1
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
2
|
Thorarinsdottir HR, Kander T, Holmberg A, Petronis S, Klarin B. Biofilm formation on three different endotracheal tubes: a prospective clinical trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:382. [PMID: 32600373 PMCID: PMC7322705 DOI: 10.1186/s13054-020-03092-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Biofilm formation on endotracheal tubes (ETTs) is an early and frequent event in mechanically ventilated patients. The biofilm is believed to act as a reservoir for infecting microorganisms and thereby contribute to development and relapses of ventilator-associated pneumonia (VAP). Once a biofilm has formed on an ETT surface, it is difficult to eradicate. This clinical study aimed to compare biofilm formation on three widely used ETTs with different surface properties and to explore factors potentially predictive of biofilm formation. METHODS We compared the grade of biofilm formation on ETTs made of uncoated polyvinyl chloride (PVC), silicone-coated PVC, and PVC coated with noble metals after > 24 h of mechanical ventilation in critically ill patients. The comparison was based on scanning electron microscopy of ETT surfaces, biofilm grading, surveillance and biofilm cultures, and occurrence of VAP. RESULTS High-grade (score ≥ 7) biofilm formation on the ETTs was associated with development of VAP (OR 4.17 [95% CI 1.14-15.3], p = 0.031). Compared to uncoated PVC ETTs, the silicone-coated and noble-metal-coated PVC ETTs were independently associated with reduced high-grade biofilm formation (OR 0.18 [95% CI 0.06-0.59], p = 0.005, and OR 0.34 [95% CI 0.13-0.93], p = 0.036, respectively). No significant difference was observed between silicon-coated ETTs and noble-metal-coated ETTs (OR 0.54 [95% CI 0.17-1.65], p = 0.278). In 60% of the oropharyngeal cultures and 58% of the endotracheal cultures collected at intubation, the same microorganism was found in the ETT biofilm at extubation. In patients who developed VAP, the causative microbe remained in the biofilm in 56% of cases, despite appropriate antibiotic therapy. High-grade biofilm formation on ETTs was not predicted by either colonization with common VAP pathogens in surveillance cultures or duration of invasive ventilation. CONCLUSION High-grade biofilm formation on ETTs was associated with development of VAP. Compared to the uncoated PVC ETTs, the silicone-coated and noble-metal-coated PVC ETTs were independently associated with reduced high-grade biofilm formation. Further research on methods to prevent, monitor, and manage biofilm occurrence is needed. TRIAL REGISTRATION ClinicalTrials.gov NCT02284438 . Retrospectively registered on 21 October 2014.
Collapse
Affiliation(s)
- Hulda R Thorarinsdottir
- Department of Clinical Sciences, Lund University, Lund, Sweden. .,Division of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen 4, SE-22185, Lund, Sweden.
| | - Thomas Kander
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen 4, SE-22185, Lund, Sweden
| | - Anna Holmberg
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sarunas Petronis
- Chemistry, Biomaterials and Textiles, RISE Research Institutes of Sweden, Borås, Sweden
| | - Bengt Klarin
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Intensive and Perioperative Care, Skåne University Hospital, Getingevägen 4, SE-22185, Lund, Sweden
| |
Collapse
|
3
|
Irwin NJ, Bryant MG, McCoy CP, Trotter JL, Turner J. Multifunctional, Low Friction, Antimicrobial Approach for Biomaterial Surface Enhancement. ACS APPLIED BIO MATERIALS 2020; 3:1385-1393. [PMID: 35021631 DOI: 10.1021/acsabm.9b01042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(vinyl chloride) (PVC) biomaterials perform a host of life-saving and life-enhancing roles when employed as medical devices within the body. High frictional forces between the device surface and interfacing tissue can, however, lead to a host of complications including tissue damage, inflammation, pain, and infection. We herein describe a versatile surface modification method using multifunctional hydrogel formulations to increase lubricity and prevent common device-related complications. In a clinically relevant model of the urinary tract, simulating the mechanical and biological environments encountered in vivo, coated candidate catheter surfaces demonstrated significantly lower frictional resistance than uncoated PVC, with reductions in coefficient of friction values of more than 300-fold due to hydration of the surface-localized polymer network. Furthermore, this significant lubrication capacity was retained following hydration periods of up to 28 days in artificial urine at pH 6 and pH 9, representing the pH of physiologically normal and infected urine, respectively, and during 200 repeated cycles of applied frictional force. Importantly, the modified surfaces also displayed excellent antibacterial activity, which could be facilely tuned to achieve reductions of 99.8% in adherence of common hospital-acquired pathogens, Staphylococcus aureus and Proteus mirabilis, relative to their uncoated counterparts through incorporation of chlorhexidine in the coating matrix as a model antiseptic. The remarkable, and pH-independent, tribological performance of these lubricious, antibacterial, and highly durable surfaces offers exciting promise for use of this PVC functionalization approach in facilitating smooth and atraumatic insertion and removal of a wide range of medical implants, ultimately maintaining user health and dignity.
Collapse
Affiliation(s)
- Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| | - Michael G Bryant
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| | - Johann L Trotter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| | - Jonathan Turner
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, U.K
| |
Collapse
|
4
|
Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications. Int J Biol Macromol 2020; 145:92-99. [PMID: 31870868 PMCID: PMC7013378 DOI: 10.1016/j.ijbiomac.2019.12.146] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022]
Abstract
Lignin (LIG) is a renewable biopolymer with well-known antimicrobial and antioxidant properties. In the present work LIG was combined with poly(butylene succinate) (PBS), a biocompatible/biodegradable polymer, to obtain composites with antimicrobial and antioxidant properties. Hot melt extrusion was used to prepare composites containing up to 15% (w/w) of LIG. Water contact angle measurements suggested that the incorporation of LIG did not alter the wettability of the material. The material density increased slightly when LIG was incorporated (<1%). Moreover, the melt flow index test showed an increase in the fluidity of the material (from 6.9 to 27.7 g/10 min) by increasing the LIG content. The Young's modulus and the tensile deformation of the material were practically unaffected when LIG was added. Infrared spectroscopy and differential scanning calorimeter confirmed that there were interactions between LIG and PBS. The DPPH assay was used to evaluate the antioxidant properties of the materials. The results suggested that all the materials were capable of reducing the DPPH concentrations up to 80% in <5 h. Finally, LIG-containing composites showed resistance to adherence of the common nosocomial pathogen, Staphylococcus aureus. All tested materials showed ca. 90% less bacterial adherence than PBS. Lignin/Poly(butylene succinate) composites were prepared using hot melt extrusion. The composites containing up to 15% of lignin. The presence of lignin in the composite did not alter significantly their mechanical properties. Lignin-containing composites showed antioxidant activity. Lignin-containing composites showed resistance to Staphylococcus aureus adherence.
