1
|
Aștilean Pertea AN, Dreancă A, Gog-Bogdan S, Sevastre B, Ungur A, Negoescu A, Taulescu M, Rotar O, Dindelegan M, Gherman LM, Magyari K, Oana L. Bone proliferation in osteoporotic experimental animals using alginate-pullulan-bioactive glass‑gold nanoparticles composite. Bone 2025; 194:117439. [PMID: 40024425 DOI: 10.1016/j.bone.2025.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
In the present study, scaffold composites based on alginate-pullulan-bioactive glass‑gold nanoparticles were orthotopically implanted in an experimental model of delayed bone union, in rats, given by a metabolic pathology, namely osteoporosis. Differences between treated and untreated groups were observed and the efficacy of our biomaterial was evaluated by applying micro-CT imaging, together with histological evaluation of the osteoporotic animals with sub-critical bone defects, at 30 and 60 days. Osteoporosis was successfully induced by ovariectomy in 9-month-old rats, confirmed by micro-CT and histopathological analysis. A secondary complication from a cortical bone defect was further induced to study bone proliferation in such a delayed environment. The studied composite presents osteointegration and angiogenesis properties at 60 days post-implantation in the osteoporotic animals. These results are given by the micro-CT analysis in which higher bone mineral density and bone volume fraction were observed, alongside histopathology, stating a lack of tissue necrosis and inflammatory reaction and the presence of new woven islands within and around the implanted biomaterial. This is the first endeavor to treat cortical bone defects in osteoporotic animals using scaffold biopolymers containing bioactive glass‑gold nanoparticles instead of cement.
Collapse
Affiliation(s)
| | - Alexandra Dreancă
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Sidonia Gog-Bogdan
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Ungur
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrada Negoescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marian Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Oana Rotar
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maximilian Dindelegan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Centre for Experimental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 400349 Cluj-Napoca, Romania
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; INSPIRE Research Platform InfoBioNano4Health & Biomedical Imaging, Babeș Bolyai University, 400084 Cluj-Napoca, Romania.
| | - Liviu Oana
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Marsh AC, Zhang Y, Wagley Y, Acevedo PK, Crimp MA, Hankenson K, Hammer ND, Roch A, Boccaccini AR, Chatzistavrou X. Advancements in reliability of mechanical performance of 3D PRINTED Ag-doped bioceramic antibacterial scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2025; 166:214039. [PMID: 39326251 DOI: 10.1016/j.bioadv.2024.214039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The current gold-standard approach for addressing bone defects in load-bearing applications sees the use of either autographs or allographs. These solutions, however, have limitations as autographs and allographs carry the risk of additional trauma, the threat of disease transmission, and potential donor rejection. An attractive candidate for overcoming the challenges associated with the use of autographs and allographs is a 3D porous scaffold displaying the needed mechanical competency for use in load-bearing applications that can stimulate bone tissue regeneration and provide antibacterial capabilities. To date, no reports document a 3D porous scaffold that fully meets the criteria specified above. In this work, we show how the use of fused filament fabrication (FFF) 3D printing technology in combination with a bimodal distribution of Ag-doped bioactive glass-ceramic (Ag-BG) micro-sized particles can successfully deliver porous 3D scaffolds with attractive and reliable mechanical performance characteristics capable of stimulating bone tissue regeneration and the ability to provide inherent antibacterial properties. To characterize the reliability of the mechanical performance of the FFF-printed Ag-BG scaffolds, Weibull statistics were evaluated for both the compressive (N = 25; m = 13.6 ± 0.9) and flexural (N = 25; m = 7.3 ± 0.7) strengths. Methicillin-resistant Staphylococcus aureus (MRSA) was used both in planktonic and biofilm forms to highlight the advanced antibacterial characteristics of the FFF-printed Ag-BG scaffolds. Biological performance was evaluated in vitro through indirect exposure to human marrow stromal cells (hMSCs), where the FFF-printed Ag-BG scaffolds were found to provide an attractive environment for cell infiltration and mineralization. Our work demonstrates how fused filament fabrication technology can be used with bioactive and antibacterial materials such as Ag-BG to deliver mechanically competent porous 3D scaffolds capable of stimulating bone tissue regeneration while simultaneously providing antibacterial performance capabilities.
Collapse
Affiliation(s)
- Adam C Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Yaozhong Zhang
- Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Parker K Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin A Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aljoscha Roch
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Adamczyk A, Brylewski T, Szymczak P. The Influence of Ag Addition and Different SiO 2 Precursors on the Structure of Silica Thin Films Synthesized by the Sol-Gel Method. Molecules 2024; 29:4592. [PMID: 39407522 PMCID: PMC11477674 DOI: 10.3390/molecules29194592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
In this work, the structure of silica thin films synthesized with three different SiO2 precursors and obtained by the sol-gel method and dip coating technique was studied. Additionally, the influence of Ag addition on the obtained silica sols and then gel structure was investigated. Silica coatings show antireflective properties and high thermal resistance, as well as hydrophobic or hydrophilic properties. Three different silica precursors, TEOS (tetraethylorthosilicate), DDS (dimethyldietoxysilane) and AerosilTM, were selected for the synthesis. DDS added to silica sol act as a pore size modifier, while Ag atoms are known for their antibacterial activity. Coatings were deposited on two different substrates: steel and titanium, dried and annealed at 500 °C in air (steel substrate) and in argon (titanium substrate). For all synthesized films, IR (infrared) spectroscopic studies were performed together with GID and XRD (Grazing Incidence Diffraction, X-ray Diffraction) measurements. The topography and morphology of the surface were traced by SEM and AFM microscopic methods, providing information on the samples' roughness, particle sizes and thickness of the particular layers. The wetting angle values were also measured. GID and XRD measurements pointed to the distinct contribution of an amorphous phase in the samples, allowing us to recognize the crystalline phases and calculate the silver crystallite sizes. The FTIR spectra gave information on the first coordination sphere of the studied samples.
Collapse
Affiliation(s)
- Anna Adamczyk
- Faculty of Materials Science and Ceramics, AGH University of Kraków, Al. Mickiewicza 30, 30-059 Kraków, Poland; (T.B.); (P.S.)
| | | | | |
Collapse
|
4
|
Zwingelstein T, Figarol A, Luzet V, Crenna M, Bulliard X, Finelli A, Gay J, Lefèvre X, Pugin R, Laithier JF, Chérioux F, Humblot V. A Kinetic Approach to Synergize Bactericidal Efficacy and Biocompatibility in Silver-Based Sol-Gel Coatings. ACS OMEGA 2024; 9:24574-24583. [PMID: 38882165 PMCID: PMC11170749 DOI: 10.1021/acsomega.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024]
Abstract
Silver ions are antimicrobial agents with powerful action against bacteria. Applications in surface treatments, as Ag+-functionalized sol-gel coatings, are expected in the biomedical field to prevent contaminations and infections. The potential cytotoxicity of Ag+ cations toward human cells is well known though. However, few studies consider both the bactericidal activity and the biocompatibility of the Ag+-functionalized sol-gels. Here, we demonstrate that the cytotoxicity of Ag+ cations is circumvented, thanks to the ability of Ag+ cations to kill Escherichia coli (E. coli) much faster than normal human dermal fibroblasts (NHDFs). This phenomenon was investigated in the case of two silver nitrate-loaded sol-gel coatings: one with 0.5 w/w% Ag+ cations and the second with 2.5 w/w%. The maximal amount of released Ag+ ions over time (0.25 mg/L) was ten times lower than the minimal inhibition (MIC) and minimal bactericidal (MBC) concentrations (respectively, 2.5 and 16 mg/L) for E. coli and twice lower to the minimal cytotoxic concentration (0.5 mg/L) observed in NHDFs. E. coli were killed 8-18 times, respectively, faster than NHDFs by silver-loaded sol-gel coatings. This original approach, based on the kinetic control of the biological activity of Ag+ cations instead of a concentration effect, ensures the bactericidal protection while maintaining the biocompatibility of the Ag+ cation-functionalized sol-gels. This opens promising applications of silver-loaded sol-gel coatings for biomedical tools in short-term or indirect contacts with the skin.
