1
|
Watson CM, Cox CL. Elevation, oxygen, and the origins of viviparity. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:457-469. [PMID: 34254734 DOI: 10.1002/jez.b.23072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Research focused on understanding the evolutionary factors that shape parity mode evolution among vertebrates have long focused on squamate reptiles (snakes and lizards), which contain all but one of the evolutionary transitions from oviparity to viviparity among extant amniotes. While most hypotheses have focused on the role of cool temperatures in favoring viviparity in thermoregulating snakes and lizards, there is a growing appreciation in the biogeographic literature for the importance of lower oxygen concentrations at high elevations for the evolution of parity mode. However, the physiological mechanisms underlying how hypoxia might reduce fitness, and how viviparity can alleviate this fitness decrement, has not been systematically evaluated. We qualitatively evaluated previous research on reproductive and developmental physiology, and found that (1) hypoxia can negatively affect fitness of squamate embryos, (2) oxygen availability in the circulatory system of adult lizards can be similar or greater than an egg, and (3) gravid females can possess adaptive phenotypic plasticity in response to hypoxia. These findings suggest that the impact of hypoxia on the development and physiology of oviparous and viviparous squamates would be a fruitful area of research for understanding the evolution of viviparity. To that end, we propose an integrative research program for studying hypoxia and the evolution of viviparity in squamates.
Collapse
Affiliation(s)
- Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, Texas, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, Florida, USA
| |
Collapse
|
2
|
Britt JL, Powell RR, McMahan C, Bruce TF, Duckett SK. The effect of ergot alkaloid exposure during gestation on the microscopic morphology and vasculature of the ovine placenta. J Histotechnol 2021; 44:173-181. [PMID: 33913402 PMCID: PMC8553796 DOI: 10.1080/01478885.2021.1902670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ergot alkaloids, a class of mycotoxins associated with ergotism, act as agonists on serotonin (5HT) receptors, specifically 5HT2a, which mediate smooth muscle contraction and vasoconstriction. The objective of this study was to examine the impact of ergot alkaloid exposure during mid and late gestation on microscopic placental structure and vascular development. Ewes were fed endophyte-infected tall fescue seed containing ergot alkaloids (E+/E+, 1.77 mg ewe-1 d-1) or endophyte-free tall fescue seed (E-/E-, 0 mg ergot alkaloids) during both mid (d 35 to d 85) and late gestation (d 86 to d 133). On d 133 of gestation, a terminal surgery was performed and two placentomes of the type B morphology were collected for microscopic analyses. Amorphous connective tissue regions were larger (p < 0.0001) and more numerous (p = 0.025) in the placentome of ergot alkaloid exposed ewes. Staining showed no difference (p = 0.83) in the number of vessels present, but luminal area of maternal vasculature was 117% greater (p < 0.0001) in ergot alkaloid exposed ewes. Results showed that exposure to ergot alkaloids during gestation slowed maturation of the fetal villi as indicated by greater amorphous connective tissue regions, and altered size and shape of blood vessels to counteract reductions in blood flow caused by vasoconstriction.
Collapse
Affiliation(s)
- J L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| | - R R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - C McMahan
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - T F Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, USA
| | - S K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
3
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
4
|
Dunlap KA, White BG, Erikson DW, Satterfield MC, Pfarrer C, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. FTY720, a sphingosine analog, altered placentome histoarchitecture in ewes. J Anim Sci Biotechnol 2020; 11:2. [PMID: 31911836 PMCID: PMC6943922 DOI: 10.1186/s40104-019-0411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The lysosphingolipid, sphingosine-1-phosphate, is a well-described and potent pro-angiogenic factor. Receptors, as well as the sphingosine phosphorylating enzyme sphingosine kinase 1, are expressed in the placentomes of sheep and the decidua of rodents; however, a function for this signaling pathway during pregnancy has not been established. The objective of this study was to investigate whether sphingosine-1-phosphate promoted angiogenesis within the placentomes of pregnant ewes. Ewes were given daily jugular injections of FTY720 (2-amino-2[2-(− 4-octylphenyl)ethyl]propate-1,3-diol hydrochloride), an S1P analog. Results FTY720 infusion from days 30 to 60 of pregnancy did not alter maternal organ weights nor total number or mass of placentomes, but did alter placentome histoarchitecture. Interdigitation of caruncular crypts and cotyledonary villi was decreased, as was the relative area of cotyledonary tissue within placentomes. Also, the percentage of area occupied by cotyledonary villi per unit of placentome was increased, while the thickness of the caruncular capsule was decreased in ewes treated with FTY720. Further, FTY720 infusion decreased the number and density of blood vessels within caruncular tissue near the placentome capsule where the crypts emerge from the capsule. Finally, FTY720 infusion decreased asparagine and glutamine in amniotic fluid and methionine in allantoic fluid, and decreased the crown rump length of day 60 fetuses. Conclusions While members of the sphingosine-1-phosphate signaling pathway have been characterized within the uteri and placentae of sheep and mice, the present study uses FTY720 to address the influence of S1P signaling on placental development. We present evidence that modulation of the S1P signaling pathway results in the alteration of caruncular vasculature, placentome architecture, abundance of amino acids in allantoic and amniotic fluids, and fetal growth during pregnancy in sheep. The marked morphological changes in placentome histoarchitecture, including alteration in the vasculature, may be relevant to fetal growth and survival. It is somewhat surprising that fetal length was reduced as early as day 60, because fetal growth in sheep is greatest after day 60. The subtle changes observed in the fetuses of ewes exposed to FTY720 may indicate an adaptive response of the fetuses to cope with altered placental morphology.
