1
|
Li Z, Tan S, Qi L, Chen Y, Liu H, Liu X, Sha Z. Genome-wide characterization of integrin (ITG) gene family and their expression profiling in half-smooth tongue sole (Cynoglossus semilaevis) upon Vibrio anguillarum infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101099. [PMID: 37327728 DOI: 10.1016/j.cbd.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGβ subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGβ subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGβ1, ITGβ2, ITGβ3, and ITGβ8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.
Collapse
Affiliation(s)
- Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Longjiang Qi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
El-Sayed AFM, Khaled AA, Hamdan AM, Makled SO, Hafez EE, Saleh AA. The role of antifreeze genes in the tolerance of cold stress in the Nile tilapia (Oreochromis niloticus). BMC Genomics 2023; 24:476. [PMID: 37612592 PMCID: PMC10464439 DOI: 10.1186/s12864-023-09569-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Tilapia is one of the most essential farmed fishes in the world. It is a tropical and subtropical freshwater fish well adapted to warm water but sensitive to cold weather. Extreme cold weather could cause severe stress and mass mortalities in tilapia. The present study was carried out to investigate the effects of cold stress on the up-regulation of antifreeze protein (AFP) genes in Nile tilapia (Oreochromis niloticus). Two treatment groups of fish were investigated (5 replicates of 15 fish for each group in fibreglass tanks/70 L each): 1) a control group; the fish were acclimated to lab conditions for two weeks and the water temperature was maintained at 25 °C during the whole experimental period with feeding on a commercial diet (30% crude protein). 2) Cold stress group; the same conditions as the control group except for the temperature. Initially, the temperature was decreased by one degree every 12 h. The fish started showing death symptoms when the water temperature reached 6-8 °C. In this stage the tissue (muscle) samples were taken from both groups. The immune response of fish exposed to cold stress was detected and characterized using Differential Display-PCR (DD-PCR). RESULTS The results indicated that nine different up-regulation genes were detected in the cold-stressed fish compared to the control group. These genes are Integrin-alpha-2 (ITGA-2), Gap junction gamma-1 protein-like (GJC1), WD repeat-containing protein 59 isoform X2 (WDRP59), NUAK family SNF1-like kinase, G-protein coupled receptor-176 (GPR-176), Actin cytoskeleton-regulatory complex protein pan1-like (PAN-1), Whirlin protein (WHRN), Suppressor of tumorigenicity 7 protein isoform X2 (ST7P) and ATP-binding cassette sub-family A member 1-like isoform X2 (ABCA1). The antifreeze gene type-II amplification using a specific PCR product of 600 bp, followed by cloning and sequencing analysis revealed that the identified gene is antifreeze type-II, with similarity ranging from 70 to 95%. The in-vitro transcribed gene induced an antifreeze protein with a molecular size of 22 kDa. The antifreeze gene, ITGA-2 and the WD repeat protein belong to the lectin family (sugar-protein). CONCLUSIONS In conclusion, under cold stress, Nile tilapia express many defence genes, an antifreeze gene consisting of one open reading frame of approximately 0.6 kbp.
Collapse
Affiliation(s)
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria City, 21531, Egypt
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Sara O Makled
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria City, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria City, 21934, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| |
Collapse
|
3
|
Li MF, Zhang HQ. An overview of complement systems in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104520. [PMID: 36041641 DOI: 10.1016/j.dci.2022.104520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Complement plays an important role in the innate immune system, and it comprises about 35 individual proteins. In mammals, complement is activated via three different pathways, the classical pathway, the alternative pathway, and the lectin pathway. All three activation pathways produce C3-convertase in different forms. C3-convertase cleaves C3 to C3a and C3b and initiates a cascade of cleavage and activation, eventually resulting in the formation of the membrane attack complex. Complement activation results in the generation of activated fragments that are involved in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Although the complement system has been studied extensively in mammals, complement is less well understood in teleosts. This review summarizes the current knowledge of the teleost complement components involved in phagocytosis, chemotaxis, and cell lysis. We report the characterized complement components in various teleost species. In addition, we provide a comprehensive compilation of complement regulators, and this information is used to analyze the role of complement regulators in pathogen infection. The influence of complement receptors on the immune responses of teleosts is reviewed. Finally, we propose directions for future study of the molecular evolution, structure, and function of complement components in teleosts. This review provides new insights into the complement system of recognition and defense, and such knowledge is essential for the development of new immune strategies in aquaculture.