Collapse
|
5
|
Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larrañeta E, Lamprou DA. Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomater Sci Eng 2019; 5:6300-6310. [PMID: 33405537 DOI: 10.1021/acsbiomaterials.9b01185] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Catheter-associated infections are a common complication that occurs in dialysis patients. Current strategies to prevent infection include catheter coatings containing heparin, pyrogallol, or silver nanoparticles, which all have an increased risk of causing resistance in bacteria. Therefore, a novel approach for manufacture, such as the use of additive manufacturing (AM), also known as three-dimensional (3D) printing, is required. Filaments were produced by extrusion using thermoplastic polyurethane (TPU) and tetracycline hydrochloride (TC) in various concentrations (e.g., 0, 0.25, 0.5, and 1%). The extruded filaments were used in a fused deposition modeling (FDM) 3D printer to print catheter constructs at varying concentrations. Release studies in phosphate-buffered saline, microbiology studies, thermal analysis, contact angle, attenuated total reflection-Fourier transform infrared, scanning electron microscopy, and X-ray microcomputer tomography (μCT) analysis were conducted on the printed catheters. The results suggested that TC was uniformly distributed within the TPU matrix. The microbiology testing of the catheters showed that devices containing TC had an inhibitory effect on the growth of Staphylococcus aureus NCTC 10788 bacteria. Catheters containing 1% TC maintained inhibitory effect after 10 day release studies. After an initial burst release in the first 24 h, there was a steady release of TC in all concentrations of catheters. 3D-printed antibiotic catheters were successfully printed with inhibitory effect on S. aureus bacteria. Finally, TC containing catheters showed resistance to S. aureus adherence to their surfaces when compared with catheters containing no TC. Catheters containing 1% of TC showed a bacterial adherence reduction of up to 99.97%. Accordingly, the incorporation of TC to TPU materials can be effectively used to prepare anti-infective catheters using FDM. This study highlights the potential for drug-impregnated medical devices to be created through AM.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Kieran O'Donnell
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
6
|
Domínguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Donnelly RF, Larrañeta E. Antioxidant PLA Composites Containing Lignin for 3D Printing Applications: A Potential Material for Healthcare Applications. Pharmaceutics 2019; 11:pharmaceutics11040165. [PMID: 30987304 PMCID: PMC6523288 DOI: 10.3390/pharmaceutics11040165] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/25/2022] Open
Abstract
Lignin (LIG) is a natural biopolymer with well-known antioxidant capabilities. Accordingly, in the present work, a method to combine LIG with poly(lactic acid) (PLA) for fused filament fabrication applications (FFF) is proposed. For this purpose, PLA pellets were successfully coated with LIG powder and a biocompatible oil (castor oil). The resulting pellets were placed into an extruder at 200 °C. The resulting PLA filaments contained LIG loadings ranging from 0% to 3% (w/w). The obtained filaments were successfully used for FFF applications. The LIG content affected the mechanical and surface properties of the overall material. The inclusion of LIG yielded materials with lower resistance to fracture and higher wettabilities. Moreover, the resulting 3D printed materials showed antioxidant capabilities. By using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, the materials were capable of reducing the concentration of this compound up to ca. 80% in 5 h. This radical scavenging activity could be potentially beneficial for healthcare applications, especially for wound care. Accordingly, PLA/LIG were used to design meshes with different designs for wound dressing purposes. A wound healing model compound, curcumin (CUR), was applied in the surface of the mesh and its diffusion was studied. It was observed that the dimensions of the meshes affected the permeation rate of CUR. Accordingly, the design of the mesh could be modified according to the patient’s needs.
Collapse
Affiliation(s)
- Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Niamh K Martin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Mun Leon Fong
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Gaballah ST, El-Nazer HA, Abdel-Monem RA, El-Liethy MA, Hemdan BA, Rabie ST. Synthesis of novel chitosan-PVC conjugates encompassing Ag nanoparticles as antibacterial polymers for biomedical applications. Int J Biol Macromol 2018; 121:707-717. [PMID: 30340001 DOI: 10.1016/j.ijbiomac.2018.10.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
We herein describe the synthesis of four Cs-PVC conjugates three of them were functionalized with benzothiazole (BTh) derivative as an antibacterial agent. Two of these BTh-functionalized conjugates, namely Cs2 and Cs3, comprise silver nanoparticles (AgNPs) and Ag/TiO2 NPs, respectively. The structures were characterized via FTIR spectroscopic analysis, morphological investigation such as scanning (SEM) and transmission (TEM) electron microscopy, and thermal gravimetric analysis (TGA). Spectral data confirmed the introduction of the BTh to the Cs backbone as well as the coupling between the two polymers. SEM data showed homogenous polymer surfaces with well-distributed Ag nanoparticles. The Ag contents in the prepared samples Cs2 and Cs3 were, respectively, 0.61 and 0.21%, however, TEM analysis showed that the sizes of AgNPs and Ag/TiO2 NPs were in the range of 3-7 nm and 15-22 nm for the prepared conjugates, respectively. The antibacterial activity of the synthesized conjugates was investigated against two Gram-negative (E. coli, and S. typhimurium) and two Gram-positive (S. aureus, and L. monocytogenes) bacteria. The antibacterial assay showed that all three Cs-PVC (Cs1, Cs2, and Cs3) conjugates modified with BTh exhibited excellent bacterial inhibition after 30, 60, and 120 min.