Collapse
Affiliation(s)
- Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Bryan G White
- Okanagan College Salmon Arm Campus, Salmon Arm, British Columbia Canada
| | - David W Erikson
- 3Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Christiane Pfarrer
- 4Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Robert C Burghardt
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Kayla J Bayless
- 6Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - Greg A Johnson
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
5
|
Wood CE, Keller-Wood M. Current paradigms and new perspectives on fetal hypoxia: implications for fetal brain development in late gestation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R1-R13. [PMID: 31017808 DOI: 10.1152/ajpregu.00008.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The availability of oxygen to the fetus is limited by the route taken by oxygen from the atmosphere to fetal tissues, aided or diminished by pregnancy-associated changes in maternal physiology and, ultimately, a function of atmospheric pressure and composition of the mother's inspired gas. Much of our understanding of the fetal physiological response to hypoxia comes from experiments designed to elucidate the cardiovascular and endocrine responses to transient hypoxia. Complementing this work is equally impactful research into the origins of intrauterine growth restriction in which animal models designed to restrict the transfer of oxygen from the maternal to the fetal circulation were used. A common assumption has been that outcomes measured after a period of hypoxia are related to cellular deprivation of oxygen and reoxygenation: an assumption based on a focus on what we can see "under the streetlights." Recent studies demonstrate that availability of oxygen may not tell the whole story. Transient hypoxia in the fetal sheep stimulates transcriptomics responses that mirror inflammation. This response is accompanied by the appearance of bacteria in the fetal brain and other tissues, likely resulting from a hypoxia-stimulated release of bacteria from the placenta. The appearance of bacteria in the fetus after transient hypoxia complements the recent discovery of bacterial DNA in the normal human placenta and in the tissues of fetal sheep. An understanding of the mechanism of the physiological, cellular, and molecular responses to hypoxia requires an appreciation of stimuli other than cellular oxygen deprivation: stimuli that we would have never known about without looking "between the streetlights," illuminating direct responses to the manipulated variables.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida College of Pharmacy , Gainesville, Florida
| |
Collapse
|
6
|
West RC, Bouma GJ, Winger QA. Shifting perspectives from "oncogenic" to oncofetal proteins; how these factors drive placental development. Reprod Biol Endocrinol 2018; 16:101. [PMID: 30340501 PMCID: PMC6195737 DOI: 10.1186/s12958-018-0421-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022] Open
Abstract
Early human placental development strongly resembles carcinogenesis in otherwise healthy tissues. The progenitor cells of the placenta, the cytotrophoblast, rapidly proliferate to produce a sufficient number of cells to form an organ that will contribute to fetal development as early as the first trimester. The cytotrophoblast cells begin to differentiate, some towards the fused cells of the syncytiotrophoblast and some towards the highly invasive and migratory extravillous trophoblast. Invasion and migration of extravillous trophoblast cells mimics tumor metastasis. One key difference between cancer progression and placental development is the tight regulation of these oncogenes and oncogenic processes. Often, tumor suppressors and oncogenes work synergistically to regulate cell proliferation, differentiation, and invasion in a restrained manner compared to the uncontrollable growth in cancer. This review will compare and contrast the mechanisms that drive both cancer progression and placental development. Specifically, this review will focus on the molecular mechanisms that promote cell proliferation, evasion of apoptosis, cell invasion, and angiogenesis.
Collapse
Affiliation(s)
- Rachel C. West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Gerrit J. Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| | - Quinton A. Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 10290 Ridgegate Circle, Lone Tree, Fort Collins, CO 80124 USA
| |
Collapse
|
7
|
Hu XQ, Chen M, Dasgupta C, Xiao D, Huang X, Yang S, Zhang L. Chronic hypoxia upregulates DNA methyltransferase and represses large conductance Ca2+-activated K+ channel function in ovine uterine arteries. Biol Reprod 2018; 96:424-434. [PMID: 28203702 DOI: 10.1095/biolreprod.116.145946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
Chronic hypoxia during gestation suppresses large-conductance Ca2+-activated K+ (BKCa) channel function and impedes uterine arterial adaptation to pregnancy. This study tested the hypothesis that chronic hypoxia has a direct effect in upregulating DNA methyltransferase (DNMT) and epigenetically repressing BKCa channel beta-1 subunit (KCNMB1) expression in uterine arteries. Resistance-sized uterine arteries were isolated from near-term pregnant sheep maintained at ∼300 m above sea level or animals acclimatized to high-altitude (3,801 m) hypoxia for 110 days during gestation. For ex vivo hypoxia treatment, uterine arteries from normoxic animals were treated with 21.0% O2 or 10.5% O2 for 48 h. High-altitude hypoxia significantly upregulated DNMT3b expression and enzyme activity in uterine arteries. Similarly, ex vivo hypoxia treatment upregulated DNMT3b expression and enzyme activity that was blocked by a DNMT inhibitor 5-aza-2'-deoxycytidine (5-Aza). Of importance, 5-Aza inhibited hypoxia-induced hypermethylation of specificity protein (SP) 1 binding site at the KCNMB1 promoter and restored transcription factor binding to the KCNMB1 promoter, resulting in the recovery of KCNMB1 gene expression in uterine arteries. Furthermore, 5-Aza blocked the effect of hypoxia and rescued BKCa channel activity and reversed hypoxia-induced decrease in BKCa channel-mediated relaxations and increase in myogenic tone of uterine arteries. Collectively, these results suggest that chronic hypoxia during gestation upregulates DNMT expression and activity, resulting in hypermethylation and repression of KCNMB1 gene and BKCa channel function, impeding uterine arterial adaptation to pregnancy.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Man Chen
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Daliao Xiao
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xiaohui Huang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
8
|
|
9
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Bairagi S, Quinn K, Crane A, Ashley R, Borowicz P, Caton J, Redden R, Grazul-Bilska A, Reynolds L. Maternal environment and placental vascularization in small ruminants. Theriogenology 2016; 86:288-305. [DOI: 10.1016/j.theriogenology.2016.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/21/2016] [Accepted: 03/23/2016] [Indexed: 02/05/2023]
|
11
|
Kakabadze A, Kakabadze Z. Prospect of using decellularized human placenta and cow placentome for creation of new organs: targeting the liver (part I: anatomic study). Transplant Proc 2016; 47:1222-7. [PMID: 26036559 DOI: 10.1016/j.transproceed.2014.09.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This paper presents anatomic studies of decellularized human placenta and cow placentome and proves that there is a possibility to create a scaffold using the natural microvascular structure for growing organs and tissues. MATERIALS AND METHODS The anatomic studies were conducted on 20 full-term placentas from human donors, and placentomes collected from 8 cows. Before the anatomic studies of human placenta and cow placentome, decellularization was conducted. For visualization of vessels, 50% Latex in water (Nairit L3) through the umbilical cord artery and vein was injected. Corrosion casts were also prepared. RESULTS An important feature in the transplantation of microfragments of the liver tissue is the blood supply system of the piled chorion, which consists of the main vascular trunks, and perivascular and superficial capillary network. Conditionally, based on the degree of difficulty, there are several types of grouping of the capillaries in terminal pile: simple capillary knot, coiled capillary knot, and complexly organized tangle-shaped capillary network with the richly anastomosing crimped microvessels. A similar pattern was observed in the terminal pile of the placentomes of the cow. For the creation of the auxiliary liver and connection of it into the systemic circulation of the recipient, we can use this exclusiveness of the angioarchitechtonics. CONCLUSIONS Anatomic studies demonstrated that decellularized human placenta, as well as cow placentome, can be used as a scaffold for growth of organs and tissues in vitro and in vivo.
