1
|
Xu Z, Wu G, Wang B, Zhao Y, Liu F. TrpR-Like Protein PXO_00831, Regulated by the Sigma Factor RpoD, Is Involved in Motility, Oxidative Stress Tolerance, and Virulence in Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2023; 113:170-182. [PMID: 36095334 DOI: 10.1094/phyto-05-22-0165-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium that causes bacterial leaf blight in rice. In this study, we identified a putative TrpR-like protein, PXO_TrpR (PXO_00831), in Xoo. This protein contains a tryptophan (Trp) repressor domain and is highly conserved in Xanthomonas. Auxotrophic assays and RT-qPCR confirmed that PXO_TrpR acts as a Trp repressor, negatively regulating the expression of Trp biosynthesis genes. Pathogenicity tests showed that PXO_trpR knockout in Xoo significantly reduced lesion development and disease symptoms in the leaves of susceptible rice. RNA-seq analysis and phenotypic tests revealed that the PXO_trpR mutant exhibited impaired cell motility and was more sensitive to H2O2 oxidative stress than the wild-type strain. Furthermore, we found that the sigma 70 factor RpoD controlled the transcription of PXO_trpR by directly binding to its promoter region. This study demonstrates the biological function and transcriptional mechanism of PXO_TrpR as a Trp repressor in Xoo and evaluates its novel pathogenic roles by regulating flagellar motility and the oxidative stress response.
Collapse
Affiliation(s)
- Zhizhou Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guichun Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| |
Collapse
|
2
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
3
|
Shao X, Tan M, Xie Y, Yao C, Wang T, Huang H, Zhang Y, Ding Y, Liu J, Han L, Hua C, Wang X, Deng X. Integrated regulatory network in Pseudomonas syringae reveals dynamics of virulence. Cell Rep 2021; 34:108920. [PMID: 33789108 DOI: 10.1016/j.celrep.2021.108920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas syringae, a Gram-negative plant pathogen, expresses multitudinous transcriptional regulators to control the type III secretion system (T3SS) and response to diverse environmental challenges. Although the mechanisms of virulence-associated regulators of P. syringae have been studied for decades, the overall crosstalk underlying these regulators is still elusive. Here, we identify five T3SS regulators (EnvZ-OmpR, CbrAB2, PhoPQ, PilRS, and MgrA), and find that the two-component systems EnvZ-OmpR and CbrAB2 negatively regulate the T3SS. To elucidate crosstalk between 16 virulence-associated regulators in P. syringae, we map an online intricate network called "PSRnet" (Pseudomonas syringae regulatory network) by combining the differentially expressed genes (DEGs) of these 16 regulators by RNA sequencing (RNA-seq) and their binding loci by chromatin immunoprecipitation sequencing (ChIP-seq). Consequently, we identify 238 and 153 functional genes involved in the T3SS and other virulence-related pathways in KB and MM media, respectively. Our results provide insights into the mechanism of plant infections caused by P. syringae.
Collapse
Affiliation(s)
- Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Miaomiao Tan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chunyan Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yingchao Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Liangliang Han
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
4
|
Liu J, Yu M, Ge Y, Tian Y, Hu B, Zhao Y. The RsmA RNA-Binding Proteins in Pseudomonas syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:637595. [PMID: 33719314 PMCID: PMC7952654 DOI: 10.3389/fpls.2021.637595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The post-transcriptional regulator RsmA globally controls gene expression in bacteria. Previous studies showed that RsmA2 and RsmA3 played critical roles in regulating type III secretion system (T3SS), motility, syringafactin, and alginate productions in Pseudomonas syringae pv. tomato strain DC3000 (PstDC3000). In this study, we investigated global gene expression profiles of the wild-type PstDC3000, the rsmA3 mutant, and the rsmA2/A3 double mutant in the hrp-inducing minimum medium (HMM) and King's B (KB) medium. By comparing the rsmA2/A3 and rsmA3 mutants to PstDC3000, a total of 1358 and 1074 differentially expressed genes (DEGs) in HMM, and 870 and 1463 DEGs in KB were uncovered, respectively. When comparing the rsmA2/A3 mutant with the rsmA3 mutant, 277 and 741 DEGs in HMM and KB, respectively, were revealed. Transcriptomic analysis revealed that the rsmY, rsmZ, and rsmX1-5 non-coding small RNAs (ncsRNAs) were positively affected by RsmA2 and RsmA3, while RsmA3 positively regulates the expression of the rsmA2 gene and negatively regulates both rsmA1 and rsmA5 gene expression. Comparative transcriptomic analysis showed that RsmA2 and RsmA3 synergistically influenced the expression of genes involved in T3SS and alginate biosynthesis in HMM and chemotaxis in KB. RsmA2 