Collapse
Affiliation(s)
| | - Agathe Figarol
- Université Franche-Comté, CNRS, FEMTO-ST, F-25000 Besançon, France
| | - Vincent Luzet
- Université Franche-Comté, CNRS, FEMTO-ST, F-25000 Besançon, France
| | - Maude Crenna
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | - Xavier Bulliard
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | - Alba Finelli
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | - Julien Gay
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | - Xavier Lefèvre
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | - Raphaël Pugin
- Centre Suisse d'Electronique et de Microtechnique CSEM SA, Jaquet Droz 1, CH-2000 Neuchâtel, Switzerland
| | | | | | - Vincent Humblot
- Université Franche-Comté, CNRS, FEMTO-ST, F-25000 Besançon, France
| |
Collapse
|
5
|
Pajares-Chamorro N, Hernández-Escobar S, Wagley Y, Acevedo P, Cramer M, Badylak S, Hammer ND, Hardy J, Hankenson K, Chatzistavrou X. Silver-releasing bioactive glass nanoparticles for infected tissue regeneration. BIOMATERIALS ADVANCES 2023; 154:213656. [PMID: 37844416 DOI: 10.1016/j.bioadv.2023.213656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bacterial infections represent a formidable challenge, often leaving behind significant bone defects post-debridement and necessitating prolonged antibiotic treatments. The rise of antibiotic-resistant bacterial strains further complicates infection management. Bioactive glass nanoparticles have been presented as a promising substitute for bone defects and as carriers for therapeutic agents against microorganisms. Achieving consistent incorporation of ions into BGNs has proven challenging and restricted to a maximum ion concentration, especially when reducing the particle size. This study presents a notable achievement in the synthesis of 10 nm-sized Ag-doped bioactive glass nanoparticles (Ag-BGNs) using a modified yet straightforward Stöber method. The successful incorporation of essential elements, including P, Ca, Al, and Ag, into the glass structure at the intended concentrations (i.e., CaO wt% above 20 %) was confirmed by EDS, signifying a significant advancement in nanoscale biomaterial engineering. While exhibiting a spherical morphology and moderate dispersity, these nanoparticles tend to form submicron-sized aggregates outside of a solution state. The antibacterial effectiveness against MRSA was established across various experimental conditions, with Ag-BGNs effectively sterilizing planktonic bacteria without the need for antibiotics. Remarkably, when combined with oxacillin or fosfomycin, Ag-BGNs demonstrated a potent synergistic effect, restoring antibacterial capabilities against MRSA strains resistant to these antibiotics when used alone. Ag-BGNs exhibited potential in promoting human mesenchymal stromal cell proliferation, inducing the upregulation of osteoblast gene markers, and significantly contributing to bone regeneration in mice. This innovative synthesis protocol holds substantial promise for the development of biomaterials dedicated to the regeneration of infected tissue.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra Hernández-Escobar
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Yadav Wagley
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Parker Acevedo
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Madeline Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA
| | - Kurt Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
6
|
Özdemir Y, Birtane H, Çiğil AB. An evaluation of antibacterial properties and cytotoxicity of UV-curable biocompatible films containing hydroxyethyl cellulose and silver nanoparticles. Int J Biol Macromol 2023:125516. [PMID: 37353126 DOI: 10.1016/j.ijbiomac.2023.125516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The present study aimed to develop biocompatible film materials with antibacterial and anticancer properties that can be cured with UV rays depending on the thiol-en click reaction mechanism. The synthesized m-Ag NPs were added to formulations containing acrylate functionality HEC, pentaerythritol tetrarkis(3-mercaptopropionate), and photoinitiator at different rates (0, 20, 40, and 60 parts per hundred (phr)). The antibacterial activity of the films was evaluated against S. aureus, P. aeruginosa and E. coli by the disk diffusion test. The antibacterial effect of the films did not form an inhibition zone for the control formulation (CmAg0) against bacteria whereas the antibacterial property increased as the Ag NPs content increased in formulations containing m-Ag NPs. The strongest resistance film against the three bacterial species was observed in the CmAg60 formulation with 60 phr silver content, and the inhibition zones for S. aureus, P. aeruginosa, and E. coli were measured as 16.5 ± 0.7, 16.5 ± 2.1, and 16 ± 1.4, respectively. The cytotoxicity of the films against healthy cells and breast cancer cell (MCF-7) lines was investigated with MTT, and it was observed that all films did not cause any inhibition in the structure of the living cell but killed the cells at a high rate in the MCF-7 line. It was mainly observed that the CmAg60 formulation showed 95.576 % cell inhibition against MCF-7. According to these results, it has been predicted that the prepared films will play a vital role in the next generation of cancer treatments.
Collapse
Affiliation(s)
- Yusuf Özdemir
- Amasya University, Institute of Science, Department of Chemistry, Amasya, Turkey
| | - Hatice Birtane
- Marmara University, Department of Chemistry, Istanbul, Turkey.
| | - Aslı Beyler Çiğil
- Gazi University, Department of Chemistry and Chemical Process Technology, Ankara, Turkey.
| |
Collapse
|
7
|
Demirel B, Erol Taygun M. Zinc Oxide-Doped Antibacterial Soda Lime Glass Produced as a Glass Container. ACS OMEGA 2023; 8:9257-9264. [PMID: 36936299 PMCID: PMC10018712 DOI: 10.1021/acsomega.2c07469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study is to produce and characterize glass materials, which have an enhanced antibacterial property by the conventional melting method. Container glass compositions including different amounts of zinc oxide (ZnO) (5.0, 7.5, and 10.0%) were prepared and melted to be able to obtain the antibacterial glass. The Release and antibacterial tests, which were performed after the melting process, showed that the glass doped with 5% ZnO was the most appropriate composition according to test results (99.82% Escherichia coli inactivation) and its raw materials' costs. Physical, thermal, and mechanical properties such as thermal expansion coefficient (86.1 × 10-7/°C), density (2.523 g/cm3), refractive index (1.5191), hardness (596 kg/mm2), and elastic modulus (5.84 GPa) of the glass doped with 5% ZnO were determined, and the results showed that the obtained antibacterial glass sample is suitable to be used as a glass container. HighTemperature Melting Observation System studies were performed on the produced antibacterial glass composition, and it was found that the antibacterial glass can be produced in soda lime glass furnaces without changing any furnace design and production parameters. This antibacterial glass can be a remarkable product for the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Barış Demirel
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
- Sisecam
Science Technology and Design Center, Gebze 41400, Kocaeli, Turkey
| | - Melek Erol Taygun
- Department
of Chemical Engineering, Istanbul Technical
University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
8
|
Weiss KM, Kucko SK, Mokhtari S, Keenan TJ, Wren AW. Investigating the structure, solubility, and antibacterial properties of silver- and copper-doped hydroxyapatite. J Biomed Mater Res B Appl Biomater 2023; 111:295-313. [PMID: 36054459 DOI: 10.1002/jbm.b.35151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/27/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Hydroxyapatite (HA) powders were synthesized by the wet precipitation method in which two experimental compositions were synthesized (10 mol% Ag-HA and Cu-HA) where the CaNO3 content was partially substituted with AgNO3 and Cu(NO3 )2 . X-ray diffraction (XRD) was employed to characterize changes to the HA structure as the dopants (Cu2+ , Ag+ ) were incorporated into the materials structure. Energy-dispersive X-ray spectroscopy (EDS) determined confirmed the compositions and found that the Ca/P ratio was 1.63 for the control (HA) while Ag-HA and Cu-HA exhibited (X + Ca)/P ratios of 1.79 and 1.65, respectively. Antibacterial efficacies were evaluated against E. coli and S. aureus, as a function of surface area and incubation time. The more prominent antibacterial effects were observed with both Ag-HA and Cu-HA and the materials antibacterial influence was maintained with respect to time. Ion release studies of each HA composition (15, 30, and 45 days) showed that Cu-HA released significantly more Cu2+ (36.1 ± 5.1 mg/L) than Ag+ (2.9 ± 1.2 mg/L) from Ag-HA. Analysis of each composition incubated in simulated body fluid (SBF) exhibited surface depositions that are likely calcium phosphate (CaP). Cytocompatibility testing in MC 3T3 Osteoblasts showed slight reductions in cell viability when tested using MTT assay, however cell adhesion studies were positive for each composition.
Collapse
Affiliation(s)
- Katie M Weiss
- Inamori School of Engineering, Alfred University, Alfred, New York, USA
| | - Sierra K Kucko
- Inamori School of Engineering, Alfred University, Alfred, New York, USA
| | - Sahar Mokhtari
- Inamori School of Engineering, Alfred University, Alfred, New York, USA
| | - Timothy J Keenan
- Inamori School of Engineering, Alfred University, Alfred, New York, USA
| | | |
Collapse
|
9
|
Tuntun SM, Sahadat Hossain M, Uddin MN, Shaikh MAA, Bahadur NM, Ahmed S. Crystallographic characterization and application of copper doped hydroxyapatite as a biomaterial. NEW J CHEM 2023. [DOI: 10.1039/d2nj04130h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cu-doped hydroxyapatite is synthesized from eggshell and its suitability as a potential biomaterial is examined via cytotoxicity, haemolysis and antibacterial activity.