Collapse
Affiliation(s)
- A Kakabadze
- Center of Stem Cells and Tissue Engineering, Ilia State University, Tbilisi, Georgia.
| | - Z Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
12
|
|
13
|
Kowalski WJ, Pekkan K, Tinney JP, Keller BB. Investigating developmental cardiovascular biomechanics and the origins of congenital heart defects. Front Physiol 2014; 5:408. [PMID: 25374544 PMCID: PMC4204442 DOI: 10.3389/fphys.2014.00408] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 10/02/2014] [Indexed: 11/24/2022] Open
Abstract
Innovative research on the interactions between biomechanical load and cardiovascular (CV) morphogenesis by multiple investigators over the past 3 decades, including the application of bioengineering approaches, has shown that the embryonic heart adapts both structure and function in order to maintain cardiac output to the rapidly growing embryo. Acute adaptive hemodynamic mechanisms in the embryo include the redistribution of blood flow within the heart, dynamic adjustments in heart rate and developed pressure, and beat to beat variations in blood flow and vascular resistance. These biomechanically relevant events occur coincident with adaptive changes in gene expression and trigger adaptive mechanisms that include alterations in myocardial cell growth and death, regional and global changes in myocardial architecture, and alterations in central vascular morphogenesis and remodeling. These adaptive mechanisms allow the embryo to survive these biomechanical stresses (environmental, maternal) and to compensate for developmental errors (genetic). Recent work from numerous laboratories shows that a subset of these adaptive mechanisms is present in every developing multicellular organism with a “heart” equivalent structure. This chapter will provide the reader with an overview of some of the approaches used to quantify embryonic CV functional maturation and performance, provide several illustrations of experimental interventions that explore the role of biomechanics in the regulation of CV morphogenesis including the role of computational modeling, and identify several critical areas for future investigation as available experimental models and methods expand.
Collapse
Affiliation(s)
- William J Kowalski
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Kerem Pekkan
- Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| | - Joseph P Tinney
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA
| | - Bradley B Keller
- Cardiovascular Innovation Institute, University of Louisville Louisville, KY, USA ; Department of Pediatrics, University of Louisville Louisville, KY, USA ; Department of Biomedical Engineering, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
14
|
Buse E, Häeger JD, Svensson-Arvelund J, Markert UR, Faas MM, Ernerudh J, Dixon D, Cline JM, Pfarrer C. The placenta in toxicology. Part I: Animal models in toxicology: placental morphology and tolerance molecules in the cynomolgus monkey (Macaca fascicularis). Toxicol Pathol 2013; 42:314-26. [PMID: 23548606 DOI: 10.1177/0192623313482208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The immune system represents a key defense mechanism against potential pathogens and adverse non-self materials. During pregnancy, the placenta is the point of contact between the maternal organism and non-self proteins of the fetal allograft and hence undoubtedly fulfils immune functions. In the placenta bacteria, foreign (non-self) proteins and proteins that might be introduced in toxicological studies or by medication are barred from reaching the progeny, and the maternal immune system is primed for acceptance of non-maternal fetal protein. Both immunologic protection of the fetus and acceptance of the fetus by the mother require effective mechanisms to prevent an immunologic fetomaternal conflict and to keep both organisms in balance. This is why the placenta requires toxicological consideration in view of its immune organ function. The following articles deal with placenta immune-, control-, and tolerance mechanisms in view of both fetal and maternal aspects. Furthermore, models for experimental access to placental immune function are addressed and the pathological evaluation is elucidated. "The Placenta as an Immune Organ and Its Relevance in Toxicological Studies" was subject of a continuing education course at the 2012 Society of Toxicologic Pathology meeting held in Boston, MA.
Collapse
|
15
|
Gheorghe CP, Goyal R, Mittal A, Longo LD. Gene expression in the placenta: maternal stress and epigenetic responses. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:507-23. [PMID: 19876832 PMCID: PMC2830734 DOI: 10.1387/ijdb.082770cg] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Successful placental development is crucial for optimal growth, development, maturation and survival of the embryo/fetus into adulthood. Numerous epidemiologic and experimental studies have demonstrated the profound influence of intrauterine environment on life, and the diseases to which one is subject as an adult. For the most part, these invidious influences, whether maternal hypoxia, protein or caloric deficiency or excess, and others, represent types of maternal stress. In the present review, we examine certain aspects of gene expression in the placenta as a consequence of maternal stressors. To examine these issues in a controlled manner, and in a species in which the genome has been sequenced, most of these reported studies have been performed in the mouse. Although each individual maternal stress is characterized by up- or down-regulation of specific genes in the placenta, functional analysis reveals some patterns of gene expression common to the several forms of stress. Of critical importance, these genes include those involved in DNA methylation and histone modification, cell cycle regulation, and related global pathways of great relevance to epigenesis and the developmental origins of adult health and disease.
Collapse
Affiliation(s)
- Ciprian P Gheorghe
- Center for Perinatal Biology, Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | |
Collapse
|
16
|
Cell cycle and apoptosis in normal and cloned bovine near-term placentae. Anim Reprod Sci 2009; 115:29-38. [DOI: 10.1016/j.anireprosci.2008.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 11/10/2008] [Accepted: 11/19/2008] [Indexed: 11/21/2022]
|
17
|
Arroyo JA, Anthony RV, Galan HL. Decreased placental X-linked inhibitor of apoptosis protein in an ovine model of intrauterine growth restriction. Am J Obstet Gynecol 2008; 199:80.e1-8. [PMID: 18295176 DOI: 10.1016/j.ajog.2007.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 10/05/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The objective of the study was to assess placental apoptosis at both midgestation and near term in an ovine model of placental insufficiency (PI) and intrauterine growth restriction (IUGR). STUDY DESIGN At 40 days' gestational age (dGA), 2 groups of 4 ewes were exposed to hyperthermic conditions for either 55 days or 80 days to induce IUGR with necropsies at 95 (midgestation) and 130 dGA (term = 140 dGA), respectively. Blood gases were assessed and placental tissues obtained for apoptosis analyses. RESULTS PI-IUGR pregnancies showed: (1) a decrease in fetal O(2) saturation and pO(2) (P < .04), (2) an increase in placental villi apoptosis (P < .05) at midgestation and near term, and (3) a decrease of cotyledon X-linked inhibitor of apoptosis protein (XIAP) at both gestational periods (P < .04) with no differences in caruncle XIAP protein. CONCLUSION Placental villous apoptosis is increased at midgestation and near term in our ovine model of IUGR, and this increase is associated with a significant decrease in XIAP protein in the cotyledon of IUGR animals.
