1
|
Zbären GA, Kapur M, Meissner SN, Wenderoth N. Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network. Brain Struct Funct 2024; 229:1605-1615. [PMID: 38914897 PMCID: PMC11374914 DOI: 10.1007/s00429-024-02815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.
Collapse
Affiliation(s)
- Gabrielle Aude Zbären
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland.
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, ETH Zurich, Zurich, Switzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
2
|
Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased Functional Connectivity Between the Parietal and Occipital Modules Among Flight Cadets. Aerosp Med Hum Perform 2024; 95:375-380. [PMID: 38915163 DOI: 10.3357/amhp.6370.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Modular organization in brain regions often performs specific biological functions and is largely based on anatomically and/or functionally related brain areas. The current study aimed to explore changes in whole-brain modular organization affected by flight training.METHODS: The study included 25 male flight cadets and 24 male controls. The first assessment was performed in 2019, when the subjects were university freshmen. The second assessment was completed in 2022. High spatial resolution structural imaging (T1) and resting-state functional MRI data were collected. Then, 90 cerebral regions were organized into 6 brain modules. The intensity of intra- and intermodular communication was calculated.RESULTS: Mixed-effect regression model analysis identified significantly increased interconnections between the parietal and occipital modules in the cadet group, but significantly decreased interconnections in the control group. This change was largely attributed to flight training.DISCUSSION: Pilots need to control the aircraft (e.g., attitude, heading, etc.) using the stick and pedal in response to the current state of the aircraft displayed by the instrument panel; as such, flying requires a large amount of hand-eye coordination. Day-to-day flight training appeared to intensify the connection between the parietal and occipital modules among cadets.Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased functional connectivity between the parietal and occipital modules among flight cadets. Aerosp Med Hum Perform. 2024; 95(7):375-380.
Collapse
|
3
|
Martín-Monzón I, Amores-Carrera L, Sabsevitz D, Herbet G. Intraoperative mapping of the right hemisphere: a systematic review of protocols that evaluate cognitive and social cognitive functions. Front Psychol 2024; 15:1415523. [PMID: 38966723 PMCID: PMC11222673 DOI: 10.3389/fpsyg.2024.1415523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
The right hemisphere of the brain is often referred to as the non-dominant hemisphere. Though this is meant to highlight the specialized role of the left hemisphere in language, the use of this term runs the risk of oversimplifying or minimizing the essential functions of the right hemisphere. There is accumulating evidence from functional MRI, clinical lesion studies, and intraoperative mapping data that implicate the right hemisphere in a diverse array of cognitive functions, including visuospatial functions, attentional processes, and social cognitive functions. Neuropsychological deficits following right hemisphere resections are well-documented, but there is a general paucity of literature focusing on how to best map these functions during awake brain surgery to minimize such deficits. To address this gap in the literature, a systematic review was conducted to examine the cognitive and emotional processes associated with the right hemisphere and the neuropsychological tasks frequently used for mapping the right hemisphere during awake brain tumor surgery. It was found that the most employed tests to assess language and speech functions in patients with lesions in the right cerebral hemisphere were the naming task and the Pyramids and Palm Trees Test (PPTT). Spatial cognition was typically evaluated using the line bisection task, while social cognition was assessed through the Reading the Mind in the Eyes (RME) test. Dual-tasking and the movement of the upper and lower limbs were the most frequently used methods to evaluate motor/sensory functions. Executive functions were typically assessed using the N-back test and Stroop test. To the best of our knowledge, this is the first comprehensive review to help provide guidance on the cognitive functions most at risk and methods to map such functions during right awake brain surgery. Systematic Review Registration PROSPERO database [CRD42023483324].