and RsmA3 inversely affected genes involved in syringafactin production in HMM and ribosomal protein biosynthesis in KB. In addition, RsmA2 played a major role in influencing genes involved in sarcosine and thiamine biosynthesis in HMM and in mannitol and phosphate metabolism in KB. On the other hand, genes involved in fatty acid metabolism, cellulose biosynthesis, signal transduction, and stress responses were mainly impacted by RsmA3 in both HMM and KB; whereas RsmA3 played a major role in controlling genes involved in c-di-GMP, phosphate metabolism, chemotaxis, and capsular polysaccharide in HMM. Furthermore, regulation of syringafactin production and oxidative stress by RsmA2 and RsmA3 was experimentally verified. Our results suggested the potential interplay among the RsmA proteins, which exhibit distinct and overlapping roles in modulating virulence and survival in P. syringae under different nutritional conditions.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Mahmud AKMF, Nilsson K, Fahlgren A, Navais R, Choudhury R, Avican K, Fällman M. Genome-Scale Mapping Reveals Complex Regulatory Activities of RpoN in Yersinia pseudotuberculosis. mSystems 2020; 5:e01006-20. [PMID: 33172972 PMCID: PMC7657599 DOI: 10.1128/msystems.01006-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022] Open
Abstract
RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand.IMPORTANCE The alternative sigma factor RpoN (σ54), which is widely distributed in eubacteria, has been implicated in controlling gene expression of importance for numerous functions including virulence. Proper responses to host environments are crucial for bacteria to establish infection, and regulatory mechanisms involved are therefore of high interest for development of future therapeutics. Little is known about the function of RpoN in the intestinal pathogen Y. pseudotuberculosis, and we therefore investigated its regulatory role in this pathogen. This regulator was indeed found to be critical for establishment of infection in mice, likely involving its requirement for motility and biofilm formation. The RpoN regulon involved both activating and suppressive effects on gene expression which could be confirmed with mutagenesis of identified binding sites. This is the first study of its kind of RpoN in Y. pseudotuberculosis, revealing complex regulation of gene expression involving both productive and silent effects of its binding to DNA, providing important information about RpoN regulation in enterobacteria.
Collapse
Affiliation(s)
- A K M Firoj Mahmud
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Kristina Nilsson
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Anna Fahlgren
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Roberto Navais
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Rajdeep Choudhury
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Kemal Avican
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Maria Fällman
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
He Y, Yu S, Liu S, Tian H, Yu C, Tan W, Zhang J, Li Z, Jiang F, Duan L. Data-Independent Acquisition Proteomics Unravels the Effects of Iron Ions on Coronatine Synthesis in Pseudomonas syringae pv. tomato DC3000. Front Microbiol 2020; 11:1362. [PMID: 32793123 PMCID: PMC7385143 DOI: 10.3389/fmicb.2020.01362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/27/2020] [Indexed: 12/03/2022] Open
Abstract
Coronatine (COR) is a new type of plant growth regulator that is produced by Pseudomonas syringae pathovars and plays an important role in modulating plant growth, development, and tolerance to multiple stresses. However, the factors affecting COR production are not very clear. In this study, the effects of FeCl3 on COR production were researched. The data-independent acquisition (DIA) approach, which is a proteomic quantitative analysis method, was applied to quantitatively trace COR production and proteomic changes in P. syringae pv. tomato DC3000 under different FeCl3 culture conditions. The results showed that COR production increased with the addition of FeCl3 and that there was significant upregulation in the expression of proteins related to COR synthesis and regulation. In addition, FeCl3 also affected the expression of related proteins involved in various metabolic pathways such as glycolysis and the tricarboxylic acid cycle. Moreover, various precursors such as isoleucine and succinate semialdehyde, as well as other related proteins involved in the COR synthesis pathway, were significantly differentially expressed. Our findings revealed the dynamic regulation of COR production in response to FeCl3 at the protein level and showed the potential of using the DIA method to track the dynamic changes of the P. syringae pv. tomato DC3000 proteome during COR production, providing an important reference for future research on the regulatory mechanism of COR biosynthesis and theoretical support for COR fermentation production.