Collapse
|
18
|
Rumball CWH, Harding JE, Oliver MH, Bloomfield FH. Effects of twin pregnancy and periconceptional undernutrition on maternal metabolism, fetal growth and glucose-insulin axis function in ovine pregnancy. J Physiol 2008; 586:1399-411. [PMID: 18187465 DOI: 10.1113/jphysiol.2007.144071] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although twins have lower birthweights than singletons, they may not experience the increased disease risk in adulthood reportedly associated with low birthweight. In contrast, another periconceptional event, maternal undernutrition, does not reduce birthweight but does affect fetal and postnatal physiology in sheep. We therefore studied maternal and fetal metabolism, growth and glucose-insulin axis function in late gestation in twin and singleton sheep pregnancies, either undernourished from 60 days before until 30 days after conception or fed ad libitum. We found that twin-bearing ewes had decreased maternal food intake in late gestation and lower maternal and fetal plasma glucose and insulin levels. Twin fetuses had fewer everted placentomes, grew slower in late gestation, and had a greater insulin response to a glucose challenge, but lesser response to arginine. In contrast, periconceptional undernutrition led to increased maternal food intake and a more rapid fall in maternal glucose levels in response to fasting. Periconceptional undernutrition increased the number of everted placentomes, and abolished the difference in insulin responses to glucose between twins and singletons. Thus, the physiology of twin pregnancy is quite different from that of singleton pregnancy, and is probably determined by a combination of factors acting in both early and late gestation. The inconsistency of the relationships between low birthweight and postnatal disease risk of twins may lie in their very different fetal development. These data suggest that twin pregnancy may be another paradigm of developmental programming, and indicate that twins and singletons must be examined separately in any study of fetal or postnatal physiology.
Collapse
Affiliation(s)
- C W H Rumball
- The Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | |
Collapse
|
19
|
Gheorghe CP, Mohan S, Oberg KC, Longo LD. Gene expression patterns in the hypoxic murine placenta: a role in epigenesis? Reprod Sci 2007; 14:223-33. [PMID: 17636235 DOI: 10.1177/1933719107302860] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia has been identified as a major stress or in placental and fetal development. To test the hypothesis that hypoxic stress responses are associated with gene expression changes, the authors measured gene expression in the mouse placenta in response to 48 hours of hypoxia. Embryonic day 15.5 pregnant mice were exposed to 48 hours of hypoxia (10.5% O(2)), after which the Affymetrix Mouse 430A_2.0 array was used to measure gene expression changes in the placenta. The authors observed 171 probe sets, corresponding to 163 genes, that were regulated by hypoxia (P < .01). Ninety genes were upregulated, and 73 were downregulated. The authors functionally annotated the regulated genes and examined overrepresented functional categories. Among the upregulated and downregulated genes, several overrepresented functional categories were observed. Upregulated genes included those involved in metabolism, oxygen transport, proteolysis, cell death, metabolism of reactive oxygen species, and DNA methylation. Genes involved in transcription, cell cycle regulation, and cell structure were downregulated. Microarray analysis has allowed the description of the genetic responses to hypoxia in the mouse placenta. The observation that hypoxia upregulates reactive oxygen species metabolism, in conjunction with DNA methylation enzymes, suggests that hypoxia may contribute to long-term epigenetic changes in stressed fetal tissues and organs.
Collapse
Affiliation(s)
- Ciprian P Gheorghe
- Center for Perinatal Biology, Department of Physiology and Obstetrics, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA
| | | | | | | |
Collapse
|
20
|
Welser JV, Lange ND, Flintoff-Dye N, Burkin HR, Burkin DJ. Placental defects in alpha7 integrin null mice. Placenta 2007; 28:1219-28. [PMID: 17904217 PMCID: PMC2128750 DOI: 10.1016/j.placenta.2007.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/10/2007] [Accepted: 08/11/2007] [Indexed: 12/17/2022]
Abstract
The alpha7beta1 integrin is a heterodimeric transmembrane receptor that links laminin in the extracellular matrix to the cell cytoskeleton. Loss of the alpha7 integrin chain results in partial embryonic lethality. We have previously shown that alpha7 integrin null embryos exhibit vascular smooth muscle cell defects that result in cerebral vascular hemorrhaging. Since the placenta is highly vascularized, we hypothesized that placental vascular defects in alpha7 integrin null embryos may contribute to the partial embryonic lethality. Placentae from embryonic day (ED) 9.5 and 13.5 alpha7 integrin knockout embryos showed structural defects including infiltration of the spongiotrophoblast layer into the placental labyrinth, a reduction in the placental labyrinth and loss of distinct placental layers. Embryos and placentae that lacked the alpha7 integrin weighed less compared to wild-type controls. Blood vessels within the placental labyrinth of alpha7 integrin null embryos exhibited fewer differentiated vascular smooth muscle cells compared to wild-type. Loss of the alpha7 integrin resulted in altered extracellular matrix deposition and reduced expression of alpha5 integrin. Together our results confirm a role for the alpha7beta1 integrin in placental vascular development and demonstrate for the first time that loss of the alpha7 integrin results in placental defects.
Collapse
Affiliation(s)
- J V Welser
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
21
|
Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 2007; 113:1-13. [PMID: 17536998 DOI: 10.1042/cs20060339] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse influences during fetal life alter the structure and function of distinct cells, organ systems or homoeostatic pathways, thereby ‘programming’ the individual for an increased risk of developing cardiovascular disease and diabetes in adult life. Fetal programming can be caused by a number of different perturbations in the maternal compartment, such as altered maternal nutrition and reduced utero–placental blood flow; however, the underlying mechanisms remain to be fully established. Perturbations in the maternal environment must be transmitted across the placenta in order to affect the fetus. Here, we review recent insights into how the placenta responds to changes in the maternal environment and discuss possible mechanisms by which the placenta mediates fetal programming. In IUGR (intrauterine growth restriction) pregnancies, the increased placental vascular resistance subjects the fetal heart to increased work load, representing a possible direct link between altered placental structure and fetal programming of cardiovascular disease. A decreased activity of placental 11β-HSD-2 (type 2 isoform of 11β-hydroxysteroid dehydrogenase) activity can increase fetal exposure to maternal cortisol, which programmes the fetus for later hypertension and metabolic disease. The placenta appears to function as a nutrient sensor regulating nutrient transport according to the ability of the maternal supply line to deliver nutrients. By directly regulating fetal nutrient supply and fetal growth, the placenta plays a central role in fetal programming. Furthermore, perturbations in the maternal compartment may affect the methylation status of placental genes and increase placental oxidative/nitrative stress, resulting in changes in placental function. Intervention strategies targeting the placenta in order to prevent or alleviate altered fetal growth and/or fetal programming include altering placental growth and nutrient transport by maternally administered IGFs (insulin-like growth factors) and altering maternal levels of methyl donors.