Collapse
Affiliation(s)
- Isabel Martín-Monzón
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - Laura Amores-Carrera
- Department of Experimental Psychology, Faculty of Psychology, Campus Santiago Ramón y Cajal, University of Seville, Seville, Spain
| | - David Sabsevitz
- Department of Psychiatry and Psychology, Division of Neuropsychology, Mayo Clinic Florida, Jacksonville, FL, United States
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier, France
- Praxiling Lab, UMR5267 CNRS & Paul Valéry University, Bâtiment de Recherche Marc Bloch, Montpellier, France
- Department of Medicine, University of Montpellier, Campus ADV, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Gloeckner CD, Nocon JC, Lim HH. Topographic and widespread auditory modulation of the somatosensory cortex: potential for bimodal sound and body stimulation for pain treatment. J Neural Eng 2022; 19. [PMID: 35671702 DOI: 10.1088/1741-2552/ac7665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE There has been growing interest in understanding multisensory integration in the cortex through activation of multiple sensory and motor pathways to treat brain disorders, such as tinnitus or essential tremors. For tinnitus, previous studies show that combined sound and body stimulation can modulate the auditory pathway and lead to significant improvements in tinnitus symptoms. Considering that tinnitus is a type of chronic auditory pain, bimodal stimulation could potentially alter activity in the somatosensory pathway relevant for treating chronic pain. As an initial step towards that goal, we mapped and characterized neuromodulation effects in the somatosensory cortex (SC) in response to sound and/or electrical stimulation of the body. APPROACH We first mapped the topographic organization of activity across the SC of ketamine-anesthetized guinea pigs through electrical stimulation of different body locations using subcutaneous needle electrodes or with broadband acoustic stimulation. We then characterized how neural activity in different parts of the SC could be facilitated or suppressed with bimodal stimulation. MAIN RESULTS The topography in the SC of guinea pigs in response to electrical stimulation of the body aligns consistently to that shown in previous rodent studies. Interestingly, auditory broadband noise stimulation primarily excited SC areas that typically respond to stimulation of lower body locations. Although there was only a small subset of SC locations that were excited by acoustic stimulation alone, all SC recording sites could be altered (facilitated or suppressed) with bimodal stimulation. Furthermore, specific regions of the SC could be modulated by stimulating an appropriate body region combined with broadband noise. SIGNIFICANCE These findings show that bimodal stimulation can excite or modulate firing across a widespread yet targeted population of SC neurons. This approach may provide a non-invasive method for altering or disrupting abnormal firing patterns within certain parts of the SC for chronic pain treatment.
Collapse
Affiliation(s)
- Cory D Gloeckner
- University of Minnesota Duluth, 1305 Ordean Court, Duluth, Minnesota, 55812, UNITED STATES
| | - Jian C Nocon
- Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts, 02215, UNITED STATES
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA, Minneapolis, Minnesota, 55455, UNITED STATES
| |
Collapse
|
5
|
Kwon BM, Lee JY, Ko N, Kim BR, Moon WJ, Choi DH, Lee J. Correlation of Hemispatial Neglect with White Matter Tract Integrity: A DTI Study. BRAIN & NEUROREHABILITATION 2022; 15:e6. [PMID: 36743846 PMCID: PMC9833463 DOI: 10.12786/bn.2022.15.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/08/2022] Open
Abstract
We investigated the diffusion tensor image (DTI) parameters of superior longitudinal fasciculus (SLF) and inferior fronto-occipital fasciculus (IFOF), and their relationships with hemispatial neglect. Thirteen patients with first-ever ischemic stroke who had the right hemispheric lesion were included. Neglect was assessed using the Albert test and figure discrimination test of Motor-free Visual Perception Test 3 (MVPT-3). The SLF and IFOF were separated by diffusion tensor tractography (DTT) and tract volume (TV) was calculated. We measured the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values in the total area, seed region of interest (ROI), and target ROI, respectively. Among thirteen patients, seven demonstrated signs of hemispatial neglect on neglect test. Tractography reconstruction showed significantly low TV of the right IFOF in patients with hemispatial neglect. FA values of the right SLF and the right IFOF were significantly lower in neglect patients. ADC values were not significantly different in two groups. This study suggests that damage of SLF and IFOF is associated with hemispatial neglect in right hemispheric stroke patients. DTI may be useful for predicting the severities of hemispatial neglect using values such as TV and FA of each tract.
Collapse
Affiliation(s)
- Bo Mi Kwon
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Jin-Youn Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Nayeon Ko
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Bo-Ram Kim
- Department of Rehabilitation Medicine, Gyeongin Rehabilitation Center Hospital, Incheon, Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| | - Dong-Hee Choi
- Department of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
6
|
Mastropasqua A, Vural G, Taylor PCJ. Elements of exogenous attentional cueing preserved during optokinetic motion of the visual scene. Eur J Neurosci 2021; 55:746-761. [PMID: 34964525 DOI: 10.1111/ejn.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 11/27/2022]
Abstract
Navigating through our environment raises challenges for perception by generating salient background visual motion, and eliciting prominent eye movements to stabilise the retinal image. It remains unclear if exogenous spatial attentional orienting is possible during background motion and the eye movements it causes, and whether this compromises the underlying neural processing. To test this, we combined exogenous orienting, visual scene motion, and EEG. 26 participants viewed a background of moving black and grey bars (optokinetic stimulation). We tested for effects of non-spatially predictive peripheral cueing on visual motion discrimination of a target dot, presented either at the same (valid) or opposite (invalid) location as the preceding cue. Valid cueing decreased reaction times not only when participants kept their gaze fixed on a central point (fixation blocks), but even when there was no fixation point, so that participants performed intensive, repetitive tracking eye movements (eye movements blocks). Overall, manual response reaction times were slower during eye movements. Cueing also produced reliable effects on neural activity on either block, including within the first 120 milliseconds of neural processing of the target. The key pattern with larger ERP amplitudes on invalid versus valid trials showed that the neural substrate of exogenous cueing was highly similar during eye movements or fixation. Exogenous peripheral cueing and its neural correlates are robust against distraction from the moving visual scene, important for perceptual cognition during navigation.
