraction socket bone regeneration because it is almost completely resorbable, and it allows a new trabecular bone arrangement at 3 months.
Collapse
Affiliation(s)
- Renzo Guarnieri
- Department of Experimental Surgery, Research Institute Codivilla-Putti, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Hao H, Amizuka N, Oda K, Fujii N, Ohnishi H, Okada A, Nomura S, Maeda T. A histological evaluation on self-setting alpha-tricalcium phosphate applied in the rat bone cavity. Biomaterials 2004; 25:431-42. [PMID: 14585691 DOI: 10.1016/s0142-9612(03)00550-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study aimed to elucidate the biological effects of a self-setting tricalcium phosphate bone substitute (BIOPEX) applied in rat femoral cortical bone cavities. Narrow penetrations through the cavity and bone marrow were prepared to obtain cellular sources. In the experimental group at day 1, a thin cell layer intruded into a narrow space between the grafted BIOPEX and the bottom of the cavity. From days 5 to 10, a range of tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts accumulated on the surface of the BIOPEX facing the bottom of the cavity, whilst many alkaline phosphatase (ALPase)-positive osteoblasts were localized on the bone surface opposing the BIOPEX. However, at day 20, osteoblasts were localized neighboring the osteoclasts on the BIOPEX, and deposited bone matrices onto this material, implying a coupling between osteoclasts and osteoblasts. At days 30 and 40 post-operation, small remnants of BIOPEX particles were present in the new bone with a profile of compact bone. Thus, BIOPEX is resorbed by osteoclasts, and succeeded by osteoblastic bone apposition with a coupling of osteoclasts and osteoblasts at the later stage. In conclusion, the use of BIOPEX provides adequate bone regeneration with the profile of compact bone.
Collapse
Affiliation(s)
- Hirotsugu Hao
- Division of Oral Anatomy, Department of Oral Biological Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tapety FI, Amizuka N, Uoshima K, Nomura S, Maeda T. A histological evaluation of the involvement of Bio-OssR in osteoblastic differentiation and matrix synthesis. Clin Oral Implants Res 2004; 15:315-24. [PMID: 15142094 DOI: 10.1111/j.1600-0501.2004.01012.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to investigate the responses of bone cells to a deproteinized bovine bone material, Bio-Oss (Geistlich-Pharma, Wolhunsen, Switzerland), which was grafted in artificial bone defects of rat femurs. Standardized bone defects in the cortical bone of the right femurs were grafted with Bio-Oss particles. Narrow penetrations were prepared on the bottom of the cavity, enabling osteogenic cells to migrate from the bone marrow. A defect in the left femur without Bio-Oss was used as a control. The treated femurs were histochemically examined at 1, 3, 5, 7, and 14 days after the operation. At day 1, no osteogenic migration into the cavities occurred in either the control or experimental groups. At day 3, alkaline phosphatase (ALPase) immunohistochemistry showed a migration of the positive cells at the bottom of the cavities of the experimental groups, but not in the control ones. At day 5, new bone formation was recognized at the bottom of the cavity of both groups. In the experimental group, ALPase-positive cells were localized on Bio-Oss and/or on the thin bone matrix that covered this material. The superficial layer of Bio-Oss underlying the newly formed bone exhibited osteocalcin immunoreactivity. Transmission electron microscopy revealed osteoblasts depositing bone matrices--including collagen fibers--on the surface of Bio-Oss. At days 7 and 14, woven bone occupied the previous cavities of both control and experimental groups, accompanied by osteoclasts. Thus, Bio-Oss appears to serve as a scaffold for osteogenic cells as well as to promote osteoblastic differentiation and matrix synthesis.