Collapse
Affiliation(s)
- Thomas Jansson
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
22
|
Parraguez VH, Atlagich M, Díaz R, Cepeda R, González C, De los Reyes M, Bruzzone ME, Behn C, Raggi LA. Ovine placenta at high altitudes: Comparison of animals with different times of adaptation to hypoxic environment. Anim Reprod Sci 2006; 95:151-7. [PMID: 16337102 DOI: 10.1016/j.anireprosci.2005.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
Fetal growth and newborn weight from ovine gestations at high altitudes (HA) are greater in ewes that live at HA for several generations than in those native to low altitudes (LA) exposed to HA only during pregnancy. Because the placenta is a key regulator of fetal growth, the present study compared placental characteristics in term pregnancies among ewes native to HA and LA. Conception occurred at HA and ewes continued to reside at HA throughout pregnancy or conception occurred at LA and ewes were transported to HA or remained at LA (controls). Ewes native to LA were moved to HA shortly after mating (group LH) and joined with pregnant ewes native to HA (group HH). After parturition, placental cotyledons were counted and measured for total area and histological estimation of surface occupied by vasculature. The total surface of the cotyledons and surface occupied by vasculature were greater at HA, whereas the number of cotyledons was smaller at HA. These changes were more pronounced in ewes of the HH compared with the LH group. The present study showed that exposure to HA induces, in pregnant ewes, placental morphological changes that may improve maternal-fetal exchange. Moreover, because of accentuation of placental changes in ewes with long-term residence at HA, this appears to be an efficient mechanism of adaptation to hypobaric hypoxia.
Collapse
Affiliation(s)
- Víctor H Parraguez
- Facultad de Ciencias Veterinarias y Pecuarias, Internaional Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Miglino MA, Ambrósio CE, dos Santos Martins D, Wenceslau CV, Pfarrer C, Leiser R. The carnivore pregnancy: the development of the embryo and fetal membranes. Theriogenology 2006; 66:1699-702. [PMID: 16563485 DOI: 10.1016/j.theriogenology.2006.02.027] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this research was to compare the morphological aspects during the development of pregnancy in dogs and cats, distinguishing features of the fetal membranes, such as yolk sac evolution and differentiation of hemangioblasts, and the degree of elaboration of the amnion and allantois. Canine and feline placentae from 20, 24, 35, 45 and 55 d of pregnancy were perfusion-fixed for histological investigation and vascular corrosion casts were produced. The casts were prepared for scanning electron microscopy (SEM) and the embryo and fetal membrane development was analyzed. The growth patterns of the conceptuses were compared with the organization of the placentation process, and changes of the morphology during pregnancy were recorded. In feline placentae, an incomplete zonary shape was present in 62.5% out of 60 studied cases. This was located distal to the insertion of the umbilical cord. In the lamellar zone, the interhemal membrane or placental barrier resembled endotheliochorial conditions, and the maternal-fetal microvascular blood flow interrelationship was of simple crosscurrent type. Dogs have a zonary placenta, completely surrounding the fetus, and complex lamellar organization of maternal and fetal tissues. At the border, two marginal hematomes with green colouration delimited the central placental girdle. The yolk sac consisted of one large sacculation with an inverted "T" shape and an enormous number of blood vessels; it had hemangioblast cells in contact with the epithelium. The amnion was avascular in early stages, but became vascularized by blood vessels of the internal allantoic membrane in later stages of pregnancy by intrinsic relation.
Collapse
|
24
|
Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, Luther JS, Wallace JM, Wu G, Spencer TE. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol 2006; 572:51-8. [PMID: 16469783 PMCID: PMC1779650 DOI: 10.1113/jphysiol.2005.104430] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can 'rescue' fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies.
Collapse
Affiliation(s)
- Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal & Range Sciences, North Dakota State University, Fargo ND 58105-5727, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Redmer DA, Caton JS. Placental angiogenesis in sheep models of compromised pregnancy. J Physiol 2005; 565:43-58. [PMID: 15760944 PMCID: PMC1464490 DOI: 10.1113/jphysiol.2004.081745] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 03/04/2005] [Indexed: 12/19/2022] Open
Abstract
Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of 'stress' to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development.
Collapse
Affiliation(s)
- Lawrence P Reynolds
- Center for Nutrition and Pregnancy, and Department of Animal and Range Sciences, North Dakota State University, Fargo, ND 58105-5727, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta 2004; 25:127-39. [PMID: 14972445 DOI: 10.1016/j.placenta.2003.10.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2003] [Indexed: 01/14/2023]
Abstract
Patterns of fetoplacental angiogenesis vary not only during the course of a normal pregnancy but also in certain pregnancy pathologies. Here, we review some of the molecular and morphological events which occur in complicated pregnancies. The pregnancy complications are chosen in an attempt to represent the possible different origins (preplacental, uteroplacental, postplacental) of fetal hypoxia. Molecular events focus on reported changes in hypoxia-inducible factors, angiopoietins and the vascular endothelial, basic fibroblast and placenta growth factors and their receptors. Morphological changes focus on patterns of angiogenesis (branching and non-branching) and a consistent set of morphometric descriptors (covering measures of total capillary growth, villous capillarization and capillary size and shape in transverse section). Apart from some uncertainties due to lack of information, or failure to resolve fully the effects of intrauterine growth restriction and pre-eclampsia, alterations in the angiogenic growth factors and morphologies of capillaries and villi in different complicated pregnancies seem to conform reasonably well to those predicted by the fetal hypoxia paradigm. However, it is clear that future studies on the effects of different origins of fetal hypoxia should exercise more care in the choice and interpretation of relevant descriptors and take more account of the parallel effects of possible confounders. In addition, rather than comparing uncomplicated and complicated pregnancies only at term, more information about molecular and morphological events that occur throughout gestation would be extremely valuable. This includes further studies on changes in growth factor receptors, the less-well-documented angiogenic factors (e.g. angiogenin, angiostatin, endostatin) and the associations between endothelial cells and pericytes. A more integrated approach involving also parallel analysis of the effects of erythropoietin and other potential vasoactive factors on the behaviour and morphology of fetal vessels would be beneficial.
Collapse
Affiliation(s)
- T M Mayhew
- Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, E Floor, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | |
Collapse
|
27
|
Abd-Elnaeim MMM, Miglino MA, Pfarrer C, Leiser R. Microvascular architecture of the fetal cotyledons in water buffaloes (Bubalus bubalis) during different stages of pregnancy. Ann Anat 2003; 185:325-34. [PMID: 12924470 DOI: 10.1016/s0940-9602(03)80053-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To elucidate the morphological background of physiological differences between bovine and buffalo gestation forty-two placentae ranging from the 3rd to 10th month of pregnancy were used to study the microvascular architecture of the fetal cotyledons in the buffalo. The tissues were prepared for light and scanning electron microscopy by paraformaldehyde fixation and corrosion casting of the fetal cotyledonary vascular system. Histology and vascular casts revealed the buffalo fetal cotyledons to consist of a series of conical villous trees changing from a wide to slender shape during pregnancy, and with a base strictly facing the fetal side. The branches of these trees, intermediate and terminal villi, projected radially from the stem, thus representing a rough type of villous tree. A second type of tree lacked these branches and was therefore termed smooth villus. The rough type was most prevalent, and the intermediate and terminal villi showed capillary complexes arranged in stories by the 4th to 5th month of gestation. The stories became broader and denser with the progress of pregnancy (6th to 7th month of gestation), due to extensive growth of new capillaries and simultaneous development of convolutions causing the vascular ridges of the terminal villi to appear bushy. Near term (9th to 10th month) the capillary system became very dense, particularly at the margin of the vascular ridges, leaving only narrow spaces for the corresponding maternal septal tissue. In detail, at its base the trunk of each villous tree contained a single central stem artery which originated from the allantochorionic arterial system, and 1-3 parallel peripheral stem veins. When approaching the cone tip, these vessels branched into new stem arteries and veins, each giving rise to arterioles and venules according to the principle vascularization of the stem villus first, followed by intermediate and terminal villi. The capillary complex of the terminal villi consisted of arterial capillary limbs, capillary loops with sinusoidal dilatations and anastomoses, and venous capillary limbs. The latter converged into venules of terminal and intermediate villi which joined stem veins leading into allantochorionic veins. In conclusion, the fetal vasculature of the buffalo placentome was greatly increased from early pregnancy to near term. This was denoted by the general development of stem villous trees and an increase in the volume and density of the capillary system of the terminal villi, reflecting the increasing need of materno-fetal substance exchange in the buffalo placenta, particularly near term.