Collapse
Affiliation(s)
- Angela Mastropasqua
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Gizem Vural
- Department of Forensic Psychiatry, Psychiatric Hospital of the LMU Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Department of Psychology, LMU Munich, Germany.,Faculty of Philosophy and Philosophy of Science, LMU Munich, Germany.,Munich Center for Neuroscience, LMU Munich, Germany
| |
Collapse
|
7
|
Bartolomeo P. Visual and motor neglect: Clinical and neurocognitive aspects. Rev Neurol (Paris) 2021; 177:619-626. [PMID: 33455830 DOI: 10.1016/j.neurol.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022]
Abstract
Attention allows us to prioritize the processing of external information according to our goals, but also to cope with sudden, unforeseen events. Attention processes rely on the coordinated activity of large-scale brain networks. At the cortical level, these systems are mainly organized in fronto-parietal networks, with functional and anatomical asymmetries in favor of the right hemisphere. Dysfunction of these right-lateralized networks often produce severe deficit of spatial attention, such as visual neglect. Other brain-damaged patients avoid moving the limbs contralateral to their brain lesion, even in the absence of sensorimotor deficits (motor neglect). This paper first summarizes past and current evidence on brain networks of attention; then, it presents clinical and experimental findings on visual and motor neglect, and on the possible mechanisms of clinical recovery.
Collapse
Affiliation(s)
- P Bartolomeo
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France.
| |
Collapse
|
8
|
Fischer M, Moscovitch M, Alain C. A systematic review and meta‐analysis of memory‐guided attention: Frontal and parietal activation suggests involvement of fronto‐parietal networks. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1546. [DOI: 10.1002/wcs.1546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Manda Fischer
- Department of Psychology Rotman Research Institute, University of Toronto Toronto ON Canada
| | - Morris Moscovitch
- Department of Psychology Rotman Research Institute, University of Toronto Toronto ON Canada
| | - Claude Alain
- Department of Psychology Rotman Research Institute, University of Toronto Toronto ON Canada
| |
Collapse
|
9
|
Peng Y, Wang Z, Wong CM, Nan W, Rosa A, Xu P, Wan F, Hu Y. Changes of EEG phase synchronization and EOG signals along the use of steady state visually evoked potential-based brain computer interface. J Neural Eng 2020; 17:045006. [DOI: 10.1088/1741-2552/ab933e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Hramov AE, Maksimenko V, Koronovskii A, Runnova AE, Zhuravlev M, Pisarchik AN, Kurths J. Percept-related EEG classification using machine learning approach and features of functional brain connectivity. CHAOS (WOODBURY, N.Y.) 2019; 29:093110. [PMID: 31575147 DOI: 10.1063/1.5113844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Machine learning is a promising approach for electroencephalographic (EEG) trials classification. Its efficiency is largely determined by the feature extraction and selection techniques reducing the dimensionality of input data. Dimensionality reduction is usually implemented via the mathematical approaches (e.g., principal component analysis, linear discriminant analysis, etc.) regardless of the origin of analyzed data. We hypothesize that since EEG features are determined by certain neurophysiological processes, they should have distinctive characteristics in spatiotemporal domain. If so, it is possible to specify the set of EEG principal features based on the prior knowledge about underlying neurophysiological processes. To test this hypothesis, we consider the classification of EEG trials related to the perception of ambiguous visual stimuli. We observe that EEG features, underlying the different ambiguous stimuli interpretations, are defined by the network properties of neuronal activity. Having analyzed functional neural interactions, we specify the brain area in which neural network architecture exhibits differences for different classes of EEG trials. We optimize the feedforward multilayer perceptron and develop a strategy for the training set selection to maximize the classification accuracy, being 85% when all channels are used. The revealed localization of the percept-related features allows about 95% accuracy, when the number of channels is reduced up to 90%. Obtained results can be used for classification of EEG trials associated with more complex cognitive tasks. Taking into account that cognitive activity is subserved by a distributed functional cortical network, its topological properties have to be considered when selecting optimal features for EEG trial classification.
