1
|
Seth R, Meena A, Gosai A, Imam MW, Meena R, Luqman S. Novel nanoformulation for enhanced amphotericin B efficacy and sustained release using vetiver root cellulose nanofibers against Candida albicans. Int J Biol Macromol 2024:136555. [PMID: 39427798 DOI: 10.1016/j.ijbiomac.2024.136555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The formidable antifungal agent, Amphotericin B, is well-known for its potency; however, its clinical application has been significantly limited due to toxicity and poor solubility. This study aims to address these challenges by developing and evaluating a novel nano-cellulose-based formulation of Amphotericin B to enhance its efficacy. Amphotericin B was encapsulated within cellulose nanofibers at varying ratios to optimize formulation parameters, including drug concentration, particle size, zeta potential, and entrapment efficiency. Notably, a composition ratio of 10:1 of cellulose nanofibers to Amphotericin B achieved an impressive encapsulation efficiency of 96.64 %. Subsequent physicochemical characterizations employing techniques such as FTIR, DLS, XRD, and SEM provided insights into structural attributes and interactions within formulation. Controlled and extended-release profiles were observed at various physiological pH levels, with the Korsmeyer-Peppas model showing the highest correlation, indicating predominant drug diffusion. Importantly, nanoformulation demonstrated non-toxicity to A431 cells and human erythrocytes up to a maximum concentration of 20 μg/ml, as corroborated by MTT and hemolysis assays. Furthermore, antimicrobial susceptibility and efficacy assessments, conducted using agar diffusion and broth micro-dilution methods, revealed enhanced inhibition of Candida albicans growth. The nanoformulation produced a larger zone of inhibition (DIZ) of 19.66 mm compared to a DIZ of 16.33 mm for Amphotericin B alone. Impressively, the nanoformulation exhibited a minimum inhibitory concentration (MIC) of 25 μg/ml against Candida albicans, underscoring its heightened efficacy. Additionally, the formulation's ability to improve the targetability and bioavailability of Amphotericin B holds promise for enhancing its antifungal effectiveness while reducing associated toxicity.
Collapse
Affiliation(s)
- Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Amit Gosai
- Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ramavatar Meena
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Seth R, Meena A, Meena R. Enzyme-based green synthesis, characterisation, and toxicity studies of cellulose nanocrystals/fibres produced from the Vetiveria zizanioides roots agro-waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116984-116999. [PMID: 36484940 DOI: 10.1007/s11356-022-24455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Vetiver zizanioides roots are considered the most useful part of the plant. It is widely used to extract oil. The aromatic oil is used in perfumery, food-flavouring and cosmetic industries. However, presently, there are no reports available for the usage of vetiver roots agro-waste after oil extraction in nano-based products. Considering the concept of value-added products and green-chemistry approaches, synthesising cellulose nanoparticles (CNPs) using enzymatic treatment from agro-waste has emerged as a viable option. CNP's non-toxicity, biodegradability, and biocompatibility have sparked the industry's interest in its production. Therefore, in the present study, 3 enzymes, cellulase, pectinase, and viscozymes, were used for the green synthesis of CNP. The characterisation of CNP was done using techniques like DLS, FTIR, TEM, SEM, AFM, and TG/DTG, and cytotoxicity of CNP was studied in human skin cell-line (HaCaT) using MTT assay. Results show that CNPs synthesised using viscozyme and pectinase were of crystalline nature (2.0-3.0 nm) and cellulase were of fibres (40-60 nm). The FTIR confirmed that CNPs were devoid of lignin/hemicellulose. The AFM pictures revealed thick and thin nanoparticles with a variety of morphologies. The thermal stability of cellulose was higher compared to CNP. All the synthesised CNPs were crystaline, with a 60-70% crystallinity index. Furthermore, CNP did not show cytotoxic effect on HaCaT cells upto 500 µg/mL concentrations. In conclusion, pectinase and viscosyme may be used for synthesing cellulose-nanocrystals and cellulase enzyme for cellulose-nanofibers from the vetiver roots agro-waste. The findings revealed that Vetiveria zizanioides agro-waste-derived CNP is a sustainable material that can be used as a reinforcing agent/nanocarrier in textile and drug-delivery systems.