Collapse
Affiliation(s)
- Mo-Fei Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China.
| | - Hong-Qiang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin, 300387, China
| |
Collapse
|
4
|
Wu XY, Nie L, Lu XJ, Fei CJ, Chen J. Molecular characterization, expression and functional analysis of large yellow croaker (Larimichthys crocea) peroxisome proliferator-activated receptor gamma. FISH & SHELLFISH IMMUNOLOGY 2022; 123:50-60. [PMID: 35227879 DOI: 10.1016/j.fsi.2022.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ) are nuclear receptors with distinct roles in energy metabolism and immunity. Although extensively studied in mammals, immunomodulatory roles of this molecule in teleost fish remain to be investigated. In this study, large yellow croaker (Larimichthys crocea) PPARγ (LcPPARγ) sequence was cloned, which encodes a polypeptide of 541 amino acids that include signature domains belonging to the nuclear receptor superfamily. Phylogenetically, LcPPARγ was most closely related to PPARγ derived from European sea bass (Dicentrarchus labrax). Quantitative analysis shown a ubiquitous expression of this molecule, with highest expression level detected in the intestine. The expression of LcPPARγ was decreased in the intestine, muscle, body kidney, spleen and head kidney-derived monocytes/macrophages (MO/MФs) over the course of Vibrio alginolyticus (V. alginolyticus) infection. In contrast, an up-regulation of LcPPARγ was observed in head kidney-derived MO/MФs following docosahexaenoic acid (DHA) treatment. This increase in LcPPARγ leads to an up-regulation of LcCD11b and LcCD18 and an enhancement of complement-mediated phagocytosis. Furthermore, cytokine secretions of V. alginolyticus-stimulated MO/MФs were modulated following LcPPARγ activations that up-regulated the expression of LcIL-10, while decreased the expression of LcIL-1β, LcTNF-α and LcTGF-β1. Overall, our results indicated that LcPPARγ plays a role in regulating functions of MO/MФs and likely contribute to MO/MФs polarization.
Collapse
Affiliation(s)
- Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China
| | - Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China
| | - Chen-Jie Fei
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo City, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, School of Marine Sciences, Ningbo University, Ningbo City, China.
| |
Collapse
|
5
|
Nakao M, Tsujikura M, Ichiki S, Vo TK, Somamoto T. The complement system in teleost fish: progress of post-homolog-hunting researches. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1296-1308. [PMID: 21414344 DOI: 10.1016/j.dci.2011.03.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/05/2011] [Accepted: 03/06/2011] [Indexed: 05/30/2023]
Abstract
Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | |
Collapse
|
6
|
Bergh PGACV, Zecchinon LLM, Fett T, Desmecht DJM. The wild boar (Sus scrofa) lymphocyte function-associated antigen-1 (CD11a/CD18) receptor: cDNA sequencing, structure analysis and comparison with homologues. BMC Vet Res 2007; 3:27. [PMID: 17937788 PMCID: PMC2151945 DOI: 10.1186/1746-6148-3-27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 10/15/2007] [Indexed: 12/23/2022] Open
Abstract
Background The most predominant beta2-integrin lymphocyte function-associated antigen-1 (LFA-1, CD11a/CD18, alphaLbeta2), expressed on all leukocytes, is essential for many adhesive functions of the immune system. Interestingly, RTX toxin-producing bacteria specifically target this leukocyte beta2-integrin which exacerbates lesions and disease development. Results This study reports the sequencing of the wild boar beta2-integrin CD11a and CD18 cDNAs. Predicted CD11a and CD18 subunits share all the main structural characteristics of their mammalian homologues, with a larger interspecies conservation for the CD18 than the CD11a. Besides these strong overall similarities, wild boar and domestic pig LFA-1 differ by 2 (CD18) and 1 or 3 (CD11a) substitutions, of which one is located in the crucial I-domain (CD11a, E168D). Conclusion As most wild boars are seropositive to the RTX toxin-producing bacterium Actinobacillus pleuropneumoniae and because they have sustained continuous natural selection, future studies addressing the functional impact of these polymorphisms could bring interesting new information on the physiopathology of Actinobacillus pleuropneumoniae-associated pneumonia in domestic pigs.