Collapse
Affiliation(s)
- Mahmoud M M Abd-Elnaeim
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | | | | | | |
Collapse
|
28
|
Mayhew TM. Changes in fetal capillaries during preplacental hypoxia: growth, shape remodelling and villous capillarization in placentae from high-altitude pregnancies. Placenta 2003; 24:191-8. [PMID: 12566246 DOI: 10.1053/plac.2002.0895] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patterns of fetoplacental angiogenesis and villous growth vary in pregnancies complicated by different forms of fetal hypoxia. This study uses stereological estimators to examine absolute and relative dimensions of villi and fetal capillaries in cases of preplacental hypoxia due to pregnancy at high altitude. Placental samples were drawn from well-defined subjects in different ethnic groups born, raised and completing term pregnancies at low (500 m) and high altitude (3600 m above sea level). Volumes, surfaces and lengths were used to monitor the nett growth of villi and capillaries. Indices of villous capillarization comprised volume, surface and length densities and capillary:villus surface and length ratios. Villus/capillary 'calibre' and shape were quantified using cross-sectional areas, perimeters and shape coefficients (perimeter(2)/area). Group comparisons were drawn by two-way analyses of variance with altitude and ethnicity as the main factors. Volumes, surfaces and lengths of villi, and volumes of capillaries, were reduced at high altitude. Capillary volume declined primarily by formation of narrower microvessels which were more irregular in outline. There were no differences in capillary surface area or length. Cross-sectional sizes and shapes of villi were unaltered. Differences in villous capillarization were confined to higher surface and length densities. Ethnic differences in villous length, capillary length and cross-sectional area tended to favour native groups who are pre-adapted to life at high altitude. Results show that high-altitude pregnancy is not accompanied by increased angiogenesis but may involve enhanced villous capillarization and vascular shape remodelling. Comparisons are drawn with changes seen in maternal anaemia. It is concluded that absolute and relative measures of villous and capillary growth are required lest misinterpretations are introduced by equating hypercapillarization with enhanced angiogenesis or the pattern of capillary branching. The importance of controlling for various potential confounders is also emphasized.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Biomedical Sciences, E Floor, Queen's Medical Centre, University of Nottingham, UK.
| |
Collapse
|
29
|
Bertolini M, Mason JB, Beam SW, Carneiro GF, Sween ML, Kominek DJ, Moyer AL, Famula TR, Sainz RD, Anderson GB. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 2002; 58:973-94. [PMID: 12212896 DOI: 10.1016/s0093-691x(02)00935-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to characterize conceptus development based on pre- and postnatal measurements of in vivo- and in vitro-derived bovine pregnancies. In vivo-produced embryos were obtained after superovulation, whereas in vitro-produced embryos were derived from established procedures for bovine IVM, IVF and IVC. Blastocysts were transferred to recipients to obtain pregnancies of single (in vivo/singleton or in vitro/singleton groups) or twin fetuses (in vitro/twins group). Ultrasonographic examinations were performed weekly, from Day 30 of gestation through term. Videotaped images were digitized, and still-frames were used for the measurement of conceptus traits. Calves and fetal membranes (FM) were examined and measured upon delivery. In vitro-produced fetuses were smaller than in vivo controls (P < 0.05) during early pregnancy (Day 37 to Day 58), but in vitro/singletons presented significantly higher weights at birth than in vivo/control and in vitro/twin calves (P < 0.05). From late first trimester of pregnancy (Day 72 to Day 93), placentomes surrounding in vitro-derived singleton fetuses were longer and thinner than controls (P < 0.05). At term, the presence of giant cotyledons in the fetal membranes in the in vitro group was associated with a larger cotyledonary surface area in the fetal horn (P < 0.05). The biphasic growth pattern seen in in vitro-produced pregnancies was characterized by conceptus growth retardation during early pregnancy, followed by changes in the development of the placental tissue. Resulting high birth weights may be a consequence of aberrant placental development due to the disruption of the placental restraint on fetal growth toward the end of pregnancy.
Collapse
Affiliation(s)
- Marcelo Bertolini
- Department of Animal Science, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The fetal origins hypothesis proposes that adult cardiovascular and metabolic disease originate through developmental plasticity and fetal adaptations arising from failure of the materno-placental supply of nutrients to match fetal requirements. The hypothesis is supported by experimental data in animals indicating that maternal nutrition can programme long term effects on the offspring without necessarily affecting size at birth. There is now evidence linking body composition in pregnant women and the balance of nutrient intake during pregnancy with raised levels of cardiovascular risk factors in the offspring. Maternal body composition and diet are thought to affect fetal development and programming as a result of both direct effects on substrate availability to the fetus and indirectly through changes in placental function and structure. Alterations in placental growth and vascular resistance, altered nutrient and hormone metabolism in the placenta, and changes in nutrient transfer and partitioning between mother, placenta and fetus all have important effects on the fetal adaptations thought to be central to programming. Future interventions to improve placental function are likely to have lifelong health benefits for the offspring.
Collapse
Affiliation(s)
- Keith M Godfrey
- Medical Research Council Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
31
|
Regnault TRH, Galan HL, Parker TA, Anthony RV. Placental development in normal and compromised pregnancies-- a review. Placenta 2002; 23 Suppl A:S119-29. [PMID: 11978069 DOI: 10.1053/plac.2002.0792] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intrauterine growth restriction (IUGR) is a significant cause of infant mortality and morbidity. It is now clear that IUGR infants exhibit higher rates of coronary heart disease, type 2-diabetes, hypertension and stroke as adults. Therefore, fetal growth not only impacts the outcome of the perinatal period, but also impacts adult well-being. The etiologies of IUGR are numerous, but are often associated with abnormalities in placental structure and function. The process of implantation and placentation requires the production of a plethora of growth factors, cell-adhesion molecules, extracellular matrix proteins, hormones and transcription factors. Many of these exhibit altered expression within the placenta of IUGR pregnancies. However, it has been difficult to fully assess their role during the development of placental insufficiency (PI) in the human, underscoring the need for animal models. Using an ovine model of PI-IUGR we have observed changes in the expression of vascular endothelial growth factor, placental growth factor, their common receptors, as well as angiopoietin 2 and its receptor, Tie 2. We found that changes in these growth factors can be associated with both acute and chronic changes in placental vascular structure and function. These studies and others are providing needed insight into the developmental chronology of placental insufficiency.