Collapse
Affiliation(s)
- Supanna Malek Tuntun
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Sientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Sientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md. Najem Uddin
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Sientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Samina Ahmed
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Sientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
10
|
Pajares-Chamorro N, Lensmire JM, Hammer ND, Hardy JW, Chatzistavrou X. Unraveling the mechanisms of inhibition of silver-doped bioactive glass-ceramic particles. J Biomed Mater Res A 2022; 111:975-994. [PMID: 36583930 DOI: 10.1002/jbm.a.37482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Infections are a major concern in orthopedics. Antibacterial agents such as silver ions are of great interest as broad-spectrum biocides and have been incorporated into bioactive glass-ceramic particles to control the release of ions within a therapeutic concentration and provide tissue regenerative properties. In this work, the antibacterial capabilities of silver-doped bioactive glass (Ag-BG) microparticles were explored to reveal the unedited mechanisms of inhibition against methicillin-resistant Staphylococcus aureus (MRSA). The antibacterial properties were not limited to the delivery of silver ions but rather a combination of antibacterial degradation by-products. For example, nano-sized debris punctured holes in bacteria membranes, osmotic effects, and reactive oxygen species causing oxidative stress and almost 40% of the inhibition. Upon successive Ag-BG treatments, MRSA underwent phenotypic and genomic mutations which were not only insufficient to develop resistance but instead, the clones became more sensitive as the treatment was re-delivered. Additionally, the unprecedented restorative functionality of Ag-BG allowed the effective use of antibiotics that MRSA resists. The synergy mechanism was mainly identified for combinations targeting cell-wall activity and their action was proven in biofilm-like and virulent conditions. Unraveling these mechanisms may offer new insights into how to tailor healthcare materials to prevent or debilitate infections and join the fight against antibiotic resistance in clinical cases.
Collapse
Affiliation(s)
- Natalia Pajares-Chamorro
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Josh M Lensmire
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Neal D Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.,Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, Michigan, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA.,Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
11
|
Salimi E, Nigje AK. Investigating the antibacterial activity of carboxymethyl cellulose films treated with novel Ag@GO decorated SiO2 nanohybrids. Carbohydr Polym 2022; 298:120077. [DOI: 10.1016/j.carbpol.2022.120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022]
|
12
|
Meydaneri Tezel F, Kariper İA, Kaan D, Bahar D. Structural, surface, optical, and antimicrobial characterization of I2/Polymethyl methacrylate and CuS/I2/polymethyl methacrylate thin films. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Effect of silver ion on Bis-GMA structure: computational chemistry study. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Fernández-Hernán JP, Torres B, López AJ, Rams J. The Role of the Sol-Gel Synthesis Process in the Biomedical Field and Its Use to Enhance the Performance of Bioabsorbable Magnesium Implants. Gels 2022; 8:gels8070426. [PMID: 35877511 PMCID: PMC9315552 DOI: 10.3390/gels8070426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
In the present day, the increment in life expectancy has led to the necessity of developing new biomaterials for the restoration or substitution of damaged organs that have lost their functionalities. Among all the research about biomaterials, this review paper aimed to expose the main possibilities that the sol-gel synthesis method can provide for the fabrication of materials with interest in the biomedical field, more specifically, when this synthesis method is used to improve the biological properties of different magnesium alloys used as biomaterials. The sol-gel method has been widely studied and used to generate ceramic materials for a wide range of purposes during the last fifty years. Focused on biomedical research, the sol-gel synthesis method allows the generation of different kinds of biomaterials with diverse morphologies and a high potential for the biocompatibility improvement of a wide range of materials commonly used in the biomedical field such as metallic implants, as well as for the generation of drug delivery systems or interesting biomaterials for new tissue engineering therapies.
Collapse
|
15
|
De Morais DC, Jackson JK, Kong JH, Ghaffari S, Palma-Dibb RG, Carvalho RM, Lange D, Manso AP. Characterization of polymethylmethacrylate microspheres loaded with silver and doxycycline for dental materials applications. Dent Mater 2022; 38:946-959. [PMID: 35300870 DOI: 10.1016/j.dental.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The manufacturing of polymethylmethacrylate(PMMA) microspheres loaded with doxycycline(DOX) and/or silver sulfate(Ag2SO4) to be incorporated into glass ionomer cement(GIC). METHODS PMMA microspheres were manufactured with Ag2SO4(1-5%) and/or DOX(5-15%). Particle size, encapsulation efficiency and drug release were measured by light microscope, ICP, and HPLC. Microspheres were added to a dental GIC(20%w/w). Drug release and DTS were investigated. Minimum inhibitory concentration and antibacterial effects of PMMA microspheres into GIC materials were tested. RESULTS The median diameter of 50 µm was obtained for microspheres. DOX was encapsulated at an efficiency of 8.3% using a theoretical loading of 15%DOX + 5%Ag2SO4. The Ag2SO4 encapsulation efficiency was 0.63% using a theoretical loading of 5%AgSO4. All groups showed burst release within the first day and continued released up to 15 days, with 60-83% of DOX and approximately 30% of silver. For GIC, approximately 15% of DOX and 0.18% of silver were released in a 7-day period. Microbiological results showed an antimicrobial effect against S. mutans when the lead formulation of microspheres was added. The DTS was reduced by the inclusion of microspheres. SIGNIFICANCE PMMA microspheres containing DOX and Ag2SO4 offer a sustained antimicrobial activity for dental applications and promising potential for the biomedical field.
Collapse
Affiliation(s)
- Dayana C De Morais
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
| | - John K Jackson
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| | - Jong Hoon Kong
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
| | - Sahand Ghaffari
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| | - Regina G Palma-Dibb
- Department of Operative Dentistry, Ribeirao Preto School of Dentistry, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Ricardo M Carvalho
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
| | - Dirk Lange
- Department of Urological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| | - Adriana P Manso
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
The Effect of the Corrosion Medium on Silane Coatings Deposited on Titanium Grade 2 and Titanium Alloy Ti13Nb13Zr. MATERIALS 2021; 14:ma14216350. [PMID: 34771877 PMCID: PMC8585128 DOI: 10.3390/ma14216350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/05/2022]
Abstract
The present paper focuses on the fabrication of coatings based on vinyltrimethoxysilane and the influence of various corrosion media on the coatings produced. Coatings were deposited on two substrate materials, namely, titanium Grade 2 and titanium alloy Ti13Nb13Zr, by immersion in a solution containing vinyltrimethoxysilane, anhydrous ethyl alcohol, acetic acid and distilled water. The obtained coatings were characterized in terms of surface morphology, adhesion to the substrate and corrosion resistance. As corrosion solutions, four different simulated physiological fluids, which differed in the contents of individual ions, and a 1 mol dm−3 NaBr solution were used. The chloride ions contained in the simulated physiological fluids did not lead to pitting corrosion of titanium Grade 2 and titanium alloy Ti13Nb13Zr. This investigation shows that titanium undergoes pitting corrosion in a bromide ion medium. It is demonstrated that the investigated coatings slow down corrosion processes in all corrosion media examined.
Collapse
|
17
|
Abstract
AgCu nanoparticles were prepared through hydrogen-reduction-assisted Ultrasonic Spray Pyrolysis (USP) and the Hydrogen Reduction (HR) method. The changes in the morphology and crystal structure of nanoparticles were studied using different concentrated precursors. The structure and morphology of the mixed crystalline particles were characterized through X-ray diffraction analysis (XRD), scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDS). The average particle size decreased from 364 nm to 224 nm by reducing the initial solution concentration from 0.05 M to 0.4 M. These results indicate that the increase in concentration also increases the grain size. Antibacterial properties of nanoparticles against Escherichia coli were investigated. The obtained results indicate that produced particles show antibacterial activity (100%). The AgCu nanoparticles have the usage potential in different areas of the industry.
Collapse
|
18
|
Li J, Wang Y, Yu X. Magnetic Molecularly Imprinted Polymers: Synthesis and Applications in the Selective Extraction of Antibiotics. Front Chem 2021; 9:706311. [PMID: 34422765 PMCID: PMC8371043 DOI: 10.3389/fchem.2021.706311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, magnetic molecularly imprinted polymers (MMIPs) have integrated molecular imprinting technology (MIT) and magnetic separation technology and become a novel material with specific recognition and effective separation of target molecules. Based on their special function, they can be widely used to detect contaminants such as antibiotics. The antibiotic residues in the environment not only cause harm to the balance of the ecosystem but also induce bacterial resistance to specific antibiotics. Given the above consideration, it is especially important to develop sensitive and selective methods for measuring antibiotics in the complex matrix. The combination of MMIPs and conventional analytical methods provides a rapid approach to separate and determine antibiotics residues. This article gives a systematic overview of synthetic approaches of the novel MMIPs materials, briefly introduces their use in sample pretreatment prior to antibiotic detection, and provides a perspective for future research.