Collapse
Affiliation(s)
- Philippe G A C Vanden Bergh
- Pathology Department, Faculty of Veterinary Medicine, University of Liege, Colonster Boulevard 20 B43, B-4000 Liege, Belgium.
| | | | | | | |
Collapse
|
7
|
Nakao M, Kato-Unoki Y, Nakahara M, Mutsuro J, Somamoto T. Diversified Components of the Bony Fish Complement System: More Genes for Robuster Innate Defense? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:121-38. [PMID: 16893069 DOI: 10.1007/0-387-34134-x_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
8
|
Reinhart B, DeWitte-Orr SJ, Van Es SJ, Bols NC, Lee LEJ. Cell adhesion characteristics of a monocytic cell line derived from rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:437-43. [PMID: 16716617 DOI: 10.1016/j.cbpa.2006.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 03/21/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
In experiments investigating the adhesive properties of the rainbow trout splenic monocyte-like cell line RTS11 it was found that the cells bound with low affinity to plates coated with bovine serum albumin (BSA) but that phorbol ester-induced activation/differentiation greatly increased adhesion to BSA. Similarly, pre-exposure to 500 microM MnCl(2) at time of plating, increased RTS11 adhesion to BSA coated plates, in agreement with the reported ability of divalent cations such as Mn(2+) to activate integrins. Integrins are a diverse family of heterodimeric cell surface glycoproteins that have been shown to mediate cell-cell and cell-extracellular matrix adhesion. Transcripts of the beta(2)-integrin CD18 were detected by PCR in RTS11 but not in RTG-2 cells, a fibroblastic lineage derived from rainbow trout gonads. These results suggest that differentiated RTS11 express molecules related to members of the beta(2)-integrin subfamily such as the macrophage lineage marker Mac-1 (CD11b/CD18) and/or p150,95 (CD11c/CD18) and possibly as well alpha(4)beta(1) of the beta(1)-integrin subfamily.
Collapse
Affiliation(s)
- B Reinhart
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5
| | | | | | | | | |
Collapse
|
9
|
Bengtén E, Clem LW, Miller NW, Warr GW, Wilson M. Channel catfish immunoglobulins: repertoire and expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:77-92. [PMID: 16153707 DOI: 10.1016/j.dci.2005.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The channel catfish, Ictalurus punctatus, is widely recognized as an important model for studying immune responses in ectothermic vertebrates. It is one of the few fish species for which defined viable in vitro culture systems have been established and is currently the only fish species from which a variety of functionally distinct clonal leukocyte lines are available. Moreover, there is a large basis of biochemical and molecular information on the structure and function of catfish immunoglobulins (Igs). Catfish, as other teleosts, have a tetrameric homolog of IgM as their predominant serum Ig plus a homolog of IgD. They also have genetic elements basically similar to those of mammals, which encode and regulate their expression. The catfish Ig heavy (H) chain locus is a translocon-type locus with three Igdelta genes linked to an Igmu gene or pseudogene. The catfish IgH locus is estimated to contain approximately 200 variable (V) region genes representing 13 families as well as at least three diversity (D) and 11 joining (JH) genes. The catfish has two light (L) chain isotypes, F and G, both encoded by loci organized in multiple cassettes of VL-JL-CL with the VL in the opposite transcriptional orientation. Hence, all requisite components for encoding antibodies are present in the catfish, albeit with certain variations. In the future, whether or not additional unique features of Ig function and expression will be found remains to be determined.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
10
|
Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD. Homologs of CD83 from elasmobranch and teleost fish. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 173:4553-60. [PMID: 15383588 DOI: 10.4049/jimmunol.173.7.4553] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells are one of the most important cell types connecting innate and adaptive immunity, but very little is known about their evolutionary origins. To begin to study dendritic cells from lower vertebrates, we isolated and characterized CD83 from the nurse shark (Ginglymostoma cirratum (Gici)) and rainbow trout (Oncorhynchus mykiss (Onmy)). The open reading frames for Gici-CD83 (194 aa) and Onmy-CD83 (218 aa) display approximately 28-32% identity to mammalian CD83 with the presence of two conserved N-linked glycosylation sites. Identical with mammalian CD83 genes, Gici-CD83 is composed of five exons including conservation of phase for the splice sites. Mammalian CD83 genes contain a split Ig superfamily V domain that represents a unique sequence feature for CD83 genes, a feature conserved in both Gici- and Onmy-CD83. Gici-CD83 and Onmy-CD83 are not linked to the MHC, an attribute shared with mouse but not human CD83. Gici-CD83 is expressed rather ubiquitously with highest levels in the epigonal tissue, a primary site for lymphopoiesis in the nurse shark, whereas Onmy-CD83 mRNA expression largely paralleled that of MHC class II but at lower levels. Finally, Onmy-CD83 gene expression is up-regulated in virus-infected trout, and the promoter is responsive to trout IFN regulatory factor-1. These results suggest that the role of CD83, an adhesion molecule for cell-mediated immunity, has been conserved over 450 million years of vertebrate evolution.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Houalla T, Levine RL. The isolation and culture of microglia-like cells from the goldfish brain. J Neurosci Methods 2003; 131:121-31. [PMID: 14659832 DOI: 10.1016/j.jneumeth.2003.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have developed a method for isolating goldfish microglia. Cells were identified as microglia immunohistochemically with NN-2, a monoclonal antibody (MAb) raised against teleost retinal microglial cells, and by their phagocytic abilities. Morphological characterization of the cells identified round, phase-bright cells as well as flattened macrophage-like cells. Ramified cells were also seen but they were rare. Fusion of macrophage-like cells occurred in high density cultures and resulted in the formation of giant cells that disintegrated a few days later. Immunohistochemical studies demonstrated that virtually all of the cells in our cultures were NN-2+ and did not label with either antiGFAP (an astrocyte marker) or MAb 6D2 (an oligodendrocyte marker). Cells identified as microglia were intensely phagocytic and ingested latex microspheres, DiIAcLDL and goldfish myelin in vitro. In addition, we labelled microglial cells in vivo with intracranial injections of fluorescent dextran and found that microglia isolated from these animals contained the dextran and phagocytosed microspheres. We also studied the effect of myelin on microsphere uptake and compared the effect of myelin and opsonized myelin on the phagocytic activity of the cells. Our results showed a clear increase in the phagocytic activity of microglia when incubated with myelin, with an enhanced effect of opsonized myelin.
Collapse
Affiliation(s)
- T Houalla
- Department of Biology, McGill University, Montréal, Qué, Canada H3A 1B1
| | | |
Collapse
|
12
|
Matsuyama T, Iida T. Tilapia mast cell lysates enhance neutrophil adhesion to cultured vascular endothelial cells. FISH & SHELLFISH IMMUNOLOGY 2002; 13:243-250. [PMID: 12365734 DOI: 10.1006/fsim.2001.0398] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The possible role of fish mast cells in regulating neutrophil adhesion to vascular endothelial cells was studied using primary cultures of tilapia vascular endothelial cells. The endothelial cell monolayer, which was cultured in 96 well plates, was stimulated for appropriate periods with tilapia mast cell (tMC)-lysates or with Leibovitz-15 (L-15) medium, as a control, and peripheral neutrophils were added into each well after removal of the lysates. After 30 min incubation, cells in the wells were fixed with formalin and non-adherent neutrophils were removed. The cells were stained with Giemsa and neutrophil adhesion was observed microscopically. Although some neutrophils attached to the endothelial cells without stimulation, neutrophil adhesion was enhanced after the incubation of the endothelial cells with tMC-lysates. Neutrophil adhesion was maximal 6 h after the lysate stimulation, with a six-fold increase compared to the control. Neutrophil adhesion also increased when the endothelial cells were stimulated with neutrophil lysates, lipopolysaccharide and zymosan-treated tilapia sera. These results indicate that fish vascular endothelial cells express some neutrophil adhesion molecule(s) after stimulation with various substances.