Collapse
Affiliation(s)
- Fabricio I Tapety
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medicine and Dental Sciences, Gakkoucho-Dori, Japan
| | | | | | | | | |
Collapse
|
43
|
Nair P, Schug J. Observations on healing of human tooth extraction sockets implanted with bioabsorbable polylactic-polyglycolic acids (PLGA) copolymer root replicas: a clinical, radiographic, and histologic follow-up report of 8 cases. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tripleo.2003.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Wikesjö UME, Lim WH, Razi SS, Sigurdsson TJ, Lee MB, Tatakis DN, Hardwick WR. Periodontal repair in dogs: a bioabsorbable calcium carbonate coral implant enhances space provision for alveolar bone regeneration in conjunction with guided tissue regeneration. J Periodontol 2003; 74:957-64. [PMID: 12931757 DOI: 10.1902/jop.2003.74.7.957] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Collapse or compression of a barrier device into a periodontal defect or onto the root surface compromises outcomes following guided tissue regeneration (GTR). Bone biomaterials have been suggested to support regeneration of alveolar bone and to improve space provision with GTR devices. The objective of this study was to evaluate space provision, alveolar bone, and cementum regeneration following use of a bioabsorbable, calcium carbonate biomaterial in conjunction with GTR. METHODS Routine, critical size, 5 to 6 mm, supraalveolar, periodontal defects were created in 5 young adult beagle dogs. Alternate jaw quadrants in consecutive animals received GTR and the coral biomaterial (cGTR) or GTR alone. The animals were euthanized 4 weeks postsurgery and tissue blocks processed for histometric analysis. RESULTS The coral implant particles were surrounded by newly-formed bone or immersed in connective tissue and appeared to resorb and be replaced by bone. There was limited, if any, appreciable cementum regeneration. Space provision was enhanced in cGTR compared to GTR sites (6.1 +/- 1.6 versus 2.4 +/- 0.8 mm2; P<0.05). Bone regeneration (height) was significantly increased in cGTR compared to GTR sites averaging 1.9 +/- 0.6 and 1.2 +/- 0.6 mm, respectively (P<0.05). Bone regeneration (area) was 2-fold greater in cGTR sites compared to the GTR control (3.3 +/- 1.8 versus 1.4 +/- 0.5 mm2), however the difference was not statistically significant (P>0.05). CONCLUSIONS The coral implant significantly enhanced space provision for GTR while alveolar bone formation appeared to be enhanced by its use. Increased healing intervals are needed to fully understand the biologic value of the coral implant as an adjunct to GTR.
Collapse
Affiliation(s)
- Ulf M E Wikesjö
- Laboratory for Applied Periodontal and Craniofacial Regeneration, Department of Periodontology, Temple University, School of Dentistry, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Laguna R, Romo J, Read BA, Wahlund TM. Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi. Appl Environ Microbiol 2001; 67:3824-31. [PMID: 11525973 PMCID: PMC93097 DOI: 10.1128/aem.67.9.3824-3831.2001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Accepted: 06/03/2001] [Indexed: 11/20/2022] Open
Abstract
Emiliania huxleyi is a unicellular marine alga that is considered to be the world's major producer of calcite. The life cycle of this alga is complex and is distinguished by its ability to synthesize exquisitely sculptured calcium carbonate cell coverings known as coccoliths. These structures have been targeted by materials scientists for applications relating to the chemistry of biomedical materials, robust membranes for high-temperature separation technology, lightweight ceramics, and semiconductor design. To date, however, the molecular and biochemical events controlling coccolith production have not been determined. In addition, little is known about the life cycle of E. huxleyi and the environmental and physiological signals triggering phase switching between the diploid and haploid life cycle stages. We have developed laboratory methods for inducing phase variation between the haploid (S-cell) and diploid (C-cell) life cycle stages of E. huxleyi. Plating E. huxleyi C cells on solid media was shown to induce phase switching from the C-cell to the S-cell life cycle stage, the latter of which has been maintained for over 2 years under these conditions. Pure cultures of S cells were obtained for the first time. Laboratory conditions for inducing phase switching from the haploid stage to the diploid stage were also established. Regeneration of the C-cell stage from pure cultures of S cells followed a predictable pattern involving formation of large aggregations of S cells and the subsequent production of cultures consisting predominantly of diploid C cells. These results demonstrate the ability to manipulate the life cycle of E. huxleyi under controlled laboratory conditions, providing us with powerful tools for the development of genetic techniques for analysis of coccolithogenesis and for investigating the complex life cycle of this important marine alga.
