1
|
Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, Chung YG, Sanberg PR. Human Umbilical Cord Blood Cell Grafts for Brain Ischemia. Cell Transplant 2009; 18:985-98. [DOI: 10.3727/096368909x471279] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Irreversible and permanent damage develop immediately adjacent to the region of reduced cerebral blood perfusion in stroke patients. Currently, the proven thrombolytic treatment for stroke, tissue plasminogen activator, is only effective when administered within 3 h after stroke. These disease characteristics should be taken under consideration in developing any therapeutic intervention designed to widen the narrow therapeutic range, especially cell-based therapy. Over the past several years, our group and others have characterized the therapeutic potential of human umbilical cord blood cells for stroke and other neurological disorders using in vitro and vivo models focusing on the cells' ability to differentiate into nonhematopoietic cells including neural lineage, as well as their ability to produce several neurotrophic factors and modulate immune and inflammatory reaction. Rather than the conventional cell replacement mechanism, we advance alternative pathways of graft-mediated brain repair involving neurotrophic effects resulting from release of various growth factors that afford cell survival, angiogenesis, and anti-inflammation. Eventually, these multiple protective and restorative effects from umbilical cord blood cell grafts may be interdependent and act in harmony in promoting therapeutic benefits for stroke.
Collapse
Affiliation(s)
- Dong-Hyuk Park
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, Korea
| | - Cesar V. Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Alison E. Willing
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - David J. Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - L. Eduardo Cruz
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | | | - Yong-Gu Chung
- Cryopraxis and Silvestre Laboratory, Cryopraxis, BioRio, Pólo de Biotechnologia do Rio de Janeiro, Rio di Janiero, Brazil
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery & Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
- Office of Research and Innovation, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Garbuzova-Davis S, Willing AE, Saporta S, Bickford PC, Gemma C, Chen N, Sanberg CD, Klasko SK, Borlongan CV, Sanberg PR. Novel cell therapy approaches for brain repair. PROGRESS IN BRAIN RESEARCH 2006; 157:207-22. [PMID: 17046673 DOI: 10.1016/s0079-6123(06)57014-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous reports elucidate that tissue-specific stem cells are phenotypically plastic and their differentiation pathways are not strictly delineated. Although the identity of all the epigenetic factors which may trigger stem cells to make a lineage selection are still unknown, the plasticity of adult stem cells opens new approaches for their application in the treatment of various disorders. There is increasing researcher interest in hematopoietic stem cells for treatment of not only blood-related diseases but also various unrelated disorders including neurodegenerative diseases. Human umbilical cord blood (hUCB) cells, due to their primitive nature and ability to develop into nonhematopoietic cells of various tissue lineages, including neural cells, may be useful as an alternative cell source for cell-based therapies requiring either the replacement of individual cell types and/or substitution of missing substances. Here we focus on recent findings showing the robustness of adult stem cells derived from hUCB and their potential as a source of transplant cells for the treatment of diseased or injured brains and spinal cords. Depending upon the pathological microenvironment in which the hUCB cells are introduced, neuroprotective and/or trophic effects of these cells, from release of various growth or anti-inflammatory factors to moderation of immune-inflammatory effectors, may be more likely than neural replacement. These protective effects may prove essential to maintaining restored tissue integrity over the course of various diseases or injuries.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, College of Medicine, University of South Florida, MDC 78, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|