Collapse
Affiliation(s)
- Yan He
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Sha Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shaojin Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hao Tian
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chunxin Yu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiming Tan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Feng Jiang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Horticulture, China Agricultural University, Beijing, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Yu C, Nguyen DP, Ren Z, Liu J, Yang F, Tian F, Fan S, Chen H. The RpoN2-PilRX regulatory system governs type IV pilus gene transcription and is required for bacterial motility and virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:652-666. [PMID: 32112711 PMCID: PMC7170775 DOI: 10.1111/mpp.12920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
The type IV pilus (T4P), a special class of bacterial surface filament, plays crucial roles in surface adhesion, motility, biofilm formation, and virulence in pathogenic bacteria. However, the regulatory mechanism of T4P and its relationship to bacterial virulence are still little understood in Xanthomonas oryzae pv. oryzae (Xoo), the causal pathogen of bacterial blight of rice. Our previous studies showed that the σ54 factor RpoN2 regulated bacterial virulence on rice in a flagellum-independent manner in Xoo. In this study, both yeast two-hybrid and pull-down assays revealed that RpoN2 directly and specifically interacted with PilRX, a homolog of the response regulator PilR of the two-component system PilS-PilR in the pilus gene cluster. Genomic sequence and reverse transcription PCR (RT-PCR) analysis showed 13 regulons containing 25 genes encoding T4P structural components and putative regulators. A consensus RpoN2-binding sequence GGN10 GC was identified in the promoter sequences of most T4P gene transcriptional units. Electrophoretic mobility shift assays confirmed the direct binding of RpoN2 to the promoter of the major pilin gene pilAX, the inner membrane platform protein gene pilCX, and pilRX. Promoter activity and quantitative RT-PCR assays demonstrated direct and indirect transcriptional regulation by RpoN2 of the T4P genes. In addition, individual deletions of pilAX, pilCX, and pilRX resulted in significantly reduced twitching and swimming motility, biofilm formation, and virulence in rice. Taken together, the findings from the current study suggest that the RpoN2-PilRX regulatory system controls bacterial motility and virulence by regulating T4P gene transcription in Xoo.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Doan-Phuong Nguyen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhaoyu Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied MicrobiologyEcology InstituteQilu University of Technology (Shandong Academy of Sciences)Ji’nanChina
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Liu J, Yu M, Chatnaparat T, Lee JH, Tian Y, Hu B, Zhao Y. Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 2020; 21:296. [PMID: 32272893 PMCID: PMC7146990 DOI: 10.1186/s12864-020-6701-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae. RESULTS In this study, we investigated global gene expression profiles of PstDC3000 and PssB728a and their corresponding (p)ppGpp0 mutants in hrp-inducing minimal medium (HMM) using RNA-seq. A total of 1886 and 1562 differentially expressed genes (DEGs) were uncovered between the (p)ppGpp0 mutants and the wild-type in PstDC3000 and PssB728a, respectively. Comparative transcriptomics identified 1613 common DEGs, as well as 444 and 293 unique DEGs in PstDC3000 and PssB728a, respectively. Functional cluster analysis revealed that (p) ppGpp positively regulated a variety of virulence-associated genes, including type III secretion system (T3SS), type VI secretion system (T6SS), cell motility, cell division, and alginate biosynthesis, while negatively regulated multiple basic physiological processes, including DNA replication, RNA processes, nucleotide biosynthesis, fatty acid metabolism, ribosome protein biosynthesis, and amino acid metabolism in both PstDC3000 and PssB728a. Furthermore, (p) ppGpp had divergent effects on other processes in PstDC3000 and PssB728a, including phytotoxin, nitrogen regulation and general secretion pathway (GSP). CONCLUSION In this study, comparative transcriptomic analysis reveals common regulatory networks in both PstDC3000 and PssB728a mediated by (p) ppGpp in HMM. In both P. syringae systems, (p) ppGpp re-allocate cellular resources by suppressing multiple basic physiological activities and enhancing virulence gene expression, suggesting a balance between growth, survival and virulence. Our research is important in that due to similar global gene expression mediated by (p) ppGpp in both PstDC3000 and PssB728a, it is reasonable to propose that (p) ppGpp could be used as a target to develop novel control measures to fight against important plant bacterial diseases.
Collapse
Affiliation(s)
- Jun Liu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Yanli Tian