Collapse
Affiliation(s)
- Tomomasa Matsuyama
- Fish Pathology Division, National Research Institute of Aquaculture, Nansei, Mie, Japan.
| | | |
Collapse
|
13
|
Abstract
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management.
Collapse
Affiliation(s)
- M Claire H Holland
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance Laboratories, Philadelphia, PA 19014, USA
| | | |
Collapse
|
14
|
Mulero V, Pelegrín P, Sepulcre MP, Muñoz J, Meseguer J. A fish cell surface receptor defined by a mAb mediates leukocyte aggregation and deactivation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:619-627. [PMID: 11472783 DOI: 10.1016/s0145-305x(01)00025-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cell adhesion molecules play a key role in the inflammatory response. Selectins, integrins and immunoglobulin gene superfamily adhesion receptors mediate the different steps of leukocyte migration from the blood-stream towards inflammatory foci. In addition to their adhesive function, these receptors modulate major cellular processes such as cell activation, growth, differentiation and death. To characterise the fish molecules involved in cell adhesion, a panel of mAbs was raised by immunising mice with macrophages from the marine fish gilthead seabream (Sparus aurata L.). One of these mAbs, which we named anti-Aggregatin, was found to induce a rapid heterotypic aggregation of seabream leukocytes. Anti-Aggregatin defined a 140-kDa cell surface receptor which was highly expressed by macrophages and was up-regulated after co-stimulation with LPS and MAF. Functionally, the cell adhesion which occurred upon exposure to anti-Aggregatin required Ca(2+), an intact cytoskeleton and an active cell metabolism. More importantly, Aggregatin engagement resulted in strong inhibition of the phagocyte respiratory burst, although the cells showed neither loss of viability nor DNA fragmentation. The results are discussed in relation to the potential role of cell adhesion molecules in fish immune responses.
Collapse
Affiliation(s)
- V Mulero
- Department of Cell Biology, Faculty of Biology, University of Murcia, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
15
|
Qian Y, Noya M, Ainsworth AJ. Molecular characterization and leukocyte distribution of a teleost beta1 integrin molecule. Vet Immunol Immunopathol 2000; 76:61-74. [PMID: 10973686 DOI: 10.1016/s0165-2427(00)00200-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The beta1 integrin, in combination with the alpha subunit, is responsible for migration of leukocytes into areas of inflammation. Although identified in mammalian species; the beta1 or CD29 molecule has yet to be identified in fish. The present investigation has identified a full-length channel catfish, Ictalurus punctatus, cDNA beta1 molecule composed of 2786 bases and a deduced amino acid sequence of 797 amino acids. The catfish molecule has an amino acid identity ranging from 71.87 to 74.12% with bovine, feline, human, and Xenopus. The channel catfish molecule retains several characteristics of mammalian beta1 molecules, such as four cysteine-rich repeat regions, and eight potential N-linked glycosylation sites. Based on Western blotting the channel catfish beta1 molecule has a molecular mass of approximately 130kDa, essentially the same as that for mammalian species. These results confirm the existence and expression of a beta1 gene in channel catfish, a species phylogenetically distant from mammals.
Collapse
Affiliation(s)
- Y Qian
- Department of Microbiology and Immunology, CB 7290, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|