Collapse
Affiliation(s)
- T R H Regnault
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
32
|
Steyn C, Hawkins P, Saito T, Noakes DE, Kingdom JC, Hanson MA. Undernutrition during the first half of gestation increases the predominance of fetal tissue in late-gestation ovine placentomes. Eur J Obstet Gynecol Reprod Biol 2001; 98:165-70. [PMID: 11574126 DOI: 10.1016/s0301-2115(01)00321-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate, in sheep, the effects of maternal undernutrition during the first half of pregnancy on placental growth and development and fetal growth. STUDY DESIGN Six ewes (R) were subjected to a 15% reduction in nutrient intake for the first 70 days of gestation and thereafter received the recommended daily intake. Another group of six ewes (C) received the recommended daily intake throughout pregnancy. At 130 days gestation the ewes were killed and morphological and morphometrical measurements were carried out on the placenta and fetus. RESULTS Undernutrition resulted in a significant alteration in placental morphology, which was seen as increased growth of the fetal side of the placenta in R animals. However, fetal size in late gestation was not affected by the undernutrition, suggesting that placental adaptation was successful in maintaining fetal growth. CONCLUSION Placental adaptations, including changes in gross morphology, may preserve fetal growth if maternal undernutrition is not severe. The mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- C Steyn
- Fetal and Neonatal Physiology Group, Department of Obstetrics and Gynaecology, University College London Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Pfarrer C, Ebert B, Miglino MA, Klisch K, Leiser R. The three-dimensional feto-maternal vascular interrelationship during early bovine placental development: a scanning electron microscopical study. J Anat 2001; 198:591-602. [PMID: 11430698 PMCID: PMC1468248 DOI: 10.1046/j.1469-7580.2001.19850591.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both the fetal and maternal microvasculature of bovine placentomes was examined by scanning electron microscopy of vascular casts. So far the development of the vascular architecture of the bovine placentome in early gestation has only been studied 2-dimensionally due to technical difficulties arising from the fragility of the early placental blood vessels. Repeated experiments led to the selection of the microvascular corrosion casts presented here. The vasculature of the maternal compartment is supplied by large caruncular stalk or spiral arteries, which release short maternal stem arteries. In the 3rd month of gestation, these arteries branch into several arterioles at their base, thus providing the vascular framework for the lower part of the septal walls of the primary crypts. In the 4th month, due to progressive longitudinal growth of the stem arteries, branching into arterioles occurs not only at the base, but over the whole length of the stem arteries. These arterioles supply the capillary complexes of the septa which resemble the major part of the septal vasculature and face the secondary crypts. Further indentation results in the formation of tertiary crypt capillary complexes, encircling the earlier secondary unit. From the 6th month of gestation the architecture resembles the fully developed maternal placenta with stem arteries running directly to the fetal side to branch into 4 to 6 arterioles, which turn back to enter secondary and tertiary septa. Maternal venules, collecting the blood from the capillary bed of secondary and tertiary septa, converge onto stem veins leaving the caruncle via branches of the uterine vein. The fetal part of the placentome is supplied by the cotyledonary arteries, which branch into fetal stem arteries that are the tributary to single villous trees. Over their whole course towards the maternal side, these give off arterioles entering secondary villi. The tertiary or terminal villous vasculature consists of capillaries, which are organised in serial capillary loops. This system is progressively elaborated in the course of gestation. In the 4th month there are only finger-like loops, whereas from the 6th month large fan-like structures can be observed. In early gestation the maternal and fetal blood vessels meet predominantly in a countercurrent fashion, changing to the less efficient crosscurrent exchange when the tertiary unit develops. These results indicate the development of a highly elaborated fetomaternal villous-crypt exchange system, already established in the 1st half of gestation, thus meeting the increasing needs of the fetus.
Collapse
Affiliation(s)
- C Pfarrer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Germany
| | | | | | | | | |
Collapse
|
34
|
Ahmed A, Dunk C, Ahmad S, Khaliq A. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen--a review. Placenta 2000; 21 Suppl A:S16-24. [PMID: 10831117 DOI: 10.1053/plac.1999.0524] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Morphological studies show poor placental vascular development and an increase in the mitotic index of cytotrophoblast cells in intrauterine growth restriction (IUGR). We hypothesized that the reported relatively high oxygen level in the intervillous space in contact with IUGR placental villi will limit angiogenesis by changes in vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) expression and function. Western immunoblot analysis demonstrates a diametric expression of PIGF and VEGF proteins throughout pregnancy, with P1GF levels increasing and VEGF levels decreasing, consistent with placental oxygenation. PIGF mRNA and protein is increased in IUGR as compared to gestationally matched normal placentae. Increasing oxygen tension upregulates P1GF protein in term placental villous explants, whereas hypoxia downregulates P1GF and VEGFR-1 (Flt-1) autophosphorylation in term trophoblast choriocarcinoma cell line (BeWo). Levels of soluble Flt-1 (sFlt-1) protein in supernatant of term villous explants were upregulated by 1 per cent hypoxia, whereas hyperoxia (40 per cent) decreased sFlt-1 levels, indicating that under conditions of increasing oxygen tension, PlGF function may remain unopposed. The addition of PlGF-1 to a spontaneously transformed first trimester cytotrophoblast cell line (ED27) stimulated cell proliferation while PlGF-2 had little effect. In contrast, the addition of PlGF-1 had little effect on endothelial cell proliferation while this was inhibited by PIGF-2. Taken together these changes provide a molecular explanation for the observed poor angiogenesis in the pathogenesis of IUGR.