Collapse
Affiliation(s)
- Alexander E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Alexey Koronovskii
- Faculty of Nonlinear Processes, Saratov State University, 410012 Saratov, Russia
| | - Anastasiya E Runnova
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Maxim Zhuravlev
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Alexander N Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| |
Collapse
|
11
|
Blagovechtchenski E, Agranovich O, Kononova Y, Nazarova M, Nikulin VV. Perspectives for the Use of Neurotechnologies in Conjunction With Muscle Autotransplantation in Children. Front Neurosci 2019; 13:99. [PMID: 30828288 PMCID: PMC6384248 DOI: 10.3389/fnins.2019.00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/28/2019] [Indexed: 11/28/2022] Open
Affiliation(s)
- Evgueni Blagovechtchenski
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Olga Agranovich
- The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia
| | - Yelisaveta Kononova
- The Turner Scientific Research Institute for Children's Orthopedics, Saint Petersburg, Russia
| | - Maria Nazarova
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Federal Center for Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - Vadim V Nikulin
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Mento G, Scerif G, Granziol U, Franzoi M, Lanfranchi S. Dissociating top-down and bottom-up temporal attention in Down syndrome: A neurocostructive perspective. COGNITIVE DEVELOPMENT 2019. [DOI: 10.1016/j.cogdev.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Functional interplay of top-down attention with affective codes during visual short-term memory maintenance. Cortex 2018; 103:55-70. [PMID: 29554542 DOI: 10.1016/j.cortex.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/21/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022]
Abstract
Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance.
Collapse
|
14
|
Toba MN, Rabuffetti M, Duret C, Pradat-Diehl P, Gainotti G, Bartolomeo P. Component deficits of visual neglect: “Magnetic” attraction of attention vs. impaired spatial working memory. Neuropsychologia 2018; 109:52-62. [DOI: 10.1016/j.neuropsychologia.2017.11.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
|
15
|
Chang CF, Liang WK, Lai CL, Hung DL, Juan CH. Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting. Front Hum Neurosci 2016; 10:264. [PMID: 27375459 PMCID: PMC4891329 DOI: 10.3389/fnhum.2016.00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
In the visual world, rapidly reorienting to relevant objects outside the focus of attention is vital for survival. This ability from the interaction between goal-directed and stimulus-driven attentional control is termed contingent reorienting. Neuroimaging studies have demonstrated activations of the ventral and dorsal attentional networks (DANs) which exhibit right hemisphere dominance, but the temporal dynamics of the attentional networks still remain unclear. The present study used event-related potential (ERP) to index the locus of spatial attention and Hilbert-Huang transform (HHT) to acquire the time-frequency information during contingent reorienting. The ERP results showed contingent reorienting induced significant N2pc on both hemispheres. In contrast, our time-frequency analysis found further that, unlike the N2pc, theta oscillation during contingent reorienting differed between hemispheres and experimental sessions. The inter-trial coherence (ITC) of the theta oscillation demonstrated that the two sides of the attentional networks became phase-locked to contingent reorienting at different stages. The left attentional networks were associated with contingent reorienting in the first experimental session whereas the bilateral attentional networks play a more important role in this process in the subsequent session. This phase-locked information suggests a dynamic temporal evolution of the involvement of different attentional networks in contingent reorienting and a potential role of the left ventral network in the first session.
Collapse
Affiliation(s)
- Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University Taoyuan City, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University Taoyuan City, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Kaohsiung City, Taiwan
| | - Daisy L Hung
- Institute of Cognitive Neuroscience, National Central University Taoyuan City, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University Taoyuan City, Taiwan
| |
Collapse
|
16
|
Mento G, Vallesi A. Spatiotemporally dissociable neural signatures for generating and updating expectation over time in children: A High Density-ERP study. Dev Cogn Neurosci 2016; 19:98-106. [PMID: 26946428 PMCID: PMC6988099 DOI: 10.1016/j.dcn.2016.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/26/2016] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
8–12-year-old children can generate and update expectancy over time. Cue- and SOA-related ERPs reflect expectancy generation and updating, respectively. Only cue-related ERPs are correlated with age. Distinct cortical networks underlie cue- and SOA-related ERP effects. The neural bases of temporal expectation only partially differ in children and adults.
Temporal orienting (TO) is the allocation of attentional resources in time based on the a priori generation of temporal expectancy of relevant stimuli as well as the a posteriori updating of this expectancy as a function of both sensory-based evidence and elapsing time. These processes rely on dissociable cognitive mechanisms and neural networks. Yet, although there is evidence that TO may be a core mechanism for cognitive functioning in childhood, the developmental spatiotemporal neural dynamics of this mechanism are little understood. In this study we employed a combined approach based on the application of distributed source reconstruction on a high spatial resolution ERP data array obtained from eighteen 8- to 12-year-old children completing a TO paradigm in which both the cue (Temporal vs. Neutral) and the SOA (Short vs. Long) were manipulated. Results show both cue (N1) and SOA (CNV, Omission Detection Potential and Anterior Anticipatory Index) ERP effects, which were associated with expectancy generation and updating, respectively. Only cue-related effects were correlated with age, as revealed by a reduction of the N1 delta effect with increasing age. Our data suggest that the neural correlates underlying TO are already established at least from 8 to 12 years of age.