Collapse
Affiliation(s)
- Junyu Li
- Department of Chemistry, Shandong University, Weihai, China
| | - Yiran Wang
- Department of Chemistry, Shandong University, Weihai, China
| | - Xiuxia Yu
- Department of Chemistry, Shandong University, Weihai, China
| |
Collapse
|
19
|
Jaurich H, Becerikli M, Zerrer J, Wallner C, Wagner JM, Dadras M, Jettkant B, Schildhauer TA, Lehnhardt M, Jung O, Behr B. Hierarchical Ceramic Coating Reduces Adherence of Cells, Blood, Bacteria, and Tissue on Titanium Microsurgical Instruments. J Reconstr Microsurg 2021; 38:47-55. [PMID: 34154025 DOI: 10.1055/s-0041-1729881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Progress in the field of microsurgery allows more detailed reconstructions of the smallest tissue structures. The applied instruments are left with biological residues after coming into contact with body fluids or tissue, leading to compromised surgical precision. Designing of residue-free innovative instruments would reduce the necessity of subsidiary practices and would improve the surgical precision. METHODS We designed a ceramic coating (Lotus ceramic coating system 26-LCC-26) that exhibits self-cleaning surface properties on coated titanium specimens. A titanium surface was modified by blasting technology and electropolishing, followed by applying a high-performance ceramic and sol-gel finish layer. The physical surface characterization was performed by scanning electron microscopy and measuring the contact angle. The cell-repellent properties and cytotoxicity were investigated using live-dead staining, BrdU, and lactate dehydrogenase assay. Furthermore, bacterial and fluid-adhesion tests were performed. Finally, blood compatibility was analyzed according to DIN ISO 10993. RESULTS The composite system LCC-26 increased the hydrophobic character of the titanium surface (the water contact angle of 74.9 degrees was compared with 62.7 degrees of the uncoated native titanium; p < 0.01) and led to the fluid and cell-repellent properties shown by the reduction in fibroblast adherence by ∼50.7% (p < 0.05), the reduction in Staphylococcus aureus pathogen colonization by 74.1% (p < 0.001), and the decrease in erythrocyte adherence by 62.9% (p < 0.01). Furthermore, the LCC-26 coated titanium microforceps dipped in human whole blood exhibited blood-repellent character (reduction in blood adherence by 46.1%; p < 0.05). Additionally, cyto- and hemocompatibility was guaranteed in direct and indirect tests. CONCLUSION Titanium surface modification on surgical instruments exhibits cell, bacteria, and blood-repellent properties with a full guarantee of cyto- and hemocompatibility. Thus, innovatively coated instruments could contribute to increased precision during microsurgical interventions and optimized medical operation routines in the future.
Collapse
Affiliation(s)
- Henriette Jaurich
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Jörg Zerrer
- ELB - Eloxalwerk Ludwigsburg Helmut Zerrer GmbH, Ludwigsburg, Germany
| | - Christoph Wallner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Birger Jettkant
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Thomas A Schildhauer
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, Head- and Neurocentrum, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Behr
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Wang X, Wang Z, Wang X, Shi L, Ran R. Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydr Polym 2021; 257:117665. [PMID: 33541668 DOI: 10.1016/j.carbpol.2021.117665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
As a smart wearable sensor device, the mildew of the biocompatible hydrogel limits its application. In this paper, silver nanoparticles were prepared by solid-state reduction of hydroxyethyl cellulose and compounded into a chemically cross-linked hydrogel as an antibacterial, flexible strain sensor. Because the high surface energy of silver nanoparticles can quench free radicals, we designed three initiators to synthesize hydrogels: ammonium persulfate (APS), 2,2'-Azobis(2-methylpropionitrile) (AIBN) and 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AIBA). Impressively, silver nanoparticles composite hydrogel could only be successfully fabricated and triggered by the AIBN. The mechanical property of the composite hydrogel (0.12 MPa at 704.33 % strain) was significantly improved because of dynamic crosslinking point by HEC. Finally, the composite hydrogels are applied to the field of antibacterial strain sensor and the highest Gauge Factor (GF) reached 4.07. This article proposes a novel, green and simple strategy for preparing silver nanoparticles and compounding them into a hydrogel system for antibacterial strain sensor.
Collapse
Affiliation(s)
- Xiangdong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhisen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lingying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
21
|
Paramita P, Ramachandran M, Narashiman S, Nagarajan S, Sukumar DK, Chung TW, Ambigapathi M. Sol-gel based synthesis and biological properties of zinc integrated nano bioglass ceramics for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:5. [PMID: 33471255 PMCID: PMC7817593 DOI: 10.1007/s10856-020-06478-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/18/2020] [Indexed: 06/01/2023]
Abstract
Bone is a flexible and electro active tissue that is vulnerable to various traumatic injuries. The self-healing of damaged bone tissue towards reconstruction is limited due to the lack of proper niche compliances. Nevertheless, the classical grafting techniques like autograft/allograft for bone repair pose challenges like bacterial infections and donor-site morbidity with unsatisfactory outcomes. The use of appropriate biomaterial with osteogenic potential can meet these challenges. In this regard, bioactive glass ceramics is widely used as a bone filler or graft material because of its bonding affinity to bone leading towards bone reconstruction applications without the challenge of post implant infections. Hence, the current study is aimed at addressing this potentiality of zinc (Zn) for doped the bioglass at nano-scale advantages for bone tissue repair. Since, Zn has been demonstrated to have not only antibacterial property but also the stimulatory effect on osteoblasts differentiation, mineralization by enhancing the osteogenic genes expression. In view of these, the present study is focused on sol-gel synthesis and pysico-chemical characterization of Zinc-doped bioglass nanoparticles (Zn-nBGC) and also analyzing its biological implications. The surface morphological and physiochemical characterizations using SEM, EDX, FT-IR and XRD analysis has shown the increased surface area of Zn-nBGC particles providing a great platform for biomolecular interaction, cytocompatibility, cell proliferation and osteogenic differentiation. The obtaining hydroxy apatite groups have initiated in vitro mineralization towards osteogenic lineage formation. Zn has not only involved in enhancing cellular actions but also strengthen the ceramic nanoparticles towards antibacterial application. Hence the finding suggests a biomaterial synthesis of better biomaterial for bone tissue engineering application by preventing post-operative bacterial infection.
Collapse
Affiliation(s)
- Pragyan Paramita
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Murugesan Ramachandran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Srinivasan Narashiman
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Selvamurugan Nagarajan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu, 603203, India
| | - Dinesh Kumar Sukumar
- Department of Biomedical Science, Peptide Biochemistry, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Moorthi Ambigapathi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
22
|
Obaid MA, Hellal Harbi K, Abd AN. Study the effect of antibacterial on the chemically prepared copper oxide. MATERIALS TODAY: PROCEEDINGS 2021; 47:6006-6010. [DOI: 10.1016/j.matpr.2021.04.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
23
|
Marsh AC, Zhang Y, Poli L, Hammer N, Roch A, Crimp M, Chatzistavrou X. 3D printed bioactive and antibacterial silicate glass-ceramic scaffold by fused filament fabrication. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111516. [PMID: 33255072 DOI: 10.1016/j.msec.2020.111516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 01/14/2023]
Abstract
The fused filament fabrication (FFF) technique was applied for the first time to fabricate novel 3D printed silicate bioactive and antibacterial Ag-doped glass-ceramic (Ag-BG) scaffolds. A novel filament consisting primarily of polyolefin and Ag-BG micro-sized particles was developed and its thermal properties characterized by thermogravimetric analysis (TGA) to define the optimum heat treatment with minimal macrostructural deformation during thermal debinding and sintering. Structural characteristics of the Ag-BG scaffolds were evaluated from macro- to nanoscale using microscopic and spectroscopic techniques. The compressive strength of the Ag-BG scaffolds was found to be in the range of cancellous bone. Bioactivity of the 3D printed Ag-BG scaffolds was evaluated in vitro through immersion in simulated body fluid (SBF) and correlated to the formation of an apatite-like phase. Methicillin-resistant Staphylococcus aureus (MRSA) inoculated with the Ag-BG scaffolds exhibited a significant decrease in viability underscoring a potent anti-MRSA effect. This study demonstrates the potential of the FFF technique for the fabrication of bioactive 3D silicate scaffolds with promising characteristics for orthopedic applications.