Collapse
Affiliation(s)
- Samir T Gaballah
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt.
| | - Hossam A El-Nazer
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Reham A Abdel-Monem
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Bahaa A Hemdan
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| | - Samira T Rabie
- Photochemistry Department, National Research Centre, El Buhouth St., Dokki 12622, Giza, Egypt
| |
Collapse
|
8
|
Larrañeta E, Henry M, Irwin NJ, Trotter J, Perminova AA, Donnelly RF. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohydr Polym 2017; 181:1194-1205. [PMID: 29253949 PMCID: PMC5742632 DOI: 10.1016/j.carbpol.2017.12.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 02/02/2023]
Abstract
A single step solid state crosslinking reaction has been developed to obtain hyaluronic acid hydrogels. The use of microwave radiation reduces significantly the crosslinking time. The synthesized materials allowed sustained release of a model molecule (methylene blue) for a period of up to 2 days. The material can be used to prepare micro-engineered devices such as microneedles through a micromoulding process. The resulting hydrogels showed anti-infective and bacteriostatic properties.
Hyaluronic acid (HA) is a natural linear polysaccharide that has been used extensively in the biomedical field as it is a biocompatible, biodegradable, nontoxic and non-immunogenic polymer with high water affinity. Besides, the presence of multiple acid and hydroxyl groups in the HA molecule makes it an ideal candidate for chemical modification. The present paper describes the synthesis and characterization of HA-based hydrogels. For this purpose, aqueous mixtures containing 5% (w/w) of HA and different concentrations of Gantrez S97 (GAN) (1, 3 and 5% w/w) were used to prepare HA-based hydrogels. The mixtures were dried and the hydrogels were obtained after heating the solid material at 80 °C for 24 h. GAN is the acid form of an methylvinylether and maleic anhydride copolymer and contains multiple acid groups that can form ester bonds when reacting with the multiple hydroxyl groups present in HA chains. The method described here present potential to be applied for the preparation of HA-based biomaterials with a defined form as the crosslinking reaction between HA and the crosslinker takes place in solid phase. Besides, the method can be considered an environmental-friendly process as no organic solvents or potentially toxic substances were used. The esterification reaction was confirmed by infrared spectroscopy and dynamic scanning calorimetry measurements. The loading and release capabilities of the hydrogels were evaluating by using methylene blue (MB) as a model molecule. The hydrogels showed a high affinity for MB showing loadings up to 0.35 mg MB per mg of hydrogel. Moreover, the hydrogels were capable of sustaining the MB release over two days. The use of microwave radiation was evaluated to reduce the crosslinking time from 24 h to 1 h, but this procedure needs to be optimized in future studies. As the crosslinking procedure takes place in solid state, the HA/GAN hydrogels were used to prepare micro-engineered device, microneedle arrays. Finally, the antimicrobial properties of the hydrogels were evaluated. The results showed that the hydrogels presented anti-infective properties.
Collapse
Affiliation(s)
- Eneko Larrañeta
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | - Megan Henry
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Nicola J Irwin
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Johann Trotter
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Anastasia A Perminova
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
9
|
McCoy CP, Irwin NJ, Brady C, Jones DS, Carson L, Andrews GP, Gorman SP. An Infection-Responsive Approach To Reduce Bacterial Adhesion in Urinary Biomaterials. Mol Pharm 2016; 13:2817-22. [PMID: 27359363 DOI: 10.1021/acs.molpharmaceut.6b00402] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infection is an inevitable consequence of chronic urinary catheterization with associated problems of recurrent catheter encrustation and blockage experienced by approximately 50% of all long-term catheterized patients. In this work, we have exploited, for the first time, the reported pathogen-induced elevation of urine pH as a trigger for "intelligent" antimicrobial release from novel hydrogel drug delivery systems of 2-hydroxyethyl methacrylate and vinyl-functionalized nalidixic acid derivatives, developed as candidate infection-resistant urinary catheter coatings. Demonstrating up to 20-fold faster rates of drug release at pH 10, representing infected urine pH, than at pH 7 and achieving reductions of up to 96.5% in in vitro bacterial adherence, our paradigm of pH-responsive drug delivery, which requires no external manipulation, therefore represents a promising development toward the prevention of catheter-associated urinary tract infections in vivo.
Collapse
Affiliation(s)
- Colin P McCoy
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Christopher Brady
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - David S Jones
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Sean P Gorman
- School of Pharmacy, Queen's University Belfast , 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| |
Collapse
|
10
|
Jones DS, McCoy CP, Andrews GP, McCrory RM, Gorman SP. Hydrogel Antimicrobial Capture Coatings for Endotracheal Tubes: A Pharmaceutical Strategy Designed to Prevent Ventilator-Associated Pneumonia. Mol Pharm 2015; 12:2928-36. [PMID: 26111258 DOI: 10.1021/acs.molpharmaceut.5b00208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a novel strategy for the prevention of ventilator-associated pneumonia that involves coating poly(vinyl chloride, PVC) endotracheal tubes (ET) with hydrogels that may be subsequently used to entrap nebulized antimicrobial solutions. Candidate hydrogels were prepared containing a range of ratios of hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA) from 100:0 to 70:30 using free radical polymerization and, when required, simultaneous attachment to PVC was performed. The mechanical properties, glass transition temperatures, swelling kinetics, uptake of gentamicin from an aqueous medium, and gentamicin release were characterized. Increasing the MAA content of the hydrogels significantly decreased the ultimate tensile strength, % elongation at break, Young's modulus, and increased the glass transition temperature, the swelling ratio, and gentamicin uptake. Microbial (Staphylococcus aureus and Pseudomonas aeruginosa) adherence to control (drug-free) hydrogels was observed; however, while adherence to gentamicin-containing p(HEMA) occurred, no adherence occurred to gentamicin-containing HEMA:MAA copolymers. Antimicrobial persistence of gentamicin-containing hydrogels was examined by determining the zone of inhibition against each microorganism on successive days. Hydrogel composition affected the observed antimicrobial persistence, with the hydrogel composed of 70:30 HEMA:MAA exhibiting >20 days persistence against S. aureus and P. aeruginosa, respectively. To simulate clinical use, the hydrogels (coated onto PVC) were first exposed to a nebulized solution of gentamicin (4 mL, 80 mg for 20 min), and then to nebulized bacteria (4 mL ca. 1×10(9) colony forming units mL(-1), 30 min). Viable bacteria were not observed on the gentamicin-treated p(HEMA: MAA) copolymers, whereas growth was observed on gentamicin-treated p(HEMA). In light of the excellent antimicrobial activity and physicochemical properties, p(HEMA: MAA) copolymers composed of ratios of 80:20 or 70:30 HEMA: MAA were identified as potentially useful coatings of endotracheal tubes to be used in conjunction with the clinical nebulization of gentamicin and designed for the prevention of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- David S Jones
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Colin P McCoy
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Gavin P Andrews
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Roisin M McCrory
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Sean P Gorman
- School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| |
Collapse
|
11
|
Vandecandelaere I, Coenye T. Microbial composition and antibiotic resistance of biofilms recovered from endotracheal tubes of mechanically ventilated patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 830:137-55. [PMID: 25366226 DOI: 10.1007/978-3-319-11038-7_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In critically ill patients, breathing is impaired and mechanical ventilation, using an endotracheal tube (ET) connected to a ventilator, is necessary. Although mechanical ventilation is a life-saving procedure, it is not without risk. Because of several reasons, a biofilm often forms at the distal end of the ET and this biofilm is a persistent source of bacteria which can infect the lungs, causing ventilator-associated pneumonia (VAP). There is a link between the microbial flora of ET biofilms and the microorganisms involved in the onset of VAP. Culture dependent and independent techniques were already used to identify the microbial flora of ET biofilms and also, the antibiotic resistance of microorganisms obtained from ET biofilms was determined. The ESKAPE pathogens play a dominant role in the onset of VAP and these organisms were frequently identified in ET biofilms. Also, antibiotic resistant microorganisms were frequently present in ET biofilms. Members of the normal oral flora were also identified in ET biofilms but it is thought that these organisms initiate ET biofilm formation and are not directly involved in the development of VAP.