Collapse
Affiliation(s)
- Giovanni Mento
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131, Padova (PD), Italy.
| | - Antonino Vallesi
- Department of Neurosciences, University of Padova, Via Giustiniani, 5, 35128, Padova (PD), Italy; Centro di Neuroscienze Cognitive, University of Padova, Italy
| |
Collapse
|
17
|
de Vito S, Lunven M, Bourlon C, Duret C, Cavanagh P, Bartolomeo P. When brain damage "improves" perception: neglect patients can localize motion-shifted probes better than controls. J Neurophysiol 2015; 114:3351-8. [PMID: 26510763 DOI: 10.1152/jn.00757.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/26/2015] [Indexed: 11/22/2022] Open
Abstract
When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.
Collapse
Affiliation(s)
- Stefania de Vito
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France; Department of Psychology, Catholic University, Milan, Italy;
| | - Marine Lunven
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Clémence Bourlon
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise Le Roi, France
| | - Christophe Duret
- Centre de Rééducation Fonctionnelle Les Trois Soleils, Boissise Le Roi, France
| | - Patrick Cavanagh
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Biomédical des Saints Péres, Paris, France; and Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Paolo Bartolomeo
- INSERM U1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France; Department of Psychology, Catholic University, Milan, Italy
| |
Collapse
|
18
|
Abstract
Spatial priority maps are real-time representations of the behavioral salience of locations in the visual field, resulting from the combined influence of stimulus driven activity and top-down signals related to the current goals of the individual. They arbitrate which of a number of (potential) targets in the visual scene will win the competition for attentional resources. As a result, deployment of visual attention to a specific spatial location is determined by the current peak of activation (corresponding to the highest behavioral salience) across the map. Here we report a behavioral study performed on healthy human volunteers, where we demonstrate that spatial priority maps can be shaped via reward-based learning, reflecting long-lasting alterations (biases) in the behavioral salience of specific spatial locations. These biases exert an especially strong influence on performance under conditions where multiple potential targets compete for selection, conferring competitive advantage to targets presented in spatial locations associated with greater reward during learning relative to targets presented in locations associated with lesser reward. Such acquired biases of spatial attention are persistent, are nonstrategic in nature, and generalize across stimuli and task contexts. These results suggest that reward-based attentional learning can induce plastic changes in spatial priority maps, endowing these representations with the "intelligent" capacity to learn from experience.
Collapse
|
19
|
Bengson JJ, Kelley TA, Zhang X, Wang JL, Mangun GR. Spontaneous neural fluctuations predict decisions to attend. J Cogn Neurosci 2014; 26:2578-84. [PMID: 24738766 DOI: 10.1162/jocn_a_00650] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ongoing variability in neural signaling is an intrinsic property of the brain. Often this variability is considered to be noise and ignored. However, an alternative view is that this variability is fundamental to perception and cognition and may be particularly important in decision-making. Here, we show that a momentary measure of occipital alpha-band power (8-13 Hz) predicts choices about where human participants will focus spatial attention on a trial-by-trial basis. This finding provides evidence for a mechanistic account of decision-making by demonstrating that ongoing neural activity biases voluntary decisions about where to attend within a given moment.
Collapse
|
20
|
Kuo BC, Stokes MG, Murray AM, Nobre AC. Attention biases visual activity in visual short-term memory. J Cogn Neurosci 2014; 26:1377-89. [PMID: 24456394 DOI: 10.1162/jocn_a_00577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In the current study, we tested whether representations in visual STM (VSTM) can be biased via top-down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1-V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top-down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.
Collapse
|
21
|
Coull JT. Getting the timing right: experimental protocols for investigating time with functional neuroimaging and psychopharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 829:237-64. [PMID: 25358714 DOI: 10.1007/978-1-4939-1782-2_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional Magnetic Resonance Imaging (fMRI) is an effective tool for identifying brain areas and networks implicated in human timing. But fMRI is not just a phrenological tool: by careful design, fMRI can be used to disentangle discrete components of a timing task and control for the underlying cognitive processes (e.g. sustained attention and WM updating) that are critical for estimating stimulus duration in the range of hundreds of milliseconds to seconds. Moreover, the use of parametric designs and correlational analyses allows us to better understand not just where, but also how, the brain processes temporal information. In addition, by combining fMRI with psychopharmacological manipulation, we can begin to uncover the complex relationship between cognition, neurochemistry and anatomy in the healthy human brain. This chapter provides an overview of some of the key findings in the functional imaging literature of both duration estimation and temporal prediction, and outlines techniques that can be used to allow timing-related activations to be interpreted more unambiguously. In our own studies, we have found that estimating event duration, whether that estimate is provided by a motor response or a perceptual discrimination, typically recruits basal ganglia, SMA and right inferior frontal cortex, and can be modulated by dopaminergic activity in these areas. By contrast, orienting attention to predictable moments in time in order to optimize behaviour, whether that is to speed motor responding or improve perceptual accuracy, recruits left inferior parietal cortex.