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Baishi Hu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The Stringent Response Mediated by (p)ppGpp Is Required for Virulence of Pseudomonas syringae pv. tomato and Its Survival on Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:776-789. [PMID: 25675257 DOI: 10.1094/mpmi-11-14-0378-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Pseudomonas syringae pv. tomato DC3000 (DC3000). In this study, the role of the second messenger (p)ppGpp on virulence and survival of DC3000 was investigated. Results have demonstrated that (p)ppGpp-deficient mutant (ppGpp(0)) of DC3000 exhibited lower levels of expression of the T3SS and genes of other virulence traits, such as coronatine toxin. The ppGpp(0) mutant of DC3000 was greatly impaired in causing disease and in growth in planta. Furthermore, (p)ppGpp was required for swarming motility, pyoverdine production, the oxidative stress response, as well as γ-amino butyric acid utilization. Screening of amino acids, major signals in activation of ppGpp biosynthesis, revealed that promoter activities of the avrPto gene could be either activated or suppressed by various amino acids in a ppGpp-dependent or -independent manner. Moreover, the ppGpp(0) mutant exhibited increased cell size and decreased survival on plant surfaces. Altogether, these findings indicate that ppGpp acts as an internal signal that regulates the T3SS as well as other virulence factors in pseudomonads and suggest that bacterial pathogens utilize intracellular messengers to sense environmental and nutritional signals for rapid, precise, and reversible control of their pathogenesis and survival.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- 1 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Zhong Li
- 2 Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at-Urbana-Champaign
| | - Schuyler S Korban
- 3 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign
- 4 Department of Biology, University of Massachusetts Boston, Boston, MA 02125, U.S.A
| | - Youfu Zhao
- 1 Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
10
|
Chatnaparat T, Li Z, Korban SS, Zhao Y. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ Microbiol 2015; 17:4253-70. [PMID: 25626964 DOI: 10.1111/1462-2920.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/29/2014] [Accepted: 12/06/2014] [Indexed: 11/29/2022]
Abstract
The stringent response, mediated by second messenger (p)ppGpp, results in swift and massive transcriptional reprogramming under nutrient limited conditions. In this study, the role of (p)ppGpp on virulence of Pseudomonas syringae pv. syringae B728a (PssB728a) was investigated. The virulence of the relA/spoT (ppGpp(0) ) double mutant was completely impaired on bean, and bacterial growth was significantly reduced, suggesting that (p)ppGpp is required for full virulence of P. syringae. Expression of T3SS and other virulence genes was reduced in ppGpp(0) mutants. In addition, ppGpp deficiency resulted in loss of swarming motility, reduction of pyoverdine production, increased sensitivity to oxidative stress and antibiotic tolerance, as well as reduced ability to utilize γ-amino butyric acid. Increased levels of ppGpp resulted in reduced cell size of PssB728a when grown in a minimal medium and on plant surfaces, while most ppGpp(0) mutant cells were not viable on plant surfaces 24 h after spray inoculation, suggesting that ppGpp-mediated stringent response temporarily limits cell growth, and might control cell survival on plants by limiting their growth. These results demonstrated that ppGpp-mediated stringent response plays a central role in P. syringae virulence and survival and indicated that ppGpp serves as a global signal for regulating various virulence traits in PssB728a.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhong Li
- Metabolomics Center, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization. mBio 2014; 5:e01683-14. [PMID: 25182327 PMCID: PMC4173789 DOI: 10.1128/mbio.01683-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The plant pathogen Pseudomonas syringae pv. syringae B728a grows and survives on leaf surfaces and in the leaf apoplast of its host, bean (Phaseolus vulgaris). To understand the contribution of distinct regulators to B728a fitness and pathogenicity, we performed a transcriptome analysis of strain B728a and nine regulatory mutants recovered from the surfaces and interior of leaves and exposed to environmental stresses in culture. The quorum-sensing regulators AhlR and AefR influenced few genes in planta or in vitro. In contrast, GacS and a downstream regulator, SalA, formed a large regulatory network that included a branch that regulated diverse traits and was independent of plant-specific environmental signals and a plant signal-dependent branch that positively regulated secondary metabolite genes and negatively regulated the type III secretion system. SalA functioned as a central regulator of iron status based on its reciprocal regulation of pyoverdine and achromobactin genes and also sulfur uptake, suggesting a role in the iron-sulfur balance. RetS functioned almost exclusively to repress secondary metabolite genes when the cells were not on leaves. Among the sigma factors examined, AlgU influenced many more genes than RpoS, and most AlgU-regulated genes depended on RpoN. RpoN differentially impacted many AlgU- and GacS-activated genes in cells recovered from apoplastic versus epiphytic sites, suggesting differences in environmental signals or bacterial stress status in these two habitats. Collectively, our findings illustrate a central role for GacS, SalA, RpoN, and AlgU in global regulation in B728a in planta and a high level of plasticity in these regulators’ responses to distinct environmental signals. Leaves harbor abundant microorganisms, all of which must withstand challenges such as active plant defenses and a highly dynamic environment. Some of these microbes can influence plant health. Despite knowledge of individual regulators that affect the fitness or pathogenicity of foliar pathogens, our understanding of the relative importance of various global regulators to leaf colonization is limited. Pseudomonas syringae strain B728a is a plant pathogen and a good colonist of both the surfaces and interior of leaves. This study used global transcript profiles of strain B728a to investigate the complex regulatory network of putative quorum-sensing regulators, two-component regulators, and sigma factors in cells colonizing the leaf surface and leaf interior under stressful in vitro conditions. The results highlighted the value of evaluating these networks in planta due to the impact of leaf-specific environmental signals and suggested signal differences that may enable cells to differentiate surface versus interior leaf habitats.