Collapse
Affiliation(s)
- Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Ramavatar Meena
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
- Natural Products & Green Chemistry Discipline, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, 364002, India
| |
Collapse
|
3
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
4
|
Wang X, He J, Pang S, Yao S, Zhu C, Zhao J, Liu Y, Liang C, Qin C. High-Efficiency and High-Quality Extraction of Hemicellulose of Bamboo by Freeze-Thaw Assisted Two-Step Alkali Treatment. Int J Mol Sci 2022; 23:8612. [PMID: 35955757 PMCID: PMC9369068 DOI: 10.3390/ijms23158612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Hemicellulose is a major component of the complex biomass recalcitrance structure of fiber cell walls. Even though biomass recalcitrance protects plants, it affects the effective utilization of lignocellulosic biomass resources. Therefore, the separation and extraction of hemicellulose is very important. In this study, an improved two-step alkali pretreatment method was proposed to separate hemicellulose efficiently. Firstly, 16.61% hemicellulose was extracted from bamboo by the weak alkali treatment. Then, the physical freezing and the alkali treatment were carried out by freezing at -20 °C for 12.0 h and thawing at room temperature, heating to 80 °C, and treating with 5.0% sodium hydroxide for 90 min; the extraction yield of hemicellulose reached 73.93%. The total extraction yield of the two steps was 90.54%, and the molecular weight and purity reached 44,865 g·mol-1 and 89.60%, respectively. It provides a new method for breaking the biomass recalcitrance of wood fiber resources and effectively extracting hemicellulose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (X.W.); (J.H.); (S.P.); (S.Y.); (C.Z.); (J.Z.); (Y.L.); (C.Q.)
| | | |
Collapse
|
5
|
Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture. Polymers (Basel) 2021; 13:polym13234115. [PMID: 34883618 PMCID: PMC8659456 DOI: 10.3390/polym13234115] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Waste materials are receiving more attention as concerns about the future of our planet increase. Cellulose is the most common substance in agricultural waste. Agricultural wastes containing cellulose are misplaced resources that could be reused in various fields for both environmental and economic benefits. In this work, 32 different kinds of waste are investigated for chemical modification in order to obtain carboxymethyl cellulose for the production of a superabsorbent hydrogel that can be applied in agriculture. A brief literature review is provided to help researchers wishing to obtain carboxymethyl cellulose by carboxymethylation starting with waste materials. We also provide details about methods to obtain as well as verify carboxymethylation. Carboxymethyl cellulose (CMC), as a constituent of cellulosic water and superabsorbent hydrogels with applications in agriculture, is described. Superabsorbent hydrogels with CMC are able to absorb huge amounts of water and are biodegradable.
Collapse
|
6
|
Liu X, Lin Q, Yan Y, Peng F, Sun R, Ren J. Hemicellulose from Plant Biomass in Medical and Pharmaceutical Application: A Critical Review. Curr Med Chem 2019; 26:2430-2455. [PMID: 28685685 DOI: 10.2174/0929867324666170705113657] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/13/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Due to the non-toxicity, abundance and biodegradability, recently more and more attention has been focused on the exploration of hemicellulose as the potential substrate for the production of liquid fuels and other value-added chemicals and materials in different fields. This review aims to summarize the current knowledge on the promising application of nature hemicellulose and its derivative products including its degradation products, its new derivatives and hemicellulosebased medical biodegradable materials in the medical and pharmaceutical field, especially for inmmune regulation, bacteria inhibition, drug release, anti-caries, scaffold materials and anti-tumor. METHODS We searched the related papers about the medical and pharmaceutical application of hemicellulose and its derivative products, and summarized their preparation methods, properties and use effects. RESULTS Two hundred and twenty-seven papers were included in this review. Forty-seven papers introduced the extraction and application in immune regulation of nature hemicellulose, such as xylan, mannan, xyloglucan (XG) and β-glucan. Seventy-seven papers mentioned the preparation and application of degradation products of hemicellulose for