Collapse
Affiliation(s)
- Adam C Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Yaozhong Zhang
- Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Lucrezia Poli
- Fraunhofer USA Center for Coatings and Diamond Technologies CCD, East Lansing, MI, USA
| | - Neal Hammer
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aljoscha Roch
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA; Electrical & Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Martin Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
24
|
Argovit™ silver nanoparticles reduce contamination levels and improve morphological growth in the in vitro culture of Psidium friedrichsthalianum (O. Berg) Nied. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03948-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Soomro NA, Amur SA, Wei Y, Shah AH, Jiao M, Liang H, Yuan Q. Facile Grafting of Silver Nanoparticles into Copper and Guanosine 5′-Monophosphate Metal Organic Frameworks (AgNPs@Cu/GMP): Characterization and Antimicrobial Activity. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01908-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Soule LD, Pajares Chomorro N, Chuong K, Mellott N, Hammer N, Hankenson KD, Chatzistavrou X. Sol-Gel-Derived Bioactive and Antibacterial Multi-Component Thin Films by the Spin-Coating Technique. ACS Biomater Sci Eng 2020; 6:5549-5562. [PMID: 33320549 DOI: 10.1021/acsbiomaterials.0c01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although metallic alloys commonly used as prosthetics are durable and mechanically strong, they are often bioinert and lack antibacterial properties. Implementing a bioactive glass material with antibacterial properties as a coating on a metallic substrate provides mechanical strength and bioactivity, as well as antibacterial properties. Many coating methods have been extensively investigated; however, most of them can be expensive, are difficult to scale up, or do not form thin films, which could prevent their translation to clinical practice. The formation of thin films by spin-coating multi-component solution-gelation (sol-gel)-derived glass with antibacterial and bioactive properties has not been achieved previously. For this study, stainless steel 316L substrates were spin-coated with a sol-gel-derived bioactive and antibacterial glass coating in SiO2 58.3-P2O5 7.1-CaO 25.6-Al2O5 5.4-Ag2O 2.1-Na2O 1.5 wt% system (Ag-BG). A sol-gel processing condition that avoids elemental separation upon spin-coating when sintering happens at below the calcination temperature (500 °C) has been developed. This work demonstrates that silver reduction occurs when the concentrations of other cations such as Ca2+ and Na+ in the solution increase. Increasing the stirring duration time prior to the increase of cations, Ag+ ions are stabilized by aluminum tetrahedra, and their reduction to metallic silver does not occur. This study also shows that large dilution ratios (water:tetraethyl orthosilicate) greater than 25:1, accompanied by long stirring durations, produce morphologically homogeneous coatings. Using this strategy, thin films were formed with antibacterial properties against methicillin-resistant Staphylococcus aureus (MRSA) biofilm and biological responses that promote eukaryotic cell adhesion and proliferation. In total, the improved synthesis strategy opens new avenues for the development of novel bioactive and antibacterial thin-film coatings, as it reveals the processing characteristics that control the physicochemical and morphological properties of the formed films.
Collapse
Affiliation(s)
- Logan D Soule
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Natalia Pajares Chomorro
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kayla Chuong
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nathan Mellott
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Neal Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48823, United States
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
27
|
Kung JC, Wang WH, Lee CL, Hsieh HC, Shih CJ. Antibacterial Activity of Silver Nanoparticles (AgNP) Confined to Mesostructured, Silica-Based Calcium Phosphate Against Methicillin-Resistant Staphylococcus Aureus (MRSA). NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1264. [PMID: 32605329 PMCID: PMC7408568 DOI: 10.3390/nano10071264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 11/21/2022]
Abstract
Staphylococcus aureus, which is commonly found in hospitals, has become a major problem in infection control. In this study, Ag/80S bioactive ceramics used for enhanced antibacterial applications have been developed. An in vitro bioactivity test of the Ag/80S bioactive ceramic powders was performed in a phosphate-buffered saline (PBS). To explore the antibacterial activity of the Ag/80S bioactive ceramic powders, the Kirby-Bauer susceptibility test, the kinetics of microbial growth analysis and the colony-forming capacity assay were used to determine their minimum inhibitory concentration (MIC) against methicillin-resistant Staphylococcus aureus (MRSA). The results confirmed that the Ag/80S bioactive ceramic powders have antibacterial activity against MRSA (ATCC 33592) and MRSA (ATCC 49476).
Collapse
Affiliation(s)
- Jung-Chang Kung
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Dentistry, Division of Family Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Hsun Wang
- Department of Orthopedic Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Department of Golden-Ager Industry Management, Chaoyang University of Technology, Taichung 413, Taiwan
| | - Chung-Lin Lee
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.L.); (H.-C.H.)
| | - Hao-Che Hsieh
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.L.); (H.-C.H.)
| | - Chi-Jen Shih
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-L.L.); (H.-C.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
28
|
Verma AS, Kumar D, Dubey AK. Antibacterial and cellular response of piezoelectric Na 0.5K 0.5NbO 3modified 1393 bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111138. [PMID: 32806311 DOI: 10.1016/j.msec.2020.111138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
In the present study, the combined effect of addition of varying concentrations (10-30 vol%) of biocompatible piezoelectric Na0.5K0.5NbO3 (NKN) as well as electrostatic and dynamic pulsed electrical treatment on antibacterial and cellular response of 1393 bioactive glass (1393 BG) has been examined. The phase analyses of the sintered (at 800 °C for 30 min) samples revealed the formation of 1393 BG - NKN composites without any appearance of secondary phases. The addition of 10-30 vol% NKN significantly improved the mechanical behaviour of 1393 BG like, hardness (1.7 to 2 times), fracture toughness (1.3 to 2.6 times), compressive (2.3 to 8 times) and flexural strengths (2 to 3.5 times) than monolithic 1393 BG. The piezoelectric NKN is observed to induce the antibacterial activity in 1393 BG - (10- 30 vol%) NKN composites, while Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial cells were exposed to unpolarized and polarized (20 kV, 500°C for 30 min) sample surfaces. The antibacterial response was examined using disc diffusion, nitro blue tetrazolium (NBT) and MTT assays. The statistical analyses revealed the significant reduction in the viability of bacterial cells on polarized 1393 BG - (10- 30 vol%) NKN composite samples. In addition, the combined effect of electrostatic and dynamic pulsed electrical stimulation (1 V/cm, 500 μs pulses) on the cellular response of 1393 BG and 1393 BG - 30 vol% NKN composites has been analysed with MG-63 osteoblast-like cells. The cell proliferation was observed to increase significantly for the dynamic pulsed electric field treated negatively charged surfaces.
Collapse
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
29
|
Verma AS, Singh A, Kumar D, Dubey AK. Electro-mechanical and Polarization-Induced Antibacterial Response of 45S5 Bioglass-Sodium Potassium Niobate Piezoelectric Ceramic Composites. ACS Biomater Sci Eng 2020; 6:3055-3069. [PMID: 33463258 DOI: 10.1021/acsbiomaterials.0c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Besides the excellent osteoconductivity and biocompatibility of 45S5 bioglass (BG), poor mechanical and electrical properties as well as susceptibility toward bacterial adhesion limit its widespread clinical applications. In this context, the present study investigates the effect of addition of piezoelectric sodium potassium niobate (Na0.5K0.5NbO3; NKN) on mechanical, dielectric, and antibacterial response of BG. BG-xNKN (x = 0, 10, 20, and 30 vol%) composites were synthesized at 800 °C for 30 min. The phase analyses using spectral techniques revealed the formation of the composite without any reaction between BG and piezoelectric ceramic NKN. The dielectric and electrical measurements were performed over a wide range of temperature (30-500 °C) and frequency (1 Hz-1 MHz) which suggests that space charge and dipolar polarizations are the dominant polarization mechanisms. The complex impedance analyses suggest that the average activation energies for grain and grain boundary resistances for BG-xNKN (x = 10, 20, and 30 vol%) composites are 0.59, 0.87, 0.94 and 0.76, 0.93, 1.06 eV, respectively. The issue of bacterial infection has been addressed by electrical polarization of the developed composite samples, at 20 kV for 30 min. Statistical analyses reveal that the viability of Gram-positive (S. aureus) and Gram-negative (E. coli) bacterial cells has been reduced significantly on positively and negatively charged BG-NKN composite samples, respectively. The qualitative analyses using the Kirby-Bauer test supports the above findings. Nitro blue tetrazolium and lipid peroxide assays were performed to understand the mechanism of such antibacterial response, which suggested that the combined effect of NKN addition and polarization significantly enhances the superoxide production, which kills the bacterial cells. Overall, incorporation of NKN in BG enhances the mechanical, electrical, and dielectric properties as well as improves the antibacterial response of polarized BG-xNKN composites.