Collapse
Affiliation(s)
- Ilse Vandecandelaere
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | | |
Collapse
|
12
|
Lin H, Ding L, Deng W, Wang X, Long J, Lin Q. Coating of Medical-Grade PVC Material with ZnO for Antibacterial Application. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aces.2013.34030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Laverty G, Gorman SP, Gilmore BF. Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res A 2012; 100:1803-14. [PMID: 22489028 DOI: 10.1002/jbm.a.34132] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/07/2011] [Accepted: 02/07/2012] [Indexed: 11/09/2022]
Abstract
The effectiveness of the antimicrobial peptide maximin-4, the ultrashort peptide H-Orn-Orn-Trp-Trp-NH(2), and the lipopeptide C(12)-Orn-Orn-Trp-Trp-NH(2) in preventing adherence of pathogens to a candidate biomaterial were tested utilizing both matrix- and immersion-loaded poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels. Antiadherent properties correlated to both the concentration released and the relative antimicrobial concentrations of each compound against Staphylococcus epidermidis ATCC 35984, at each time point. Immersion-loaded samples containing C(12)-Orn-Orn-Trp-Trp-NH(2) exhibited the lowest adherence profile for all peptides studied over 1, 4, and 24 h. The results outlined in this article show that antimicrobial peptides have the potential to serve as an important weapon against biomaterial associated infections.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials Research Group, School of Pharmacy, Queens University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | | | | |
Collapse
|
14
|
El-Gamel NEA, Mohamed RR, Zayed MA. Synthesis, characterization and application of enrofloxacin complexes as thermal stabilizers for rigid poly(vinyl chloride). Dalton Trans 2012; 41:1824-31. [DOI: 10.1039/c1dt11928a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Haroun AA, Ahmed EF, Abd El-Ghaffar MA. Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2545-2553. [PMID: 21909641 DOI: 10.1007/s10856-011-4437-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was using a novel antimicrobial thermoplastic plasticizer based on aliphatic anhydride derivative dodecenyl succinic anhydride (DSA) for blending poly (vinyl chloride), PVC, with gelatin in presence of montmorillonite (MMT) using Brabender via polymer melting technique. This anhydride-based plasticizer blended the membrane ingredients homogenously under melting process. The used plasticizer exhibited high performance antimicrobial potency for some biomedical and industrial applications. The prepared biocomposite films were evaluated for antimicrobial activity using agar disc diffusion method against gram-positive and gram-negative bacteria such as: Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Bacillus cereus (B. cereus), Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). The majority of these biocomposites, except the plasticized PVC with DOP, have shown inhibitory effect at different concentrations (1.0-20) mg/ml against all above mentioned bacteria. However, C. albicans and A. niger were the most resistant strains.
Collapse
Affiliation(s)
- Ahmed A Haroun
- Chemical Industries Research Division, National Research Center, Dokki, Egypt.
| | | | | |
Collapse
|
16
|
|
17
|
Kinnari TJ, Esteban J, Martin-de-Hijas NZ, Sánchez-Muñoz O, Sánchez-Salcedo S, Colilla M, Vallet-Regí M, Gomez-Barrena E. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J Med Microbiol 2009; 58:132-137. [PMID: 19074665 DOI: 10.1099/jmm.0.002758-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 200 nm. Moreover, total porosity was 20 % for HA and 50 % for BCP. Adherence of Staphylococcus aureus and Staphylococcus epidermidis was studied at a physiological pH of 7.4 and at a pH simulating bone infection of 6.8. Moreover, the effect of pH on the zeta potential of HA, BCP and of both staphylococci was evaluated. Results showed that when pH decreased from 7.4 to 6.8, the adherence of both staphylococci to HA and BCP surfaces decreased significantly, although at the same time the negative zeta-potential values of the ceramic surfaces and both bacteria diminished. At both pH values, the number of S. aureus adhered to the HA surface appeared to be lower than that for BCP. A decrease in pH to 6.8 reduced the adherence of both bacterial species (mean 57 %). This study provides evidence that HA and BCP ceramics do not have pores sufficiently large to allow the internalization of staphylococci. Their anti-adherent properties seemed to improve when pH value decreased, suggesting that HA and BCP bioceramics are not compromised upon orthopaedic use.