Collapse
|
12
|
Ancona V, Li W, Zhao Y. Alternative sigma factor RpoN and its modulation protein YhbH are indispensable for Erwinia amylovora virulence. MOLECULAR PLANT PATHOLOGY 2014; 15:58-66. [PMID: 23937726 PMCID: PMC6638869 DOI: 10.1111/mpp.12065] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In Erwinia amylovora, ECF (extracytoplasmic functions) alternative sigma factor HrpL regulates the transcription of hrp (hypersensitive response and pathogenicity)-type III secretion system (T3SS) genes by binding to a consensus sequence known as the hrp box in hrp gene promoters. In turn, the expression of hrpL has been proposed to be positively controlled by alternative sigma factor 54 (σ(54)) (RpoN) and HrpS, a member of the σ(54) enhancer-binding proteins (EBPs). However, the function of RpoN has not been characterized genetically in E. amylovora. In this study, we investigated the role of RpoN, a nitrogen limitation sigma factor, and its modulation protein YhbH, a novel ribosome-associated protein, in E. amylovora virulence. Our results showed that mutations in hrpS, hrpL, rpoN and yhbH, but not yfiA and rmf3, resulted in a nonpathogenic phenotype on immature pear fruits and apple shoots. Consistently, the expression of T3SS genes, including hrpL, dspE, hrpN and hrpA, was barely detected in hrpS, hrpL, rpoN and yhbH mutants. These mutants were also not capable of eliciting a hypersensitive response (HR) on tobacco; however, the overexpression of hrpL using an inducible promoter rescued the HR-eliciting abilities of these mutants. These results suggest that a sigma factor cascade exists in the regulatory networks of E. amylovora and regulates important virulence factors. On the basis of this study and previously reported data, a model is proposed for the regulation of T3SS in E. amylovora.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
13
|
Ramos LS, Lehman BL, Sinn JP, Pfeufer EE, Halbrendt NO, McNellis TW. The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple. MOLECULAR PLANT PATHOLOGY 2013; 14:838-43. [PMID: 23721085 PMCID: PMC6638816 DOI: 10.1111/mpp.12045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RpoN is a σ(54) factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild-type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)-inducing liquid medium. A plasmid-borne copy of the wild-type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum.
Collapse
Affiliation(s)
- Laura S Ramos
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
14
|
Miyata ST, Bachmann V, Pukatzki S. Type VI secretion system regulation as a consequence of evolutionary pressure. J Med Microbiol 2013; 62:663-676. [PMID: 23429693 DOI: 10.1099/jmm.0.053983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The type VI secretion system (T6SS) is a mechanism evolved by Gram-negative bacteria to negotiate interactions with eukaryotic and prokaryotic competitors. T6SSs are encoded by a diverse array of bacteria and include plant, animal, human and fish pathogens, as well as environmental isolates. As such, the regulatory mechanisms governing T6SS gene expression vary widely from species to species, and even from strain to strain within a given species. This review concentrates on the four bacterial genera that the majority of recent T6SS regulatory studies have been focused on: Vibrio, Pseudomonas, Burkholderia and Edwardsiella.
Collapse
Affiliation(s)
- Sarah T Miyata
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, 6-22 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
15
|
Regulation of type VI secretion gene clusters by sigma54 and cognate enhancer binding proteins. J Bacteriol 2011; 193:2158-67. [PMID: 21378190 DOI: 10.1128/jb.00029-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type VI secretion systems (T6SS) are bacteriophage-derived macromolecular machines responsible for the release of at least two proteins in the milieu, which are thought to form an extracellular appendage. Although several T6SS have been shown to be involved in the virulence of animal and plant pathogens, clusters encoding these machines are found in the genomes of most species of gram-negative bacteria, including soil, marine, and environmental isolates. T6SS have been associated with several phenotypes, ranging from virulence to biofilm formation or stress sensing. Their various environmental niches and large diversity of functions are correlated with their broad variety of regulatory mechanisms. Using a bioinformatic approach, we identified several clusters, including those of Vibrio cholerae, Aeromonas hydrophila, Pectobacterium atrosepticum, Pseudomonas aeruginosa, Pseudomonas syringae pv. tomato, and a Marinomonas sp., which possess typical -24/-12 sequences, recognized by the alternate sigma factor sigma 54 (σ(54) or σ(N)). σ(54), which directs the RNA polymerase to these promoters, requires the action of a bacterial enhancer binding protein (bEBP), which binds to cis-acting upstream activating sequences. Putative bEBPs are encoded within the T6SS gene clusters possessing σ(54) boxes. Using in vitro binding experiments and in vivo reporter fusion assays, we showed that the expression of these clusters is dependent on both σ(54) and bEBPs.