Collapse
Affiliation(s)
- Alok Singh Verma
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Angaraj Singh
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Devendra Kumar
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| | - Ashutosh Kumar Dubey
- Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi - 221005, India
| |
Collapse
|
30
|
Docea AO, Calina D, Buga AM, Zlatian O, Paoliello M, Mogosanu GD, Streba CT, Popescu EL, Stoica AE, Bîrcă AC, Vasile BȘ, Grumezescu AM, Mogoanta L. The Effect of Silver Nanoparticles on Antioxidant/Pro-Oxidant Balance in a Murine Model. Int J Mol Sci 2020; 21:ijms21041233. [PMID: 32059471 PMCID: PMC7072874 DOI: 10.3390/ijms21041233] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the subacute effect of two types of Ag-NPs(EG-AgNPs and PVP-EG-AgNPs) on antioxidant/pro-oxidant balance in rats. Seventy Wistar rats (35 males and 35 females) were divided in 7 groups and intraperitoneally exposed for 28 days to 0, 1, 2 and 4 mg/kg bw/day EG-Ag-NPs and 1, 2 and 4 mg/kg bw/day PVP- EG-Ag-NPs. After 28 days, the blood was collected, and the total antioxidant capacity (TAC), thiobarbituric reactive species (TBARS),protein carbonyl (PROTC) levels, reduced glutathione (GSH) levels and catalase (CAT) activity were determined. EG-Ag-NPs determined protective antioxidant effects in a dose-dependent manner. The exposure to the 4 mg/kg bw/day EG-Ag-NPs determines both in males and females a significant increase in TAC and CAT and a significant decrease in TBARS and PROTC only in females. The PVP-EG-AgNPs showed a different trend compared to EG-AgNPs. At 4 mg/kg bw/day the PVP-EG-AgNPs induce increased PROTC levels and decreased GSH (males and females) and TAC levels (males). The different mechanisms of EG-AgNPs and PVP-EG-AgNPs on antioxidant-/pro-oxidant balance can be explained by the influence of coating agent used for the preparation of the nanoparticles in the formation and composition of protein corona that influence their pathophysiology in the organism.
Collapse
Affiliation(s)
- Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.)
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - M.M.B. Paoliello
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, 60 Robert Koch Avenue, Londrina 86038-350, Brazil;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209,1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - George Dan Mogosanu
- Department of Pharmacognosy and Phytotherapy, Faculty of Pharmacy University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Costin Teodor Streba
- Department of Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Elena Leocadia Popescu
- Doctoral School University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Alexandra Elena Stoica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.E.S.); (A.C.B.); (A.M.G.)
| | - Laurentiu Mogoanta
- Department of Histology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
31
|
Marsh AC, Mellott NP, Pajares-Chamorro N, Crimp M, Wren A, Hammer ND, Chatzistavrou X. Fabrication and multiscale characterization of 3D silver containing bioactive glass-ceramic scaffolds. Bioact Mater 2019; 4:215-223. [PMID: 31236524 PMCID: PMC6580235 DOI: 10.1016/j.bioactmat.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
In this work, we fabricated and characterized bioactive 3D glass-ceramic scaffolds with inherent antibacterial properties. The sol-gel (solution-gelation) technique and the sacrificial template method were applied for the fabrication of 3D highly porous scaffolds in the 58.6SiO2 - 24.9CaO - 7.2P2O5 - 4.2Al2O3 - 1.5Na2O -1.5K2O - 2.1Ag2O system (Ag-BG). This system is known for its advanced bioactive and antibacterial properties. The fabrication of 3D scaffolds has potential applications that impact tissue engineering. The study of the developed scaffolds from macro-characteristics to nano-, revealed a strong correlation between the macroscale properties such as antibacterial action, bioactivity with the microstructural characteristics such as elemental analysis, crystallinity. Elemental homogeneity, morphological, and microstructural characteristics of the scaffolds were studied by scanning electron microscopy associated with energy dispersive spectroscopy (SEM-EDS), transmittance electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy methods. The compressive strength of the 3D scaffolds was measured within the range of values for glass-ceramic scaffolds with similar compositions, porosity, and pore size. The capability of the scaffolds to form an apatite-like phase was tested by immersing the scaffolds in simulated body fluid (SBF) and the antibacterial response against methicillin-resistant Staphylococcus aureus (MRSA) was studied. The formation of an apatite phase was observed after two weeks of immersion in SBF and the anti-MRSA effect occurs after both direct and indirect exposure.
Collapse
Affiliation(s)
- Adam C. Marsh
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Nathan P. Mellott
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Natalia Pajares-Chamorro
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Martin Crimp
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| | - Anthony Wren
- Alfred University, Kazuo Inamori School of Engineering, Alfred, NY, USA
| | - Neal D. Hammer
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
32
|
Weng JH, Lee PC, Chen YS, Lin CB. Degradation of Abiotic Orange II Dye and Biotic E. coli by Highly Porous SiC-AgCl/Ag0 Photocatalyst. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01377-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Wang Z, Wang T, Hua A, Ma S, Zhang Z, Liu L. Prolonged antimicrobial activity of silver core-carbon shell nanoparticles. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0387-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
34
|
Zhang Y, Yang JCE, Fu ML, Yuan B, Gupta K. One-step fabrication of recycled Ag nanoparticles/graphene aerogel with high mechanical property for disinfection and catalytic reduction of 4-nitrophonel. ENVIRONMENTAL TECHNOLOGY 2019; 40:3381-3391. [PMID: 29726750 DOI: 10.1080/09593330.2018.1473503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Fabrication of smart composites with expected removal property and excellent recycle performance for micro-pollutants including microbes and organic contaminants without formation of second-pollutants is highly desired. In this work, Ag nanoparticles (Ag NPs) homogenously loaded on graphene aerogel (GA) as Ag NPs/GA was facilely fabricated by a one-step process and the composite was characterized in detail. The bactericidal performance of the composite towards escherichia coli (E. coli) was evaluated and the catalytic activity was probed for the reduction of 4-nitrophenol (4-NP). Results showed that the composite contains about 44.4 wt% of well-dispersed Ag NPs with diameters ranging from 10 to 100 nm. Compared with the bare Ag particles or GA, Ag NPs/GA exhibited an enhanced bactericidal performance for 8-lg of E. coli cells with 100% inactivation rate and catalytic activity for 4-NP with 96.6% degradation rate, respectively. Impressively, the 100% inactivation rates for 8-lg of E. coli remained after 7 recycles and the releasing silver was negligible compared with the loaded Ag NPs. Moreover, the used Ag NPs/GA for the catalytic reduction of 4-NP can be regenerated easily by calcination in inert atmosphere. Hence, Ag NPs/GA can be regarded as a promising and cost-efficient composite for environmental remediation.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Jia-Cheng E Yang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ming-Lai Fu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
| | - Baoling Yuan
- College of Civil Engineering, Huaqiao University , Xiamen , People's Republic of China
| | - Kiran Gupta
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment (IUE), Chinese Academy of Sciences , Xiamen , People's Republic of China
- Xiamen Urban Water Environmental Eco-Planning and Remediation Engineering Research Center (XMERC) , Xiamen, People's Republic of China
| |
Collapse
|
35
|
El-Tawil RS, El-Wakeel ST, Abdel-Ghany AE, Abuzeid HAM, Selim KA, Hashem AM. Silver/quartz nanocomposite as an adsorbent for removal of mercury (II) ions from aqueous solutions. Heliyon 2019; 5:e02415. [PMID: 31528746 PMCID: PMC6742848 DOI: 10.1016/j.heliyon.2019.e02415] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 08/30/2019] [Indexed: 11/30/2022] Open
Abstract
Silver nanoparticles (AgNPs) and silver/quartz nanocomposite (Ag/Q)NPs)) were synthesized by sol-gel method using table sugar as chelating agent. The synthesized nanosized materials were used for mercury ions adsorption from aqueous solutions. The materials were characterized by X-ray diffraction (XRD), Transmission Electron microscope (TEM), and surface area (BET). Adsorption of Hg2+ (10 mg/l) is strongly dependent on time, initial metal concentration, dose of adsorbent and pH value. Silver/quartz nanocomposite ((Ag/Q)NPs)) shows better efficiency than individual silver nanoparticles (AgNPs). This composite removed mercury ions from the aqueous solution with efficiency of 96% at 60 min with 0.5g adsorbent dosage at pH 6. The adsorption process explained well by the pseudo-second-order kinetic model. In conclusion silver/quartz nanocomposite (Ag/Q)NPs)) shows higher removal efficiency for mercury ions from aqueous solutions than individual silver naoparticles (AgNPs) or quartz (Q).