Collapse
Affiliation(s)
- Jennifer T Coull
- Laboratoire de Neurosciences Cognitives, Aix-Marseille Université & CNRS, 3 Place Victor Hugo, 13331, Marseille, Cedex 3, France,
| |
Collapse
|
22
|
Ciaraffa F, Castelli G, Parati EA, Bartolomeo P, Bizzi A. Visual neglect as a disconnection syndrome? A confirmatory case report. Neurocase 2013; 19:351-9. [PMID: 22551209 DOI: 10.1080/13554794.2012.667130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Visual neglect has classically been associated with right hemisphere injury in parietal, frontal, or temporal cortex, in the basal ganglia or in the thalamus. More recently, visual neglect has been associated with injury extended into fronto-parietal white matter tracts. However, in most published cases white and gray matter injuries were associated. We present the anatomo-clinical study of a patient presenting with severe acute left visual neglect due to ischemic infarct limited to the right cerebral hemisphere white matter. Magnetic resonance diffusion tensor imaging tractography was instrumental to accurately localize the injury to the right arcuate fasciculus that is a component of the large-scale networks controlling visuo-spatial attention. These results add to a growing appreciation that neglect may result from disruption of a distributed attentional network.
Collapse
|
23
|
Rastelli F, Tallon-Baudry C, Migliaccio R, Toba MN, Ducorps A, Pradat-Diehl P, Duret C, Dubois B, Valero-Cabré A, Bartolomeo P. Neural dynamics of neglected targets in patients with right hemisphere damage. Cortex 2013; 49:1989-96. [PMID: 23664670 DOI: 10.1016/j.cortex.2013.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/21/2012] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
Abstract
We studied the neural correlates of target omissions in five patients with right hemisphere damage and varying signs of left spatial neglect. Benefiting from the high temporal resolution of magneto-encephalography, we directly compared brain regional synchrony events of detected and omitted left-sided targets. Results showed that before stimulus presentation, a low beta synchronization activity was specifically increased within left frontal areas before pathological response omissions of left-sided targets. In the same pre-stimulus period, there were no such beta oscillations when patients correctly detected the target, or when no target was presented. Our findings emphasize the importance of neural activity during the pre-stimulus period on subsequent stimulus processing, and highlight the consequences of episodic interruptions of large-scale interhemispheric networks on target detection. Furthermore, our data suggest that prefrontal activity is not necessarily beneficial to target detection, but can be detrimental to it.
Collapse
Affiliation(s)
- Federica Rastelli
- Inserm U975; UPMC-Paris 6, UMR_S 975; CNRS UMR 7225, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Janacsek K, Nemeth D. Implicit sequence learning and working memory: correlated or complicated? Cortex 2013; 49:2001-6. [PMID: 23541152 DOI: 10.1016/j.cortex.2013.02.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/23/2012] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
The relationship between implicit/incidental sequence learning and working memory motivated a series of research because it is plausible that higher working memory capacity opens a "larger window" to a sequence, allowing thereby the sequence learning process to be easier. Although the majority of studies found no relationship between implicit sequence learning and working memory capacity, in the past few years several studies have tried to demonstrate the shared or partly shared brain networks underlying these two systems. In order to help the interpretation of these and future results, in this mini-review we suggest the following factors to be taken into consideration before testing the relationship between sequence learning and working memory: 1) the explicitness of the sequence; 2) the method of measuring working memory capacity; 3) online and offline stages of sequence learning; and 4) general skill- and sequence-specific learning.
Collapse
Affiliation(s)
- Karolina Janacsek
- Department of Clinical Psychology and Addiction, Eotvos Lorand University, Budapest, Hungary
| | | |
Collapse
|
25
|
Impaired visual sensitivity within the ipsilesional hemifield following parietal lobe damage. Cortex 2013; 49:158-71. [DOI: 10.1016/j.cortex.2011.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/12/2011] [Accepted: 07/21/2011] [Indexed: 11/18/2022]
|
26
|
Small DM. Flavor is in the brain. Physiol Behav 2012; 107:540-52. [PMID: 22542991 DOI: 10.1016/j.physbeh.2012.04.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/25/2022]
|
27
|
Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. J Neurosci 2012; 32:10554-61. [PMID: 22855805 DOI: 10.1523/jneurosci.0362-12.2012] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The limits of human visual short-term memory (VSTM) have been well documented, and recent neuroscientific studies suggest that VSTM performance is associated with activity in the posterior parietal cortex. Here we show that artificially elevating parietal activity via positively charged electric current through the skull can rapidly and effortlessly improve people's VSTM performance. This artificial improvement, however, comes with an interesting twist: it interacts with people's natural VSTM capability such that low performers who tend to remember less information benefitted from the stimulation, whereas high performers did not. This behavioral dichotomy is explained by event-related potentials around the parietal regions: low performers showed increased waveforms in N2pc and contralateral delay activity (CDA), which implies improvement in attention deployment and memory access in the current paradigm, respectively. Interestingly, these components are found during the presentation of the test array instead of the retention interval, from the parietal sites ipsilateral to the target location, thus suggesting that transcranial direct current stimulation (tDCS) was mainly improving one's ability to suppress no-change distractors located on the irrelevant side of the display during the comparison stage. The high performers, however, did not benefit from tDCS as they showed equally large waveforms in N2pc and CDA, or SPCN (sustained parietal contralateral negativity), before and after the stimulation such that electrical stimulation could not help any further, which also accurately accounts for our behavioral observations. Together, these results suggest that there is indeed a fixed upper limit in VSTM, but the low performers can benefit from neurostimulation to reach that maximum via enhanced comparison processes, and such behavioral improvement can be directly quantified and visualized by the magnitude of its associated electrophysiological waveforms.