Collapse
Affiliation(s)
- Teemu J Kinnari
- Department of Otolaryngology, Helsinki University Central Hospital, PO Box 220, FI-00029 HUS, Finland.,Department of Orthopaedic Surgery and Traumatology, Fundación Jiménez Díaz-UTE, Avda de Reyes Católicos 2, E-28040 Madrid, Spain.,Department of Clinical Microbiology, Fundación Jiménez Díaz-UTE, Avda de Reyes Católicos 2, E-28040 Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Fundación Jiménez Díaz-UTE, Avda de Reyes Católicos 2, E-28040 Madrid, Spain
| | - Nieves Z Martin-de-Hijas
- Department of Clinical Microbiology, Fundación Jiménez Díaz-UTE, Avda de Reyes Católicos 2, E-28040 Madrid, Spain
| | - Orlando Sánchez-Muñoz
- Instituto de Ciencias de los Materiales, Universidad de Valencia, PO Box 22085, E-46071 Valencia, Spain.,Department of Medicine, Helsinki University Central Hospital, PO Box 700, FI-00029 HUS, Finland
| | - Sandra Sánchez-Salcedo
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Montserrat Colilla
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - María Vallet-Regí
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Enrique Gomez-Barrena
- Department of Orthopaedic Surgery and Traumatology, Fundación Jiménez Díaz-UTE, Avda de Reyes Católicos 2, E-28040 Madrid, Spain
| |
Collapse
|
18
|
Parsons C, McCoy CP, Gorman SP, Jones DS, Bell SE, Brady C, McGlinchey SM. Anti-infective photodynamic biomaterials for the prevention of intraocular lens-associated infectious endophthalmitis. Biomaterials 2009; 30:597-602. [DOI: 10.1016/j.biomaterials.2008.10.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/21/2008] [Indexed: 12/21/2022]
|
19
|
Lin H, Xu Z, Wang X, Long J, Su W, Fu X, Lin Q. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2film. J Biomed Mater Res B Appl Biomater 2008; 87:425-31. [DOI: 10.1002/jbm.b.31120] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil. Colloids Surf B Biointerfaces 2008; 62:91-6. [DOI: 10.1016/j.colsurfb.2007.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/12/2007] [Accepted: 09/17/2007] [Indexed: 11/20/2022]
|
21
|
Jones DS, Garvin CP, Dowling D, Donnelly K, Gorman SP. Examination of surface properties andin vitro biological performance of amorphous diamond-like carbon-coated polyurethane. J Biomed Mater Res B Appl Biomater 2006; 78:230-6. [PMID: 16615067 DOI: 10.1002/jbm.b.30474] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Group, School of Pharmacy, Medical Biology Centre, The Queen's University of Belfast, Belfast BT9 7BL, UK.
| | | | | | | | | |
Collapse
|
22
|
Kim C, Jung H, Kim JH, Shin CS. Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf B Biointerfaces 2006; 47:153-9. [PMID: 16423514 DOI: 10.1016/j.colsurfb.2005.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 12/12/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Various amino acid derivatives of monascus pigments were synthesized. The effects of pigment derivatives on the pigment adsorption ratio, electrophoretic mobility (EPM) of bacterial cells, and antibacterial activity were investigated under varying conditions of pigment type, pigment concentration, pH, and ionic strength. Two hydrophobic and two hydrophilic derivatives were selected as model pigments. There was a close relationship between the antimicrobial activity and the pigment adsorption ratio. Against Escherichia coli, the hydrophobic L-Tyr and L-Phe derivatives (log P = 3.18 and 3.57) exhibited high antimicrobial activities (MIC = 8 and 16 mg/L) and high cellular adsorption ratios (9.6 and 10.9 mg/L). The hydrophilic L-Glu and L-Asn derivatives (log P = 1.40 and 0.47) exhibited low activities (MIC = 64 and 128 mg/L) and low adsorption ratios (4.7 and 4.0 mg/L). The electrophoretic mobility of 11 different bacteria varied between -1.93 x 10(-8) and -1.19 x 10(-8) m(2) V(-1) s(-1) regardless of Gram(+) or Gram(-). The L-Phe derivative showed low MIC values (high antimicrobial activities) against bacteria with a high electrophoretic mobility. A positive linearity between the pigment adsorption ratio and the electrophoretic mobility was established. When the four pigment derivatives were added to E. coli solutions, the electrophoretic mobility of cells in all cases sharply increased with an increasing pigment concentration. The mobility value was high for hydrophobic pigment derivatives in descending order of L-Phe (0.8 x 10(-8) m(2) V(-1) s(-1)), L-Tyr (0.68 x 10(-8) m(2) V(-1) s(-1)), L-Glu (0.46 x 10(-8) m(2) V(-1) s(-1)), and L-Asn (0.44 x 10(-8) m(2) V(-1) s(-1)). Additional adsorption of the hydrophobic derivatives probably occurred due to a hydrophobic interaction between the pigment and the pigment-coated cells. The electrophoretic mobility decreased gradually with an increasing pH and/or ionic strength with both addition and no addition of the pigment derivatives. The pattern of change of the pigment adsorption ratio under varying pH and/or ionic strength values was similar to the pattern for electrophoretic mobility.
Collapse
Affiliation(s)
- Chulyoung Kim
- Department of Biotechnology, College of Engineering, Yonsei University, Seodaemun-gu, Seoul, South Korea
| | | | | | | |
Collapse
|
23
|
Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 2005; 26:3495-502. [PMID: 15621239 DOI: 10.1016/j.biomaterials.2004.09.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 09/20/2004] [Indexed: 11/18/2022]
Abstract
Poly(vinyl chloride) (PVC) was aminated by treating the resin with a concentrated aqueous solution of ethylenediamine. The aminated PVC was then reacted with hexamethylene diisocyanate to incorporate the isocyanate group onto the polymer backbone. The isocyanated PVC was further reacted with poly(ethylene glycol) (PEG) of molecular weight 600 Da. The modified polymer was characterized using infrared and X-ray photoelectron spectroscopy (XPS) and thermal analysis. Infrared and XPS spectra showed the incorporation of PEG onto PVC. The thermal stability of the modified polymer was found to be lowered by the incorporation of PEG. Contact angle measurements on the surface of polymer films cast from a tetrahydrofuran solution of the polymer demonstrated that the modified polymer gave rise to a significantly hydrophilic surface compared to unmodified PVC. The solid/water interfacial free energy of the modified surface was 3.9 ergs/cm(2) as opposed to 18.4 ergs/cm(2) for bare PVC surface. Static platelet adhesion studies using platelet-rich plasma showed significantly reduced platelet adhesion on the surface of the modified polymer compared to control PVC. The surface hydrophilicity of the films was remarkably retained even in the presence of up to 30 wt% concentration of the plasticizer di-(2-ethylhexyl phthalate). The study showed that bulk modification of PVC with PEG using appropriate chemistry can give rise to a polymer that possesses the anti-fouling property of PEG and such bulk modifications are less cumbersome compared to surface modifications on the finished product to impart anti-fouling properties to the PVC surface.