Collapse
Affiliation(s)
- Rasha S El-Tawil
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Shaimaa T El-Wakeel
- National Research Centre, Water Pollution Research Department, Environmental Research Division, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Ashraf E Abdel-Ghany
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Hanaa A M Abuzeid
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| | - Khaled A Selim
- Central Metallurgical Research & Development Institute, Minerals Technology Department, CMRDI, Cairo, Egypt
| | - Ahmed M Hashem
- National Research Centre, Inorganic Chemistry Department, 33 El Bohouth St., (former El Tahrir St.), Dokki-Giza, 12622, Egypt
| |
Collapse
|
36
|
Synthesis of nanostructured Ag@SiO2-Penicillin from high purity Ag NPs prepared by electromagnetic levitation melting process. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:616-622. [DOI: 10.1016/j.msec.2019.04.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
|
37
|
Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int J Mol Sci 2019; 20:E3620. [PMID: 31344881 PMCID: PMC6695748 DOI: 10.3390/ijms20153620] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
38
|
Vale AC, Pereira P, Barbosa AM, Torrado E, Mano JF, Alves NM. Antibacterial free-standing polysaccharide composite films inspired by the sea. Int J Biol Macromol 2019; 133:933-944. [DOI: 10.1016/j.ijbiomac.2019.04.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 12/21/2022]
|
39
|
Ahmed W, Zhai Z, Gao C. Adaptive antibacterial biomaterial surfaces and their applications. Mater Today Bio 2019; 2:100017. [PMID: 32159147 PMCID: PMC7061676 DOI: 10.1016/j.mtbio.2019.100017] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections on the implant surface may eventually lead to biofilm formation and thus threaten the use of implants in body. Despite efficient host immune system, the implant surface can be rapidly occupied by bacteria, resulting in infection persistence, implant failure, and even death of the patients. It is difficult to cope with these problems because bacteria exhibit complex adhesion mechanisms to the implants that vary according to bacterial strains. Different biomaterial coatings have been produced to release antibiotics to kill bacteria. However, antibiotic resistance occurs very frequently. Stimuli-responsive biomaterials have gained much attention in recent years but are not effective enough in killing the pathogens because of the complex mechanisms in bacteria. This review is focused on the development of highly efficient and specifically targeted biomaterials that release the antimicrobial agents or respond to bacteria on demands in body. The mechanisms of bacterial adhesion, biofilm formation, and antibiotic resistance are discussed, and the released substances accounting for implant infection are described. Strategies that have been used in past for the eradication of bacterial infections are also discussed. Different types of stimuli can be triggered only upon the existence of bacteria, leading to the release of antibacterial molecules that in turn kill the bacteria. In particular, the toxin-triggered, pH-responsive, and dual stimulus-responsive adaptive antibacterial biomaterials are introduced. Finally, the state of the art in fabrication of dual responsive antibacterial biomaterials and tissue integration in medical implants is discussed.
Collapse
Affiliation(s)
| | | | - C. Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
40
|
Tejido-Rastrilla R, Ferraris S, Goldmann WH, Grünewald A, Detsch R, Baldi G, Spriano S, Boccaccini AR. Studies on Cell Compatibility, Antibacterial Behavior, and Zeta Potential of Ag-Containing Polydopamine-Coated Bioactive Glass-Ceramic. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E500. [PMID: 30736344 PMCID: PMC6384827 DOI: 10.3390/ma12030500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 02/03/2023]
Abstract
Dopamine is a small molecule that mimics the adhesive component (L-DOPA) of marine mussels with a catecholamine structure. Dopamine can spontaneously polymerize to form polydopamine (PDA) in a mild basic environment. PDA binds, in principle, to all types of surfaces and offers a platform for post-modification of surfaces. In this work, a novel Ag-containing polydopamine coating has been developed for the functionalization of bioactive glass-ceramics. In order to study the interactions between the surface of uncoated and coated samples and the environment, we have measured the surface zeta potential. Results confirmed that PDA can interact with the substrate through different chemical groups. A strongly negative surface zeta potential was measured, which is desirable for biocompatibility. The dual function of the material, namely the capability to exhibit bioactive behavior while being antibacterial and not harmful to mammalian cells, was assessed. The biocompatibility of the samples with MG-63 (osteoblast-like) cells was determined, as well as the antibacterial behavior against Gram-positive Staphylococcus carnosus and Gram-negative Escherichia coli bacteria. During cell biology tests, uncoated and PDA-coated samples showed biocompatibility, while cell viability on Ag-containing PDA-coated samples was reduced. On the other hand, antibacterial tests confirmed the strong antimicrobial properties of Ag-containing PDA-coated samples, although tailoring of the silver release will be necessary to modulate the dual effect of PDA and silver.
Collapse
Affiliation(s)
- Rocío Tejido-Rastrilla
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
- Colorobbia Consulting s.r.l., 50053 Sovigliana Vinci, Florence, Italy.
| | - Sara Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Wolfgang H Goldmann
- Centre for Medical Physics and Technology, University of Erlangen-Nuremberg, 91052 Erlangen, Germany.
| | - Alina Grünewald
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Rainer Detsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Giovanni Baldi
- Colorobbia Consulting s.r.l., 50053 Sovigliana Vinci, Florence, Italy.
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
41
|
Vale A, Pereira P, Barbosa A, Torrado E, Alves N. Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:161-168. [DOI: 10.1016/j.msec.2018.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/28/2018] [Accepted: 09/07/2018] [Indexed: 01/23/2023]
|
42
|
Dias HB, Bernardi MIB, Marangoni VS, de Abreu Bernardi AC, de Souza Rastelli AN, Hernandes AC. Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:391-401. [PMID: 30606547 DOI: 10.1016/j.msec.2018.10.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/03/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
The biofilm accumulation over the composite resin restorations can contribute to the formation of secondary caries. In this way, antibacterial restorative composite resins are highly desired. Then, the purpose of this study was to modify a composite resins using Ag doped ZnO nanoparticles (NPs), evaluate the antibacterial and mechanical properties of the modified composite resin. The ZnO/AgNPs were synthesized by two different routes, polymeric precursor and coprecipitation methods, and characterized by thermal decomposition, X-ray diffraction, specific surface area by N2 desorption/desorption and scanning electron microscopy (SEM). Antibacterial activity of composite resin specimens (4 mm in height and 2 mm in diameter; n = 15) modified by ZnO/Ag nanoparticles was performed against 7-days Streptococcus mutans biofilm. Colony forming units (CFU/mL) were used to evaluate the bacterial activity. Additionally, the morphology and the bacteria adherence area were analyzed by SEM images. Cylindrical specimens (6 mm in height and 4 mm in diameter; n = 20) of the composite resin containing ZnO/Ag NPs were prepared to perform compressive strength in a universal mechanical test machine, and the surface of fractured specimens was analyzed by EDX element mapping to verify NPs homogeneity. The normal distribution was confirmed and the two-way analysis of variance (ANOVA) and Tukey's test for pair comparison were performed. The nanospheres of ZnO/Ag lead to a better biofilm inhibition, than nanoplates. No difference on compressive strength was found for the composite resin modified by ZnO/Ag nanoplates. Based on these results, this material could be a good option as a new restorative material.
Collapse
Affiliation(s)
- Hércules Bezerra Dias
- University of São Paulo - USP, Physics Institute of São Carlos - IFSC, Department of Physics and Materials Science, São Carlos, São Paulo 13566-590, Brazil; University of São Paulo State - UNESP, Araraquara School of Dentistry, Department of Restorative Dentistry, Araraquara, São Paulo 14801-903, Brazil
| | - Maria Inês Basso Bernardi
- University of São Paulo - USP, Physics Institute of São Carlos - IFSC, Department of Physics and Materials Science, São Carlos, São Paulo 13566-590, Brazil.
| | - Valéria Spolon Marangoni
- University of São Paulo - USP, Physics Institute of São Carlos - IFSC, Department of Physics and Materials Science, São Carlos, São Paulo 13566-590, Brazil
| | - Adilson César de Abreu Bernardi
- University of Araraquara - UNIARA, School of Biomedicine, Department of Biology and Health Sciences, Araraquara, São Paulo 14801-340, Brazil
| | - Alessandra Nara de Souza Rastelli
- University of São Paulo State - UNESP, Araraquara School of Dentistry, Department of Restorative Dentistry, Araraquara, São Paulo 14801-903, Brazil.
| | - Antônio Carlos Hernandes
- University of São Paulo - USP, Physics Institute of São Carlos - IFSC, Department of Physics and Materials Science, São Carlos, São Paulo 13566-590, Brazil.
| |
Collapse
|
43
|
Ciraldo FE, Liverani L, Gritsch L, Goldmann WH, Boccaccini AR. Synthesis and Characterization of Silver-Doped Mesoporous Bioactive Glass and Its Applications in Conjunction with Electrospinning. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E692. [PMID: 29710768 PMCID: PMC5978069 DOI: 10.3390/ma11050692] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Since they were first developed in 2004, mesoporous bioactive glasses (MBGs) rapidly captured the interest of the scientific community thanks to their numerous beneficial properties. MBGs are synthesised by a combination of the sol⁻gel method with the chemistry of surfactants to obtain highly mesoporous (pore size from 5 to 20 nm) materials that, owing to their high surface area and ordered structure, are optimal candidates for controlled drug-delivery systems. In this work, we synthesised and characterised a silver-containing mesoporous bioactive glass (Ag-MBG). It was found that Ag-MBG is a suitable candidate for controlled drug delivery, showing a perfectly ordered mesoporous structure ideal for the loading of drugs together with optimal bioactivity, sustained release of silver from the matrix, and fast and strong bacterial inhibition against both Gram-positive and Gram-negative bacteria. Silver-doped mesoporous glass particles were used in three electrospinning-based techniques to produce PCL/Ag-MBG composite fibres, to coat bioactive glass scaffolds (via electrospraying), and for direct sol electrospinning. The results obtained in this study highlight the versatility and efficacy of Ag-substituted mesoporous bioactive glass and encourage further studies to characterize the biological response to Ag-MBG-based antibacterial controlled-delivery systems for tissue-engineering applications.