Collapse
|
28
|
Sander MC, Lindenberger U, Werkle-Bergner M. Lifespan age differences in working memory: a two-component framework. Neurosci Biobehav Rev 2012; 36:2007-33. [PMID: 22771333 DOI: 10.1016/j.neubiorev.2012.06.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
We suggest that working memory (WM) performance can be conceptualized as the interplay of low-level feature binding processes and top-down control, relating to posterior and frontal brain regions and their interaction in a distributed neural network. We propose that due to age-differential trajectories of posterior and frontal brain regions top-down control processes are not fully mature until young adulthood and show marked decline with advancing age, whereas binding processes are relatively mature in children, but show senescent decline in older adults. A review of the literature spanning from middle childhood to old age shows that binding and top-down control processes undergo profound changes across the lifespan. We illustrate commonalities and dissimilarities between children, younger adults, and older adults reflecting the change in the two components' relative contribution to visual WM performance across the lifespan using results from our own lab. We conclude that an integrated account of visual WM lifespan changes combining research from behavioral neuroscience and cognitive psychology of child development as well as aging research opens avenues to advance our understanding of cognition in general.
Collapse
Affiliation(s)
- Myriam C Sander
- Max Planck Institute for Human Development, Center for Lifespan Psychology, Lentzeallee 94, 14195 Berlin, Germany.
| | | | | |
Collapse
|
29
|
Bartolomeo P, Thiebaut de Schotten M, Chica AB. Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci 2012; 6:110. [PMID: 22586384 PMCID: PMC3343690 DOI: 10.3389/fnhum.2012.00110] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/11/2012] [Indexed: 11/13/2022] Open
Abstract
Visual neglect is a multi-component syndrome including prominent attentional disorders. Research on the functional mechanisms of neglect is now moving from the description of dissociations in patients' performance to the identification of the possible component deficits and of their interaction with compensatory strategies. In recent years, the dissection of attentional deficits in neglect has progressed in parallel with increasing comprehension of the anatomy and function of large-scale brain networks implicated in attentional processes. This review focuses on the anatomy and putative functions of attentional circuits in the brain, mainly subserved by fronto-parietal networks, with a peculiar although not yet completely elucidated role for the right hemisphere. Recent results are discussed concerning the influence of a non-spatial attentional function, phasic alertness, on conscious perception in normal participants and on conflict resolution in neglect patients. The rapid rate of expansion of our knowledge of these systems raises hopes for the development of effective strategies to improve the functioning of the attentional networks in brain-damaged patients.
Collapse
Affiliation(s)
- Paolo Bartolomeo
- INSERM - UPMC UMRS 975, Brain and Spine Institute, Groupe Hospitalier Pitié-Salpêtrière Paris, France
| | | | | |
Collapse
|
30
|
Chica AB, Paz-Alonso PM, Valero-Cabre A, Bartolomeo P. Neural Bases of the Interactions between Spatial Attention and Conscious Perception. Cereb Cortex 2012; 23:1269-79. [DOI: 10.1093/cercor/bhs087] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
|
32
|
Brain activity underlying visual perception and attention as inferred from TMS–EEG: A review. Brain Stimul 2012; 5:124-9. [DOI: 10.1016/j.brs.2012.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 12/21/2022] Open
|
33
|
Chica AB, Botta F, Lupiáñez J, Bartolomeo P. Spatial attention and conscious perception: Interactions and dissociations between and within endogenous and exogenous processes. Neuropsychologia 2012; 50:621-9. [PMID: 22266110 DOI: 10.1016/j.neuropsychologia.2011.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 11/29/2022]
Affiliation(s)
- Ana B Chica
- INSERM-UPMC UMRS 975, Brain and Spine Institute, Groupe Hospitalier Pitié Salpêtrière, Paris, France.