Collapse
Affiliation(s)
- Biji Balakrishnan
- Polymer Chemistry Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojapura, Trivandrum 695 012 Kerala, India
| | | | | | | |
Collapse
|
24
|
Jones DS, McLaughlin DWJ, McCoy CP, Gorman SP. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials. Biomaterials 2005; 26:1761-70. [PMID: 15576150 DOI: 10.1016/j.biomaterials.2004.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 06/01/2004] [Indexed: 11/23/2022]
Abstract
Hydrogels are frequently employed as medical device biomaterials due to their advantageous biological properties, e.g. resistance to infection and encrustation, biocompatibility; however, their poor mechanical properties generally limit the scope of application to coatings of medical devices. To address this limitation, this study described the formulation of sequential interpenetrating polymer networks (IPN) of poly(-caprolactone) (PCL) and poly(hydroxyethylmethacrylate) (p(HEMA)). IPN containing 20% w/w PCL, p(HEMA), both in the presence or absence of ethyleneglycol dimethacrylate (EGDMA 1% w/w), were prepared by free radical polymerisation. Following preparation the degradation and the mechanical and surface properties of the biomaterials and, in addition, the resistances to microbial adherence and encrustation in vitro were examined. In comparison to p(HEMA) the various IPN exhibited substantially greater tensile properties (ultimate tensile strength, % elongation, Young's modulus) that were accredited to the discrete distribution of PCL within the hydrogel network. The IPN exhibited two glass transition temperatures that were statistically similar to those of the individual components, thereby providing evidence of the immiscible nature of the two polymers. The IPN possessed higher receding contact angles and lower equilibrium water contents in comparison to p(HEMA), whereas the limited degradation of the IPN at both pH 7 and 9 was deemed suitable for clinical usage for periods of at least 4 weeks. The resistances of the various IPN to bacterial adherence and urinary encrustation were examined using in vitro models. Importantly the resistance of the IPN to encrustation was, in general, similar to that of p(HEMA) but greater than that of PCL whereas, the resistance of the IPN to bacterial adherence was frequently greater than that of p(HEMA) and PCL. Therefore, this study has shown that the mechanical properties of p(HEMA) may be substantially increased by the formation of IPN with PCL whilst maintaining other appropriate physicochemical properties and resistances to urinary encrustation and bacterial adherence. It is suggested that these IPN may be suitable for device fabrication thereby expanding the manufacturing application of hydrogels without compromising their potential clinical efficacy.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Unit, School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
25
|
Jones DS, Djokic J, Gorman SP. The resistance of polyvinylpyrrolidone–Iodine–poly(ε-caprolactone) blends to adherence of Escherichia coli. Biomaterials 2005; 26:2013-20. [PMID: 15576175 DOI: 10.1016/j.biomaterials.2004.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 06/01/2004] [Indexed: 11/27/2022]
Abstract
In this study, the resistance of biodegradable biomaterials, composed of blends of poly(-caprolactone) (PCL) and the polymeric antimicrobial complex, polyvinylpyrrolidone-iodine (PVP-I) to the adherence of a clinical isolate of Escherichia coli is described. Blends of PCL composed of a range of high (50,000 g mol(-1)) to low (5000 g mol(-1)) molecular weight ratios of polymer and either devoid of or containing PVP-I (1% w/w) were prepared by solvent evaporation. Following incubation (4 h), there was no relationship between m. wt. ratio of PCL in films devoid of PVP-I and adherence of E. coli. Conversely, microbial adherence to PCL containing PVP-I decreased as the ratio of high:low m. wt. polymer was decreased and was approximately 1000 fold lower than that to comparator films devoid of PVP-I. Following periods of immersion of PVP-I containing PCL films under sink conditions in phosphate buffered saline, subsequent adherence of E. coli was substantially reduced for 2 days (40:60 m. wt. ratio) and 6 days (100:0 m. wt. ratio). Concurrent exposure of PCL and E. coli to sub-minimum inhibitory concentrations (sub-MIC) of PVP-I significantly reduced microbial adherence to the biomaterial; however, the molecular weight ratio of PCL did not affect this outcome. Pretreatment of PCL with similar sub-MIC of PVP-I prior to inclusion within the microbial adherence assay significantly decreased the subsequent adherence of E. coli. Greatest reduction in adherence was observed following treatment of PCL (40:60 m. wt. ratio) with 0.0156% w/w PVP-I. In conclusion, this study has illustrated the utility of PVP-I as a suitable therapeutic agent for incorporation within PCL as a novel biomaterial. Due to the combined antimicrobial and biodegradable properties, these biomaterials offer a promising strategy for the reduction in medical device related infection.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Group, School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | |
Collapse
|
26
|
Jones DS, Garvin CP, Gorman SP. Relationship between biomedical catheter surface properties and lubricity as determined using textural analysis and multiple regression analysis. Biomaterials 2004; 25:1421-8. [PMID: 14643617 DOI: 10.1016/j.biomaterials.2003.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the surface properties of and work required to remove 12 commercially available and developmental catheters from a model biological medium (agar), a measure of catheter lubricity, were characterised and the relationships between these properties were examined using multiple regression and correlation analysis. The work required for removal of catheter sections (7 cm) from a model biological medium (1% w/w agar) were examined using tensile analysis. The water wettability of the catheters were characterised using dynamic contact angle analysis, whereas surface roughness was determined using atomic force microscopy. Significant differences in the ease of removal were observed between the various catheters, with the silicone-based materials generally exhibiting the greatest ease of removal. Similarly, the catheters exhibited a range of advancing and receding contact angles that were dependent on the chemical nature of each catheter. Finally, whilst the microrugosities of the various catheters differed, no specific relationship to the chemical nature of the biomaterial was apparent. Using multiple regression analysis, the relationship between ease of removal, receding contact angle and surface roughness was defined as: Work done (N mm)=17.18+0.055 Rugosity (nm)-0.52 Receding contact angle ( degrees ) (r=0.49). Interestingly, whilst the relationship between ease of removal and surface roughness was significant (r=0.48, p=0.0005), in which catheter lubricity increased as the surface roughness decreased, this was not the case with the relationship between ease of removal and receding contact angle (r=-0.18, p>0.05). This study has therefore uniquely defined the contributions of each of these surface properties to catheter lubricity. Accordingly, in the design of urethral catheters, it is recommended that due consideration should be directed towards biomaterial surface roughness to ensure maximal ease of catheter removal. Furthermore, using the method described in this study, differences in the lubricity of the various catheters were observed that may be apparent in their clinical use.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Unit, School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | |
Collapse
|
27
|
James NR, Jayakrishnan A. Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion. Biomaterials 2003; 24:2205-12. [PMID: 12699656 DOI: 10.1016/s0142-9612(03)00022-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thiocyanates, especially bis-alkylthiocyanates are highly effective in killing a number of bacterial strains and are reported to be potent biocides at ppm concentrations. In order to examine whether a covalently bound and immobilized thiocyanate group on a biomaterial surface is still effective as a bactericide, plasticized poly(vinyl chloride) (PVC) was thiocyanated using sodium thiocyanate in the presence of a phase transfer catalyst in aqueous media leading to the nucleophilic substitution of chlorine by thiocyanate on the PVC surface. Thiocyanation imparted hydrophilicity to the surface in comparison with bare PVC. Control and thiocyanated PVC surfaces were exposed to two strains of bacteria commonly implicated in device-associated infections, such as Staphylococcus aureus and Staphylococcus epidermidis. Bacterial adhesion and colonization was quantitated by counting the viable organisms on the adhered surface as well as by optical and scanning electron microscopy. Significantly reduced retention of S. epidermidis and S. aureus was seen on the thiocyanated PVC surface. Immobilized thiocyanate was non-cytotoxic in a preliminary cell culture assay. The study thus showed that even though an immobilized thiocyanate moiety on the polymer surface was not as effective as a bactericide unlike soluble thiocyanates, it prevented the retention and colonization of the bacteria to a considerable extent.
Collapse
Affiliation(s)
- Nirmala R James
- Polymer Chemistry Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Trivandrum 695 012, India
| | | |
Collapse
|
28
|
Jones DS, McMeel S, Adair CG, Gorman SP. Characterisation and evaluation of novel surfactant bacterial anti-adherent coatings for endotracheal tubes designed for the prevention of ventilator-associated pneumonia. J Pharm Pharmacol 2003; 55:43-52. [PMID: 12625866 DOI: 10.1111/j.2042-7158.2003.tb02432.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is accepted that ventilator-associated pneumonia is a frequent cause of morbidity and mortality in intensive care patients. This study describes the physicochemical properties of novel surfactant coatings of the endotracheal tube and the resistance to microbial adherence of surfactant coated endotracheal tube polyvinylchloride (PVC). Organic solutions of surfactants containing a range of ratios of cholesterol and lecithin (0:100, 25:75, 50:50, 75:25, dissolved in dichloromethane) were prepared and coated onto endotracheal tube PVC using a multiple dip-coating process. Using modulated temperature differential scanning calorimetry it was confirmed that the binary surfactant systems existed as physical mixtures. The surface properties of both surfactant-coated and uncoated PVC, following treatment with either pooled human saliva or phosphate-buffered saline (PBS), were characterised using dynamic contact angle analysis. Following treatment with saliva, the contact angles of PVC decreased; however, those of the coated biomaterials were unaffected, indicating different rates and extents of macromolecular adsorption from saliva onto the coated and uncoated PVC. The advancing and receding contact angles of the surfactant-coated PVC were unaffected by sonication, thereby providing evidence of the durability of the coatings. The cell surface hydrophobicity and zeta potentials of isolates of Staphylococcus aureus and Pseudomonas aeruginosa, following treatment with either saliva or PBS, and their adherence to uncoated and surfactant-coated PVC (that had been pre-treated with saliva) were examined. Adherence of S. aureus and Ps. aeruginosa to surfactant-coated PVC at each successive time period (0.5, 1, 2, 4, 8 h) was significantly lower than to uncoated PVC, the extent of the reduction frequently exceeding 90%. Interestingly, the microbial anti-adherent properties of the coatings were dependent on the lecithin content. Based on the impressive microbial anti-adherence properties and durability of the surfactant coating on PVC following dip coatings, it is proposed that these systems may usefully reduce the incidence of ventilator-associated pneumonia when employed as luminal coatings of the endotracheal tube.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Group, School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
29
|
Jones DS, Djokic J, McCoy CP, Gorman SP. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro. Biomaterials 2002; 23:4449-58. [PMID: 12322963 DOI: 10.1016/s0142-9612(02)00158-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37 degrees C in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Unit, School of Pharmacy, Medical Biology Centre, The Queen's University of Belfast, Northern Ireland, UK.
| | | | | | | |
Collapse
|
30
|
Lakshmi S, Kumar SSP, Jayakrishnan A. Bacterial adhesion onto azidated poly(vinyl chloride) surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 61:26-32. [PMID: 12001242 DOI: 10.1002/jbm.10046] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A plasticized poly(vinyl chloride) surface was modified by azidation using sodium azide in the presence of a phase transfer catalyst in aqueous media. Subsequent to azidation, the surface was crosslinked using ultraviolet radiation. Contact angle measurements showed that the surface became hydrophilic on azidation whereas photoirradiation did not have any further effect on the hydrophilicity of the azidated surface. Control, azidated, and photocrosslinked surfaces were exposed to two strains of bacteria commonly implicated in device infection such as Staphylococcus aureus and Escherichia coli. Whereas the control and photocrosslinked surfaces showed no significant difference in bacterial adhesion, the azidated surface showed significantly reduced adhesion to both strains. Data obtained indicate that the presence of an intact azide function on the polymer surface is responsible for the reduced bacterial adherence and the surface hydrophobicity/hydrophilicity did not exert any effect in the present case. Although azides are known to be effective only against Gram-negative species, surprising was the observation that the azidated polymer surface was equally effective against a Gram-positive species such as S. aureus. Because sodium azide is routinely used as a preservative to prevent bacterial and fungal growth in many microbiology reagents and diagnostic kits, covalent binding of the azide onto a polymer surface or synthesizing azide containing polymers may be an interesting method to investigate in tackling the problem of bacterial adhesion and colonization of medical devices.