adjusting intestinal function, maintaining blood glucose levels, enhancing the immunity and alleviating human fatigue fields such as xylooligosaccharides, xylitol, xylose, arabinose, etc. The preparation of hemicellulose derivatives were described in thirty-two papers such as hemicellulose esters, hemicellulose ethers and their effects on anticoagulants, adsorption of creatinine, the addition of immune cells and the inhibition of harmful bacteria. Finally, the preparations of hemicellulose-based materials such as hydrogels and membrane for the field of drug release, cell immobilization, cancer therapy and wound dressings were presented using fifty-five papers. CONCLUSION The structure of hemicellulose-based products has the significant impact on properties and the use effect for the immunity, and treating various diseases of human. However, some efforts should be made to explore and improve the properties of hemicellulose-based products and design the new materials to broaden hemicellulose applications.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qixuan Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuhuan Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Evaluation of Copper-Contaminated Marginal Land for the Cultivation of Vetiver Grass (Chrysopogon zizanioides) as a Lignocellulosic Feedstock and its Impact on Downstream Bioethanol Production. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metal-contaminated soil could be sustainably used for biofuel feedstock production if the harvested biomass is amenable to bioethanol production. A 60-day greenhouse experiment was performed to evaluate (1) the potential of vetiver grass to phytostabilize soil contaminated with copper (Cu), and (2) the impact of Cu exposure on its lignocellulosic composition and downstream bioethanol production. Dilute acid pretreatment, enzymatic hydrolysis, and fermentation parameters were optimized sequentially for vetiver grass using response surface methodology (RSM). Results indicate that the lignocellulosic composition of vetiver grown on Cu-rich soil was favorably altered with a significant decrease in lignin and increase in hemicellulose and cellulose content. Hydrolysates produced from Cu exposed biomass achieved a significantly greater ethanol yield and volumetric productivity compared to those of the control biomass. Upon pretreatment, the hemicellulosic hydrolysate showed an increase in total sugars per liter by 204.7% of the predicted yield. After fermentation, 110% of the predicted ethanol yield was obtained for the vetiver grown on Cu-contaminated soil. By contrast, for vetiver grown on uncontaminated soil a 62.3% of theoretical ethanol yield was achieved, indicating that vetiver has the potential to serve the dual purpose of phytoremediation and biofuel feedstock generation on contaminated sites.
Collapse
|
8
|
He X, Tang K, Li X, Wang F, Liu J, Zou F, Yang M, Li M. A porous collagen-carboxymethyl cellulose/hydroxyapatite composite for bone tissue engineering by bi-molecular template method. Int J Biol Macromol 2019; 137:45-53. [PMID: 31220495 DOI: 10.1016/j.ijbiomac.2019.06.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Inspired by the mechanism of bone formation, a porous collagen-carboxymethyl cellulose/hydroxyapatite (Col-CMC/HA) composite was designed and fabricated using a biomimetic template of Col and CMC protein-polysaccharide bi-molecules. The morphology, composition and physical properties of Col-CMC/HA composites were characterized systematically. It was found that the nano-HA homogenously distributed on the surface of Col-CMC bi-templates while the composite presented 3D porous structure with pore size from 100 μm to 300 μm. The porosities of composites were located at the range of 71%-85%. Besides, the compressive strength of composites was highly depended on the ratio of Col to CMC in the organic template. The optimized composite in respect to physical properties showed a compressive strength as high as 7.06 MPa, quite close to that of natural bone. The high relative growth rate of wild-type mouse embryonic fibroblasts cells was found for the composite, indicating a good biocompatibility. The organic-inorganic composite also behaved good in collagenase resistance and could be biodegraded in 8 weeks, with about 50% of initial weight left at the ratio of Col to CMC of 1:9. The results demonstrated that the Col-CMC/HA composite by bi-molecular template method was a rational and safe method to prepare biomaterials with tunable properties.
Collapse
Affiliation(s)
- Xichan He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China.