Collapse
Affiliation(s)
- A Ahmed
- Department of Reproductive and Vascular Biology, University of Birmingham, Birmingham Women's Hospital, Edgbaston, UK.
| | | | | | | |
Collapse
|
35
|
Hoet JJ, Hanson MA. Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J Physiol 1999; 514 ( Pt 3):617-27. [PMID: 9882734 PMCID: PMC2269112 DOI: 10.1111/j.1469-7793.1999.617ad.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Accepted: 11/19/1998] [Indexed: 11/29/2022] Open
Abstract
Experimental investigations in animals have highlighted the role of early reduced calorie and protein nutrition on fetal cardiovascular development, and the occurrence of a transition from a low fetal arterial blood pressure in late gestation to a high arterial blood pressure postnatally. These observations may explain the correlation between health, including appropriate nutrition, in pregnant women and the outcome of their pregnancies. Emphasis has been placed on low birth weight infants who have an increased risk of developing cardiovascular diseases, including hypertension, coronary heart disease and stroke in adulthood. Vascular pathology in adults is not always associated with low birth weight and animal experiments indicate that substantial changes in cardiovascular and endocrine function can result from maternal or fetal undernutrition without impairing fetal growth. Experimental investigation on organogenesis shows the pivotal role of adequate protein availability as well as total caloric intake. Amino acid metabolism in the feto-maternal unit appears to have a key influence on the development of organs involved in chronic degenerative disease in the adult. Experimental investigation has also highlighted the role of carbohydrate metabolism and its effect on the fetus in this respect. Either restriction of protein intake or diabetes in pregnant rats has intergenerational effects at least on the endocrine pancreas and the brain. Further investigation is needed to clarify the mechanisms involved and lead to a new understanding of the importance of nutrition during pregnancy. This will provide an important approach to the primary prevention of diabetes and chronic degenerative diseases.
Collapse
Affiliation(s)
- J J Hoet
- Laboratoire de Biologie Cellulaire, Universite Catholique de Louvain, Place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
36
|
Kingdom J. Adriana and Luisa Castellucci Award Lecture 1997. Placental pathology in obstetrics: adaptation or failure of the villous tree? Placenta 1998; 19:347-51. [PMID: 9699954 DOI: 10.1016/s0143-4004(98)90073-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J Kingdom
- Department of Obstetrics and Gynaecology and Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Abstract
The effect of high altitude, long-term hypoxaemia on placentome morphology in the sheep was examined using singleton and twin pregnant ewes. Normoxic twins had lower fetal and placental weights (3.7+/-0.2 kg and 215+/-26 g, respectively) than normoxic singleton fetuses (4.3+/-0.2 kg and 336+/-17 g, respectively). Fetal and placental weights were similar in normoxic singleton and high altitude (3820 m) hypoxic singleton fetuses (4.3+/-0.2 and 4.4+/-0.4 kg, 336+/-17 and 342+/-62 g, respectively). The distribution of placentome types was classified into four major categories (A-D) and for normoxic singletons was as follows: A=76+/-4, B=22+/-3, C=1+/-2, and D=1+/-1. Normoxic twins tended to have more type B (type A=63+/-10, B=33+/-8, C=2+/-1, and D=2+/-1). High altitude hypoxic singletons had significantly fewer type A (33+/-4) and more type B (50+/-3), C (10+/-7), D (7+/-1) placentomes than normoxic singletons. In addition, in the sea-level control group, five animals were found to be spontaneously hypoxic with a placentome distribution similar to that of the high altitude hypoxic fetuses. In conclusion, both high altitude, long-term hypoxia and low altitude spontaneous hypoxia lead to a significant change in placentome distribution with less type A and increases in types B, C and D. Physiologically, the change in the several placentome types with high altitude hypoxia suggests an acclimatization response to optimize transplacental exchange efficiency.
Collapse
Affiliation(s)
- L Penninga
- Center for Perinatal Biology, Department of Physiology, Loma Linda University, School of Medicine, California 92350, USA
| | | |
Collapse
|
38
|
Abstract
Physiological research has now given us a reasonably complete picture of fetal cardiovascular control in late gestation, especially with respect to the responses to acute hypoxaemia. Reflex, endocrine and auto/paracrine mechanisms all play a part. This review questions how complete our knowledge is when we address the clinically important issues of the influence of gestational age, sustained hypoxia and the effects of nutrition in altering the programming of cardiovascular development.
Collapse
Affiliation(s)
- M A Hanson
- Dept of Obstetrics and Gynaecology, University College London Medical School, UK.
| |
Collapse
|
39
|
Leiser R, Krebs C, Klisch K, Ebert B, Dantzer V, Schuler G, Hoffmann B. Fetal villosity and microvasculature of the bovine placentome in the second half of gestation. J Anat 1997; 191 ( Pt 4):517-27. [PMID: 9449071 PMCID: PMC1467719 DOI: 10.1046/j.1469-7580.1997.19140517.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The architecture of the fetal villous tree and its vasculature in the bovine placentome were studied in the second half of gestation using both conventional histology and histology of ink-filled blood vessels. These were compared with corrosion casts of plastic fillings of the vasculature, prepared for scanning electron microscopy. This combination of morphological methods allows perception of the villous tree throughout gestation from broad-conical to tall-conical form where branch ramification occurs mainly at right angles to the stem. The stem villus typically contains a single central artery and several peripheral veins arranged in parallel. The proximal branches to the stem, the intermediate villi, contain a central arteriole and accompanying venules. The distal branches, the terminal villi, enclose capillary convolutions which consist of an afferent arterial capillary limb, capillary loops and efferent venous capillary limbs. Vascular interconnections exist within the terminal villi, as capillaries or venules between the capillary convolutions, serially bridging them in up to 5 places, and as capillary anastomoses between the capillary loops. Coiling and sinusoidal dilatations of these loops develop near the end of gestation. The intraplacentomal rearrangement of villous trees with progressive gestation and their morphological vascular adaptations are discussed in relation to placental function, including the ever increasing need for transplacental substance exchange. This adaptation allows the blood to traverse the shortest possible arterioarteriolar route to the periphery of the trees where exchange takes place. The need for an increasing blood flow stimulates capillary growth and at the same time optimises the blood flow reaching the placental barrier represented by the vessel cast surface. The capillaries also carry the blood back into the very voluminous system of venules and veins where back diffusion may occur. The total volume of terminal villi of bovine placentome, the 'working part' of villous trees, hence distinctly increases with respect to the stem and intermediate villi, the 'supplying part' of the villous tree. In morphological terms the efficiency of the bovine transplacental diffusional exchange is higher than in the closely related 'co-ruminants' sheep and goats and distinctly higher when compared with the human placenta.
Collapse
Affiliation(s)
- R Leiser
- Institute of Veterinary Anatomy, Histology and Embryology, J.-L.-University Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Robinson JS, Hartwich KM, Walker SK, Erwich JJ, Owens JA. Early influences on embryonic and placental growth. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1997; 423:159-63; discussion 164. [PMID: 9401564 DOI: 10.1111/j.1651-2227.1997.tb18401.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Growth of the placenta is influenced by events before and during early pregnancy. Some of these events set the growth trajectory of the placenta and the fetus for the remainder of the pregnancy. Maternal size and nutrition, and the local metabolic, cytokine and hormonal environment of the embryo all affect growth of the placenta.
Collapse
Affiliation(s)
- J S Robinson
- Department of Obstetrics and Gynaecology, University of Adelaide, Australia
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- A A Macdonald
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Summerhall, UK
| | | |
Collapse
|