Collapse
Affiliation(s)
- Francesca E Ciraldo
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| | - Lukas Gritsch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| | - Wolfgang H Goldmann
- Institute of Biophysics, Department of Physics, University of Erlangen-Nuremberg, Henkestraße 91, 91052 Erlangen, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany.
| |
Collapse
|
44
|
Hashimoto M, Hirose N, Kitagawa H, Yamaguchi S, Imazato S. Improving the durability of resin-dentin bonds with an antibacterial monomer MDPB. Dent Mater J 2018; 37:620-627. [PMID: 29669952 DOI: 10.4012/dmj.2017-209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The 12-methacryloxydodecylpyridium bromide (MDPB) has been reported to act as a matrix metalloprotease (MMP) inhibitor. In this study, the effects of application of MDPB on resin-dentin bonds were evaluated. The resin-dentin bonded specimens were prepared with a commercial MDPB-containing self-etching primer or a self-etching primer without MDPB, and stored 24 h or 1 year. Surfaces were pretreated with chlorhexidine or MDPB-containing cavity disinfectant. Additionally, we compared the degradation patterns between the two self-etching adhesives and etch and rinse system. Water tree formations were observed as the typical morphological phase of the two tested self-etching adhesives for both 24 h and 1 year groups. The degradation phase of collagen network depletion was observed in the adhesive interface of the etch-and-rinse system in the 1 year group. Pretreatment with chlorhexidine did not prevent bond strength reduction after 1 year. The cavity disinfectant improved the bond durability for the self-etching adhesive.
Collapse
Affiliation(s)
| | - Nanako Hirose
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University
| | - Satoshi Yamaguchi
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University
| | - Satoshi Imazato
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University
| |
Collapse
|
45
|
Kaur P, Singh KJ, Yadav AK, Sood H, Kaur S, Kaur R, Arora DS, Kaur S. Preliminary investigation of the effect of doping of copper oxide in CaO-SiO 2-P 2O 5-MgO bioactive composition for bone repair applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:177-186. [PMID: 29208277 DOI: 10.1016/j.msec.2017.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/14/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022]
Abstract
A diopside based bioactive system with a nominal composition of xCuO-(45.55-x)CaO-29.44 SiO2-10.28P2O5-14.73 MgO (x=0,1,3 and 5mol%) has been prepared by sol gel technique in the laboratory. X-ray Diffraction, Fourier Transform Infra-Red and Raman Spectroscopy, Field Emission Scanning Electron Microscopy along with Energy Dispersive X-ray Analysis and pH studies have been undertaken on the prepared samples before and after dipping the samples in simulated body fluid. It has been observed that hydroxyapatite layer starts to form with in 24h during immersion in simulated body fluid. Degradation studies have also been employed to check the degradation behavior in Tris-HCl. Dynamic light scattering studies show that particles are mostly agglomerated and have an average size of 356nm. Zeta potential studies have been undertaken to check the surface charge and it has been estimated that samples carry negative charge when dipped in simulated body fluid. Negative surface charge may contribute to attachment and proliferation of osteoblasts. Samples have also shown the antimicrobial properties against the Vibro cholerae and Escherichia coli pathogens. To check the non-toxic nature of the samples, cell cytotoxic and cell culture studies have been undertaken using the MG-63 cell lines. Samples have shown good response with good percentage viability of the cells in the culture media and hence, provides friendly environment to the growth of cells. The particle size, bioactivity, negative values of zeta potential, antimicrobial properties and good cell viability indicate the potential of the synthesized compositions as possible candidates for bone repair applications.
Collapse
Affiliation(s)
- Pardeep Kaur
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India
| | - K J Singh
- Department of Physics, Guru Nanak Dev University, Amritsar 143005, India.
| | - Arun Kumar Yadav
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | - Henna Sood
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Ramandeep Kaur
- Department cum National center for Human Genome studies and Research, Panjab University, Chandigarh 160014, India
| | - Daljit Singh Arora
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, India
| |
Collapse
|
46
|
Tüzüner T, Güçlü ZA, Hurt A, Coleman NJ, Nicholson JW. Release of antimicrobial compounds from a zinc oxide-chelate cement. J Oral Sci 2018; 60:24-28. [DOI: 10.2334/josnusd.16-0791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Tamer Tüzüner
- Department of Paediatric Dentistry, Faculty of Dentistry, Karadiniez Technical University
| | - Zeynep A. Güçlü
- Department of Paediatric Dentistry, Faculty of Dentistry, Erciyes University
| | - Andrew Hurt
- Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Medway Campus
| | - Nichola J. Coleman
- Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Medway Campus
| | - John W. Nicholson
- Bluefield Centre for Biomaterials
- Dental Materials Science Unit, Institute of Dentistry, Queen Mary University of London
| |
Collapse
|
47
|
Singh S, Lee M, Gaikwad KK, Lee YS. Antibacterial and amine scavenging properties of silver–silica composite for post-harvest storage of fresh fish. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2017.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Dai L, Liu R, Hu LQ, Si CL. Simple and green fabrication of AgCl/Ag-cellulose paper with antibacterial and photocatalytic activity. Carbohydr Polym 2017; 174:450-455. [DOI: 10.1016/j.carbpol.2017.06.107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/18/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
49
|
González-Penguelly B, Morales-Ramírez ÁDJ, Rodríguez-Rosales MG, Rodríguez-Nava CO, Carrera-Jota ML. New infrared-assisted method for sol-gel derived ZnO:Ag thin films: Structural and bacterial inhibition properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:833-841. [PMID: 28576056 DOI: 10.1016/j.msec.2017.03.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
A new sol-gel method, based on crystallization with Infrared heating, was developed to obtain ZnO:Ag thin films. The common sol, with zinc acetate as precursor and silver nitrate as doping source (1, 3 and 5 % molar), isopropanol and distilled water as solvents and monoethanolamine as stabilizer agent; was modified with Pluronic F127 and diethylene glycol as rheological agents, and with urea as fuel to produce enough energy to the combustion and to promote the crystallization process. Later, Corning glass-substrates were dipped into the sol at a constant speed of 3mms-1. To provide the necessary energy for obtaining the hexagonal ZnO structure of the coatings during the drying and consolidation process, instead of using the common furnace heat-treatment, the films were heated by means of an infrared (IR) ceramic lamp (800W) for 15, 30, 45, 60 and 180 minutes, and the effect of this annealing method was analyzed. The structural properties were examined by means of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), whereas morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The examination revealed a homogeneous distribution of particles with the characteristic pores of pluronic F127, and the coating roughness had an average value of 100nm by AFM. To evaluate the effect on the number of dipping cycles and the IR-treatment on the thickness, ellipsometry results for 1, 3 and 5 deposits were analyzed and showed increments of 780, 945 and 1082nm, respectively. Finally, to test of the antibacterial activity, instead of the common one-microorganism approach, environmental microorganisms that grow with expose of the broth to the ambient conditions were employed (microbial consortium), which is a real environmental condition. The biological test was carried out by kinetic growth inhibition (optical density) of heterotrophic bacteria in culture liquid media under conditions of light, light-dark and darkness, to analyze the effect of light. A significance reduction in growth was obtained for doped coatings with silver in comparison with the control ZnO substrate. Furthermore, the analysis bacteria growth inhibition on a solid surface showed that the films effectively present antibacterial activity. The best result was obtained with ZnO:Ag 1% in light conditions, about 67%, but all the coatings inhibited the bacterial activity.
Collapse
Affiliation(s)
| | | | | | | | - María Luz Carrera-Jota
- Universidad Autónoma Metropolitana Unidad Cuajimalpa, Posgrado en Ciencias Naturales e Ingeniería, México D.F. México
| |
Collapse
|
50
|
Silver sulfadiazine immobilized glass as antimicrobial fillers for dental restorative materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:524-534. [DOI: 10.1016/j.msec.2017.02.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022]
|