Collapse
Affiliation(s)
- S Lakshmi
- Division of Polymer Chemistry, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Trivandrum 695 012, India
| | | | | |
Collapse
|
31
|
Jones DS, McGovern JG, Woolfson AD, Adair CG, Gorman SP. Physicochemical characterization of hexetidine-impregnated endotracheal tube poly(vinyl chloride) and resistance to adherence of respiratory bacterial pathogens. Pharm Res 2002; 19:818-24. [PMID: 12134952 DOI: 10.1023/a:1016104516034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Ventilator-associated pneumonia is a frequent cause of mortality in intensive care patients. This study describes the physicochemical properties of hexetidine-impregnated poly(vinyl chloride) (PVC) endotracheal tube (ET) biomaterials and their resistance to microbial adherence (Staphylococcus aureus and Pseudomonas aeruginosa). METHODS PVC emulsion was cured in the presence of hexetidine (0-20% w/w) and was characterized in terms of drug release, surface properties (i.e., microrugosity/contact angle), mechanical (tensile) properties, and resistance to microbial adherence. RESULTS Under sink conditions, hexetidine release from PVC was diffusion-controlled. Increasing the concentration of hexetidine from 1% to 10% (w/w) (but not from 10% to 20% w/w) increased the subsequent rate of drug release. In general, increasing the concentration of hexetidine decreased both the tensile properties and hydrophobicity, yet increased PVC microrugosity. Following hexetidine release (21 days), the surface properties were similar to those of native PVC. The resistance of hexetidine-containing PVC (1% or 5%) to microbial adherence (following defined periods of drug release) was greater than that of native PVC and was constant over the examined period of hexetidine release. CONCLUSIONS ET PVC containing 1% (w/w) hexetidine offered an appropriate balance between suitable physicochemical properties and resistance to microbial adherence. This may offer an approach with which to reduce the incidence of ventilator-associated pneumonia.
Collapse
Affiliation(s)
- David S Jones
- Medical Devices Unit, School of Pharmacy, The Queen's University of Belfast, Medical Biology Centre, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Gorman SP, McGovern JG, Woolfson AD, Adair CG, Jones DS. The concomitant development of poly(vinyl chloride)-related biofilm and antimicrobial resistance in relation to ventilator-associated pneumonia. Biomaterials 2001; 22:2741-7. [PMID: 11545308 DOI: 10.1016/s0142-9612(01)00017-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ventilator-associated pneumonia is a major cause of death in intensive care patients and the endotracheal tube, commonly fabricated from poly(vinyl chloride) (PVC), is acknowledged as a significant factor in this. Bacteria colonise the biomaterial, thereby adopting a sessile mode of growth that progresses to the establishment of an antibiotic-resistant biofilm by the accretion of a protective glycocalyx. This study examined the sequential steps involved in the formation of biofilm on PVC by atomic force microscopy and the concomitant development of resistance to an antibiotic (ceftazidime) and to a non-antibiotic antimicrobial agent (hexetidine). Staphylococcus aureus and Pseudomonas aeruginosa isolated from ET tube biofilm were employed. The surface microrugosity of bacteria growing in sessile mode on PVC decreased significantly (p < 0.05) over the period 4, 24, 48 h and 5 d. The progressive accretion of bacterial glycocalyx was readily visualised in micrographs leading to a smoother surface topography with time. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for ceftazidime and hexetidine against planktonic (suspension) S. aureus were lower than for Ps. aeruginosa. Furthermore, sessile populations of S. aureus and Ps. aeruginosa on PVC exhibited greater resistance to both ceftazidime and hexetidine when compared to planktonic bacterial growth. The efficacy of the agents, determined by kill kinetics, against sessile bacteria was dependent on age, with established biofilms (> or = 24 h) significantly more resistant (p < 0.05) than early sessile populations (< or = 4 h). Importantly, for practice, even newly colonised bacteria (1 h) were significantly more resistant to antibiotic than planktonic bacteria. Hexetidine was significantly more active (p < 0.05) than ceftazidime on biofilms of both isolates, irrespective of age, with total kill within 24 h treatment. Hexetidine may offer promise in the resolution of infection associated with PVC endotracheal tubes.
Collapse
Affiliation(s)
- S P Gorman
- Medical Devices Group, School of Pharmacy, Medical Biology Centre, The Queen's University of Belfast, UK.
| | | | | | | | | |
Collapse
|
33
|
Wilson WW, Wade MM, Holman SC, Champlin FR. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 2001; 43:153-64. [PMID: 11118650 DOI: 10.1016/s0167-7012(00)00224-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surface interfacial physiology is particularly important to unicellular organisms with regard to maintenance of optimal cell function. Bacterial cell surfaces possess net negative electrostatic charge by virtue of ionized phosphoryl and carboxylate substituents on outer cell envelope macromolecules which are exposed to the extracellular environment. The degree of peripheral electronegativity influences overall cell surface polarity and can be assessed on the basis of zeta potential which is most often determined by estimating the electrophoretic mobility of cells in an electric field. The purpose of this review is to provide bacteriologists with assistance as they seek to better understand available instrumentation and fundamental principles concerning the estimation of zeta potential as it relates to bacterial surface physiology.
Collapse
Affiliation(s)
- W W Wilson
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- T Hoehn
- Department of Neonatology, Humboldt University, Berlin, Germany.
| | | |
Collapse
|
35
|
van der Mei H, Bos R, Busscher H. A reference guide to microbial cell surface hydrophobicity based on contact angles. Colloids Surf B Biointerfaces 1998. [DOI: 10.1016/s0927-7765(98)00037-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
McGovern J, Garvin C, Jones D, Woolfson A, Gorman S. Modification of biomaterial surface characteristics by body fluids in vitro. Int J Pharm 1997. [DOI: 10.1016/s0378-5173(97)04883-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|