Collapse
|
16
|
Effects of dapA gene deletion on coronatine biosynthesis in Pseudomonas syringae pv. glycinea PG4180. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-010-0462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Qi M, Wang D, Bradley CA, Zhao Y. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads. PLoS One 2011; 6:e16451. [PMID: 21304594 PMCID: PMC3029378 DOI: 10.1371/journal.pone.0016451] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/16/2010] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight, caused by Pseudomonas savastanoi pv. glycinea (Psg), is a common disease of soybean. In an effort to compare a current field isolate with one isolated in the early 1960s, the genomes of two Psg strains, race 4 and B076, were sequenced using 454 pyrosequencing. The genomes of both Psg strains share more than 4,900 highly conserved genes, indicating very low genetic diversity between Psg genomes. Though conserved, genome rearrangements and recombination events occur commonly within the two Psg genomes. When compared to each other, 437 and 163 specific genes were identified in B076 and race 4, respectively. Most specific genes are plasmid-borne, indicating that acquisition and maintenance of plasmids may represent a major mechanism to change the genetic composition of the genome and even acquire new virulence factors. Type three secretion gene clusters of Psg strains are near identical with that of P. savastanoi pv. phaseolicola (Pph) strain 1448A and they shared 20 common effector genes. Furthermore, the coronatine biosynthetic cluster is present on a large plasmid in strain B076, but not in race 4. In silico subtractive hybridization-based comparative genomic analyses with nine sequenced phytopathogenic pseudomonads identified dozens of specific islands (SIs), and revealed that the genomes of Psg strains are more similar to those belonging to the same genomospecies such as Pph 1448A than to other phytopathogenic pseudomonads. The number of highly conserved genes (core genome) among them decreased dramatically when more genomes were included in the subtraction, suggesting the diversification of pseudomonads, and further indicating the genome heterogeneity among pseudomonads. However, the number of specific genes did not change significantly, suggesting these genes are indeed specific in Psg genomes. These results reinforce the idea of a species complex of P. syringae and support the reclassification of P. syringae into different species.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Dongping Wang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Carl A. Bradley
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
18
|
Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 2010; 192:2359-72. [PMID: 20190049 DOI: 10.1128/jb.01445-09] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To fully understand how bacteria respond to their environment, it is essential to assess genome-wide transcriptional activity. New high-throughput sequencing technologies make it possible to query the transcriptome of an organism in an efficient unbiased manner. We applied a strand-specific method to sequence bacterial transcripts using Illumina's high-throughput sequencing technology. The resulting sequences were used to construct genome-wide transcriptional profiles. Novel bioinformatics analyses were developed and used in combination with proteomics data for the qualitative classification of transcriptional activity in defined regions. As expected, most transcriptional activity was consistent with predictions from the genome annotation. Importantly, we identified and confirmed transcriptional activity in areas of the genome inconsistent with the annotation and in unannotated regions. Further analyses revealed potential RpoN-dependent promoter sequences upstream of several noncoding RNAs (ncRNAs), suggesting a role for these ncRNAs in RpoN-dependent phenotypes. We were also able to validate a number of transcriptional start sites, many of which were consistent with predicted promoter motifs. Overall, our approach provides an efficient way to survey global transcriptional activity in bacteria and enables rapid discovery of specific areas in the genome that merit further investigation.
Collapse
|
19
|
Coronatine Gene Expression In Vitro and In Planta, and Protein Accumulation During Temperature Downshift in Pseudomonas syringae. SENSORS 2009; 9:4272-85. [PMID: 22408526 PMCID: PMC3291911 DOI: 10.3390/s90604272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/30/2022]
Abstract
The plant pathogenic bacterium Pseudomonas syringae PG4180 synthesizes high levels of the phytotoxin coronatine (COR) at the virulence-promoting temperature of 18 °C, but negligible amounts at 28 °C. Temperature-dependent COR gene expression is regulated by a modified two-component system, consisting of a response regulator, CorR, the histidine protein kinase CorS, and a third component, termed CorP. We analyzed at transcriptional and translational levels the expression of corS and the cma operon involved in COR biosynthesis after a temperature downshift from 28 to 18 °C. Expression of cma was induced within 20 min and increased steadily whereas corS expression was only slightly temperature-dependent. Accumulation of CmaB correlated with accumulation of cma mRNA. However, cma transcription was suppressed by inhibition of de novo protein biosynthesis. A transcriptional fusion of the cma promoter to a promoterless egfp gene was used to monitor the cma expression in vitro and in planta. A steady induction of cma::egfp by temperature downshift was observed in both environments. The results indicate that PG4180 responds to a temperature decrease with COR gene expression. However, COR gene expression and protein biosynthesis increased steadily, possibly reflecting adaptation to long-term rather than rapid temperature changes.