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Fang Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Jie Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Fangfang Zou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Mengyuan Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| | - Meixuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, PR China
| |
Collapse
|
9
|
Subsamran K, Mahakhan P, Vichitphan K, Vichitphan S, Sawaengkaew J. Potential use of vetiver grass for cellulolytic enzyme production and bioethanol production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bhagia S, Pu Y, Evans BR, Davison BH, Ragauskas AJ. Hemicellulose characterization of deuterated switchgrass. BIORESOURCE TECHNOLOGY 2018; 269:567-570. [PMID: 30145003 DOI: 10.1016/j.biortech.2018.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
This work describes the structural characterization of hemicellulose isolated from hydroponically grown switchgrass in H2O medium (protiated) or 50% D2O medium (deuterated) through compositional analysis, GPC, FTIR, 13C and 1H/13C HSQC NMR. 4-O-methyl glucuronoarabinoxylan (GAX), the major hemicellulose in switchgrass isolated from deuterated switchgrass, had structural properties similar to hemicellulose isolated from protiated switchgrass. Both had comparable arabinose to xylose ratio (0.25) and molecular weight (47-50 kDa). Structural similarities show that deuterated switchgrass hemicellulose can be used as a model carbohydrate polymer in neutron scattering, or pharmaceutical studies due to their immunomodulatory activity and gastroprotective effects.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
11
|
Raman JK, Alves CM, Gnansounou E. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks. BIORESOURCE TECHNOLOGY 2018; 249:1044-1051. [PMID: 29146310 DOI: 10.1016/j.biortech.2017.10.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
Plants and derivatives have been explored for unlimited purposes by mankind, from crop cultivation for providing food and animal feed, to the use for cosmetics, therapeutics and energy. Moringa tree and vetiver grass features, capabilities and applications were explored through a literature review. The suitability of these plants for the bioenergy industry products is evidenced, namely for bioethanol, biogas and biodiesel, given the lignocellulosic biomass content of these plants and characteristics of moringa seed oil. In addition, moringa leaves and pods are an important source for food and animal feed industries due to their high nutrient value. Thus, the co-cultivation of moringa and vetiver could provide energy and food security, and contribute to more sustainable agricultural practices and for the development of rural areas. Policymakers, institutions and scientific community must engage to promote the cultivation of multipurpose crops to cope with energy and food industries competition for biomass.
Collapse
|
12
|
Toxicity study of food-grade carboxymethyl cellulose synthesized from maize husk in Swiss albino mice. Int J Biol Macromol 2016; 92:965-971. [DOI: 10.1016/j.ijbiomac.2016.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/18/2022]
|
13
|
Konduri MK, Fatehi P. Synthesis and characterization of carboxymethylated xylan and its application as a dispersant. Carbohydr Polym 2016; 146:26-35. [DOI: 10.1016/j.carbpol.2016.03.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
|
14
|
|
15
|
Yeasmin MS, Mondal MIH. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. Int J Biol Macromol 2015. [PMID: 26210036 DOI: 10.1016/j.ijbiomac.2015.07.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corn husk is an abundant agricultural waste. It has great potential for use as a cellulose source for the production of carboxymethyl cellulose (CMC). The chemical composition of corn husk, such as cellulose, hemicelluloses, lignin, fatty and waxy matter, pectic matter and aqueous extract was determined. The cellulose extracted from corn husk was carboxymethylated using sodium hydroxide (NaOH) and monochloroacetic acid (MCA), in aqueous ethanolic medium, under heterogeneous conditions. The carboxymethylation reaction was optimized as to the NaOH concentration, MCA concentration, reaction temperature, reaction time and cellulose particle size. The degree of substitution (DS) was determined with respect to the reaction conditions using chemical methods. The produced CMC was identified by FTIR and the crystallinity of the CMC was determined by XRD. The CMC product had an optimized DS of 2.41 and the optimal conditions for carboxymethylation were NaOH concentration, 7.5 mol/L; MCA concentration, 12 mol/L; reaction temperature, 55 °C; reaction time, 3.5 h and cellulose particle size, 74 μm. These optimization factors allowed to prepare highly substituted CMC with higher yield, 2.40 g/g, providing plenty of opportunities for its many applications.
Collapse
Affiliation(s)
- Mst Sarmina Yeasmin
- Polymer and Textile Research Lab., Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Ibrahim H Mondal
- Polymer and Textile Research Lab., Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
16
|
Fan L, Tan C, Wang L, Pan X, Cao M, Wen F, Xie W, Nie M. Preparation, characterization and the effect of carboxymethylated chitosan-cellulose derivatives hydrogels on wound healing. J Appl Polym Sci 2012. [DOI: 10.1002/app.38456] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
SINGH R, KHATRI O. A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. J Microsc 2011; 246:43-52. [DOI: 10.1111/j.1365-2818.2011.03583.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Heinze T, Daus S. Xylan and Xylan Derivatives – Basis of Functional Polymers for the Future. RENEWABLE RESOURCES FOR FUNCTIONAL POLYMERS AND BIOMATERIALS 2011. [DOI: 10.1039/9781849733519-00088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This review highlights xylan and xylan derivatives. It depicts the occurrence and structural diversity of the biopolymer, followed by a presentation of different ways of isolation from biomass. The determination of characteristics, i.e., molecular weight, interaction with other polysaccharides, thermal behaviour, and the biological activity of xylan are reviewed. The application potential arising from the structural features of the unmodified xylan is pointed out. Special attention is concentrated on the possibilities of the modification of functional properties by chemical functionalization of the biopolymers in order to design advanced materials. Within this review recent results in the field are accompanied with selected results of our own work.