Collapse
Affiliation(s)
- R Laguna
- Department of Biological Sciences, California State University San Marcos, San Marcos, California 92096-0001, USA
| | | | | | | |
Collapse
|
46
|
Artzi Z, Tal H, Dayan D. Porous bovine bone mineral in healing of human extraction sockets. Part 1: histomorphometric evaluations at 9 months. J Periodontol 2000; 71:1015-23. [PMID: 10914806 DOI: 10.1902/jop.2000.71.6.1015] [Citation(s) in RCA: 269] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Extraction socket wound healing is characterized by resorption of the alveolar bone at the extraction site. This produces a decrease in ridge volume, deformations of ridge contours, and, thus, difficulties in delayed placement of root-form implants in an ideal position. Cancellous porous bovine bone mineral (PBBM) applied to fresh extraction sockets has recently been proposed to minimize the reduction in ridge volume. The aim of this study was to investigate the influence of PBBM grafted particles on the histopathologic pattern of the intrasocket regenerated bone and to evaluate histomorphometrically the healed PBBM grafted extraction socket site at 9 months' post-extraction. METHODS PBBM particles (250 to 1,000 microns in size) were grafted in 15 fresh human extraction sockets in 15 patients. Socket wall bone height was measured from the crestal ridge level before the mineral particles were inserted. Primary soft tissue closure was performed to protect the grafted particles via a pediculated split palatal flap. At 9 months, socket bone walls were remeasured and cylinder bone samples of the previously PBBM-grafted sites were obtained. Decalcified specimens were sectioned at a cross-horizontal plane and stained with hematoxylin and eosin for histopathologic and histomorphologic examination. Tissue area percentage of bone, PBBM, and connective tissue (CT) was calculated for each specimen from the crestal to the apical region and changes in values compared. RESULTS Average clinical overall bone fill of the augmented socket sites was 82.3%. Histologically, PBBM particles were observed in all specimens. Newly formed bone was characterized by abundance of cellular woven-type bone in the coronal area, while lamellar arrangements could be identified only in the more apical region. New osseous tissue adhered to the PBBM. Histomorphometric measurements showed an increase of mean bone tissue area along the histological sections from 15.9% in the coronal part to 63.9% apically (average 46.3%). CT fraction decreased from 52.4% to 9.5% (average 22.9%) from the crestal to the apical region. PBBM area fraction varied from 26.4% to 35.1% (average 30.8%). Statistical analysis of the comparison between areas of bone, CT, and PBBM was performed in different points along the coronal-apical axis. Differences were significant (P <0.01) at the most crestal, middle, and apical section cut areas, but not at the cervical section cuts. Bone area fraction increased in the apical direction as much as CT correlatively decreased. Unlike CT and bone, PBBM retained constant relative volume (approximately 30%), regardless of the depth of the specimen cores. CONCLUSIONS PBBM particles are an appropriate biocompatible bone derivative in fresh extraction sockets for ridge preservation. The resorbability of this xenograft could not be recognized in a 9-month period. Further investigation is needed to clarify the resorptive mechanisms of PBBM.
Collapse
Affiliation(s)
- Z Artzi
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Israel.
| | | | | |
Collapse
|
47
|
Abstract
Bone replacement grafts will play a continuing role in periodontal and other regenerative therapy. Several choices are available to the clinician including autogenous, allogeneic, xenogeneic and a variety of alloplastic materials. Except for fresh autogenous bone, bone replacement graft(s) do not provide the cellular elements necessary for osteogenesis nor can they reliably be considered truly osteoinductive, but instead are mostly osteoconductive, providing a scaffold for bone deposition. Currently, significant decrease in clinical probing depth and gain of clinical attachment have been reported following use of bone replacement grafts when compared to flap debridement surgery alone for periodontal osseous defects. Reported differences among bone replacement grafts (autogenous, allogeneic, xenogeneic, and alloplastic) occur with respect to histological outcomes. Overall, probing depth reduction, attachment level gain and degree of defect fill are similar for all bone replacement grafts.
Collapse
Affiliation(s)
- H F Nasr
- Department of Periodontics, School of Dentistry, Louisiana State University Medical Center, New Orleans, USA
| | | | | |
Collapse
|