Collapse
|
20
|
Braun Y, Smirnova AV, Schenk A, Weingart H, Burau C, Muskhelishvili G, Ullrich MS. Component and protein domain exchange analysis of a thermoresponsive, two-component regulatory system of Pseudomonas syringae. MICROBIOLOGY-SGM 2008; 154:2700-2708. [PMID: 18757803 DOI: 10.1099/mic.0.2008/018820-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two closely related phytopathogenic bacterial strains, Pseudomonas syringae pv. glycinea PG4180 and P. syringae pv. tomato DC3000, produce the chlorosis-inducing phytotoxin coronatine (COR) in a remarkably divergent manner. PG4180 produces COR at the virulence-promoting temperature of 18 degrees C, but not at 28 degrees C. In contrast, temperature has no effect on COR synthesis in DC3000. A modified two-component system consisting of the histidine protein kinase (HPK), CorS, the response regulator (RR), CorR, and a third component, CorP, governs COR biosynthesis in both strains. A plasmid-based component and domain swapping approach was used to introduce different combinations of RRs, HPKs and hybrid HPKs into corS mutants of both strains. Subsequently, expression levels of the COR biosynthetic cma operon were determined using RNA dot-blot analysis, suggesting that CorRSP of PG4180 mediates a thermoresponsive phenotype dependent on the genomic background of each strain. The reciprocal experiment demonstrated a loss of temperature dependence in the corS mutant of PG4180. The presence of corR from PG4180 led to more pronounced cma expression in DC3000 and was associated with thermoresponsiveness, while corS of PG4180 did not mediate a temperature-dependent phenotype in the DC3000 mutant containing native corR and corP. These findings were substantiated by RT-PCR experiments. The C-terminal domain of CorS of PG4180 mediated thermosensing, while the N terminus did not respond to temperature changes, suggesting cytosolic perception of the temperature signal.
Collapse
Affiliation(s)
- Yvonne Braun
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Angela V Smirnova
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Alexander Schenk
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Helge Weingart
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Claudia Burau
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Georgi Muskhelishvili
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias S Ullrich
- Jacobs University Bremen, School of Engineering and Science, Research II, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
21
|
Jones J, Studholme DJ, Knight CG, Preston GM. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. Environ Microbiol 2007; 9:3046-64. [DOI: 10.1111/j.1462-2920.2007.01416.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Wang N, Lu SE, Records AR, Gross DC. Characterization of the transcriptional activators SalA and SyrF, Which are required for syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae. J Bacteriol 2006; 188:3290-8. [PMID: 16621822 PMCID: PMC1447436 DOI: 10.1128/jb.188.9.3290-3298.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 02/13/2006] [Indexed: 11/20/2022] Open
Abstract
Production of the phytotoxins syringomycin and syringopeptin by Pseudomonas syringae pv. syringae is controlled by the regulatory genes salA and syrF. Analysis with 70-mer oligonucleotide microarrays established that the syr-syp genes responsible for synthesis and secretion of syringomycin and syringopeptin belong to the SyrF regulon. Vector pMEKm12 was successfully used to express both SalA and SyrF proteins fused to a maltose-binding protein (MBP) in Escherichia coli and P. syringae pv. syringae. Both the MBP-SalA and MBP-SyrF fusion proteins were purified by maltose affinity chromatography. Gel shift analysis revealed that the purified MBP-SyrF, but not the MBP-SalA fusion protein, bound to a 262-bp fragment of the syrB1 promoter region containing the syr-syp box. Purified MBP-SalA caused a shift of a 324-bp band containing the putative syrF promoter. Gel filtration analysis and cross-linking experiments indicated that both SalA and SyrF form homodimers in vitro. Overexpression of the N-terminal regions of SalA and SyrF resulted in decreased syringomycin production by strain B301D and reduced levels of beta-glucuronidase activities of the sypA::uidA and syrB1::uidA reporters by 59% to 74%. The effect of SalA on the expression of the syr-syp genes is mediated by SyrF, which activates the syr-syp genes by directly binding to the promoter regions. Both SalA and SyrF resemble other LuxR family proteins in dimerization and interaction with promoter regions of target genes.
Collapse
Affiliation(s)
- Nian Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
23
|
Wang N, Lu SE, Wang J, Chen ZJ, Gross DC. The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:257-69. [PMID: 16570656 DOI: 10.1094/mpmi-19-0257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Specific plant signal molecules are known to induce syringomycin production and expression of syrB1, a syringomycin synthetase gene, in Pseudomonas syringae pv. syringae. This report demonstrates that syringopeptin production likewise is activated by plant signal molecules and that the GacS, SalA, and SyrF regulatory pathway mediates transmission of plant signal molecules to the syr-syp biosynthesis apparatus. Syringopeptin production by BR132 was increased two-fold by addition of arbutin (100 microM) and D-fructose (0.1%) to syringomycin minimal medium (SRM). Among 10 plant phenolic compounds tested, only the phenolic glucosides arbutin, salicin, and phenyl-beta-D-glucopyranoside induced substantially the beta-glucuronidase (GUS) activity of a sypA::uidA reporter from 242 U per 10(8) CFU without plant signal molecules up to 419 U per 10(8) CFU with plant signal molecules. Syringopeptin production was found to be controlled by the SalA/SyrF regulon because no toxin was detected from cultures of B301DSL7 (i.e., salA mutant) and B301DSL1 (i.e., syrF mutant), and the expression of sypA::uidA was decreased approximately 99 and 94% in salA (B301DSL30) and syrF (B301DNW31) mutant backgrounds, respectively. Subgenomic analysis of transcriptional expression with a 70-mer oligonucleotide microarray demonstrated that the syr-syp genes are induced 2.5- to 10.5-fold by addition of arbutin and D-fructose to SRM. This study establishes that plant signal molecules are transmitted through the GacS, SalA/SyrF pathway to activate the coordinated transcriptional expression of the syr-syp genes.