Collapse
Affiliation(s)
- Thomas Heinze
- Centre of Excellence for Polysaccharide Research Friedrich Schiller University of Jena, Humboldtstraße 10 D-07743 Jena Germany
| | - Stephan Daus
- Centre of Excellence for Polysaccharide Research Friedrich Schiller University of Jena, Humboldtstraße 10 D-07743 Jena Germany
| |
Collapse
|
19
|
Peng XW, Ren JL, Zhong LX, Cao XF, Sun RC. Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:570-576. [PMID: 21166416 DOI: 10.1021/jf1036239] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this article, a facile, rapid, and efficient method was developed for the preparation of carboxymethyl hemicelluloses using microwave-induced organic reaction enhancement chemistry. The influences of the factors including reaction time, temperature, and the amount of sodium monochloroacetate and sodium hydroxide on the degree of substitution (DS) of the products were investigated. The rheological properties and the chemical structure of the resulting polymers were also studied. It was found that microwave irradiation could significantly promote the chemical reaction efficiency and accelerate the carboxymethylation of hemicelluloses with sodium monochloroacetate. Therefore, carboxymethyl hemicelluloses with higher DS of 1.02 could be obtained in much shorter time scales as compared to the conventional heating method. Results from rheological analysis indicated that carboxymethyl hemicellulose solutions exhibited shear-thinning behavior in the range of shear rates tested and showed lower viscosity and modulus in comparison with those of the native hemicelluloses due to lower molecular weight and the role of carboxymethyl groups in reducing the entanglements between hemicelluloses chains.
Collapse
Affiliation(s)
- Xin-Wen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | | | | | | | | |
Collapse
|
20
|
Somnuk U, Suppakarn N, Sutapun W, Ruksakulpiwat Y. Shear-induced crystallization of injection molded vetiver grass-polypropylene composites. J Appl Polym Sci 2009. [DOI: 10.1002/app.30459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC. Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6305-17. [PMID: 19537731 DOI: 10.1021/jf900986b] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The sequential treatment of dewaxed sugarcane bagasse with H(2)O and 1 and 3% NaOH at a solid to liquid ratio of 1:25 (g mL(-1)) at 50 degrees C for 3 h yielded 74.9% of the original hemicelluloses. Each of the hemicellulosic fractions was successively subfractionated by graded precipitation at ethanol concentrations of 15, 30, and 60% (v/v). Chemical composition, physicochemical properties, and structures of eight precipitated hemicellulosic fractions were elucidated by a combination of sugar analysis, nitrobenzene oxidation of bound lignin, molecular determination, Fourier transform infrared (FT-IR), (1)H and (13)C nuclear magnetic spectroscopies, and thermal analysis. The results showed that the sequential treatments and graded precipitations were very effective on the fractionation of hemicelluloses from bagasse. Comparison of these hemicelluloses indicated that the smaller sized and more branched hemicelluloses were extracted by the hot water treatment; they are rich in glucose, probably originating from alpha-glucan and pectic polysaccharides. The larger molecular size and more linear hemicelluloses were dissolved by the alkali treatment; they are rich in xylose, principally resulting from l-arabino-(4-O-methylglucurono)-d-xylans. In addition, noticeable differences in the chemical composition and molecular weights were observed among the graded hemicellulosic subfractions from the water-soluble and alkali-soluble hemicelluloses. The Ara/Xyl ratio increased with the increment of ethanol concentration from 15 to 60%, and the arabinoxylans with higher Ara/Xyl ratios had higher molecular weights. There were no significant differences in the structural features of the precipitated hemicellulosic subfractions, which are mainly constituted of l-arabino-(4-O-methyl-d-glucurono)xylan, whereas the difference may occur in the distribution of branches along the xylan backbone.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Cheng G, Duan X, Jiang Y, Sun J, Yang S, Yang B, He S, Liang H, Luo Y. Modification of hemicellulose polysaccharides during ripening of postharvest banana fruit. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.11.065] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
|
24
|
Ma J, Xu Y, Fan B, Liang B. Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 2007. [DOI: 10.1016/j.eurpolymj.2007.02.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Pushpamalar V, Langford S, Ahmad M, Lim Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr Polym 2006. [DOI: 10.1016/j.carbpol.2005.12.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|