Collapse
Affiliation(s)
- Nian Wang
- Department of Plant Pathology and Microbiology and 2Department of Soil and Crop Sciences, Texas A&M University, College Station 77843, USA
| | | | | | | | | |
Collapse
|
24
|
Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 2005; 69:527-43. [PMID: 16339734 PMCID: PMC1306804 DOI: 10.1128/mmbr.69.4.527-543.2005] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sigma factors provide promoter recognition specificity to RNA polymerase holoenzyme, contribute to DNA strand separation, and then dissociate from the core enzyme following transcription initiation. As the regulon of a single sigma factor can be composed of hundreds of genes, sigma factors can provide effective mechanisms for simultaneously regulating expression of large numbers of prokaryotic genes. One newly emerging field is identification of the specific roles of alternative sigma factors in regulating expression of virulence genes and virulence-associated genes in bacterial pathogens. Virulence genes encode proteins whose functions are essential for the bacterium to effectively establish an infection in a host organism. In contrast, virulence-associated genes can contribute to bacterial survival in the environment and therefore may enhance the capacity of the bacterium to spread to new individuals or to survive passage through a host organism. As alternative sigma factors have been shown to regulate expression of both virulence and virulence-associated genes, these proteins can contribute both directly and indirectly to bacterial virulence. Sigma factors are classified into two structurally unrelated families, the sigma70 and the sigma54 families. The sigma70 family includes primary sigma factors (e.g., Bacillus subtilis sigma(A)) as well as related alternative sigma factors; sigma54 forms a distinct subfamily of sigma factors referred to as sigma(N) in almost all species for which these proteins have been characterized to date. We present several examples of alternative sigma factors that have been shown to contribute to virulence in at least one organism. For each sigma factor, when applicable, examples are drawn from multiple species.
Collapse
Affiliation(s)
- Mark J Kazmierczak
- Department of Food Science, Cornell University, 414 Stocking Hall, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
25
|
Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbølle KB, Schnider-Keel U, Maurhofer M, Keel C. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:260-272. [PMID: 15782640 DOI: 10.1094/mpmi-18-0260] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.
Collapse
Affiliation(s)
- Maria Péchy-Tarr
- Department de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Peñaloza-Vázquez A, Fakhr MK, Bailey AM, Bender CL. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae. MICROBIOLOGY-SGM 2004; 150:2727-2737. [PMID: 15289569 DOI: 10.1099/mic.0.27199-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa, the response regulator AlgR (AlgR1) is required for transcription of algC and algD, which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD. Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and sigma(54), the alternative sigma factor encoded by rpoN. The algC promoter from P. syringae FF5 (PsalgC) was cloned upstream of a promoterless glucuronidase gene (uidA), and the PsalgC-uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 (algR mutant of P. syringae FF5) and PG4180.K2 (rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC-uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and sigma(54) are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP-AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syringae FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of algR is required for systemic movement.
Collapse
Affiliation(s)
| | - Mohamed K Fakhr
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ana M Bailey
- Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico
| | - Carol L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
27
|
Smirnova AV, Ullrich MS. Topological and deletion analysis of CorS, a Pseudomonas syringae sensor kinase. Microbiology (Reading) 2004; 150:2715-2726. [PMID: 15289568 DOI: 10.1099/mic.0.27028-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A modified two-component regulatory system consisting of two response regulators, CorR and CorP, and the histidine protein kinase CorS, regulates the thermoresponsive production of the phytotoxin coronatine (COR) in Pseudomonas syringae PG4180. COR is produced at the virulence-promoting temperature of 18 °C, but not at 28 °C, the optimal growth temperature of PG4180. Assuming that the highly hydrophobic N-terminus of CorS might be involved in temperature-signal perception, the membrane topology of CorS was determined using translational phoA and lacZ fusions, leading to a topological model for CorS with six transmembrane domains (TMDs). Interestingly, three PhoA fusions located downstream of the sixth TMD showed a thermoresponsive phenotype. Enzymic activity, immunoblot, and protease-sensitivity assays were performed to localize the CorS derivatives, to analyse the expression level of hybrid proteins and to examine the model. In-frame deletions of the last four, or all six TMDs gave rise to non-functional CorS. The results indicated that the transmembrane region is important for CorS to function as a temperature sensor, and that the membrane topology of CorS might be involved in signal perception.
Collapse
Affiliation(s)
- Angela V Smirnova
- International University Bremen, School of Engineering and Sciences, Research II, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias S Ullrich
- International University Bremen, School of Engineering and Sciences, Research II, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|