| | | | | | | |
Collapse
|
34
|
Wurm MF, Cramon DY, Schubotz RI. The context-object-manipulation triad: cross talk during action perception revealed by fMRI. J Cogn Neurosci 2012; 24:1548-59. [PMID: 22452557 DOI: 10.1162/jocn_a_00232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To recognize an action, an observer exploits information about the applied manipulation, the involved objects, and the context where the action occurs. Context, object, and manipulation information are hence expected to be tightly coupled in a triadic relationship (the COM triad hereafter). The current fMRI study investigated the hemodynamic signatures of reciprocal modulation in the COM triad. Participants watched short video clips of pantomime actions, that is, actions performed with inappropriate objects, taking place at compatible or incompatible contexts. The usage of pantomime actions enabled the disentanglement of the neural substrates of context-manipulation (CM) and context-object (CO) associations. There were trials in which (1) both manipulation and objects, (2) only manipulation, (3) only objects, or (4) neither manipulation nor objects were compatible with the context. CM compatibility effects were found in an action-related network comprising ventral premotor cortex, SMA, left anterior intraparietal sulcus, and bilateral occipito-temporal cortex. Conversely, CO compatibility effects were found bilaterally in lateral occipital complex. These effects interacted in subregions of the lateral occipital complex. An overlap of CM and CO effects was observed in the occipito-temporal cortex and the dorsal attention network, that is, superior frontal sulcus/dorsal premotor cortex and superior parietal lobe. Results indicate that contextual information is integrated into the analysis of actions. Manipulation and object information is linked by contextual associations as a function of co-occurrence in specific contexts. Activation of either CM or CO associations shifts attention to either action- or object-related relevant information.
Collapse
Affiliation(s)
- Moritz F Wurm
- Max Planck Institute for Neurological Research, Germany.
| | | | | |
Collapse
|
35
|
Chang CF, Hsu TY, Tseng P, Liang WK, Tzeng OJL, Hung DL, Juan CH. Right temporoparietal junction and attentional reorienting. Hum Brain Mapp 2012; 34:869-77. [PMID: 22419442 DOI: 10.1002/hbm.21476] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/21/2011] [Accepted: 09/02/2011] [Indexed: 11/07/2022] Open
Abstract
The interaction between goal-directed and stimulus-driven attentional control allows humans to rapidly reorient to relevant objects outside the focus of attention--a phenomenon termed contingent reorienting. Neuroimaging studies have observed activation of the ventral and dorsal attentional networks, but specific involvement of each network remains unclear. The present study aimed to determine whether both networks are critical to the processes of top-down contingent reorienting. To this end, we combined the contingent attentional capture paradigm with the use of transcranial magnetic stimulation (TMS) to interfere with temporoparietal junction (TPJ; ventral network) and frontal eye field (dorsal network) activity. The results showed that only right TPJ (rTPJ) TMS modulated contingent orienting. Furthermore, this modulation was highly dependent on visual fields: rTPJ TMS increased contingent capture in the left visual field and decreased the effect in the right visual field. These results demonstrate a critical involvement of the ventral network in attentional reorienting and reveal the spatial selectivity within such network.
Collapse
Affiliation(s)
- Chi-Fu Chang
- Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | | | | | | | | | | | | |
Collapse
|
36
|
Dowman R. The role of the pain-evoked negative difference potential in dual-task response conflict. Eur J Pain 2012; 8:567-78. [PMID: 15531225 DOI: 10.1016/j.ejpain.2004.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 02/02/2004] [Indexed: 11/26/2022]
Abstract
The possible role of the generators of the sural nerve pain-evoked negative difference potential (NDP), the anterior cingulate cortex and supplementary somatosensory area, in monitoring response conflict was investigated in 19 healthy adults. Each trial consisted of a visual arrow stimulus and a painful electrical stimulus applied to the sural nerve. The subjects determined whether their left or right sural nerve had been stimulated and whether the arrow was pointing to the left or to the right. The sural nerve pain detection task reaction times and response errors were greater in the incongruent condition, where the arrow pointed to the side opposite of that receiving the sural nerve pain, than in the congruent condition, where the arrow pointed to the same side as that receiving the sural nerve pain. Response conflict was greatest, therefore, in the incongruent condition. There were no differences in NDP amplitude across the congruent and incongruent conditions. These results argue against the hypothesis that the NDP generators are involved in monitoring response conflict.
Collapse
Affiliation(s)
- Robert Dowman
- Department of Psychology, Clarkson University, Potsdam, NY 13699-5825, USA.
| |
Collapse
|
37
|
Broadway JM, Engle RW. Individual differences in working memory capacity and temporal discrimination. PLoS One 2011; 6:e25422. [PMID: 22003391 PMCID: PMC3189201 DOI: 10.1371/journal.pone.0025422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
Abstract
Temporal judgment in the milliseconds-to-seconds range depends on consistent attention to time and robust working memory representation. Individual differences in working memory capacity (WMC) predict a wide range of higher-order and lower-order cognitive abilities. In the present work we examined whether WMC would predict temporal discrimination. High-WMC individuals were more sensitive than low-WMC at discriminating the longer of two temporal intervals across a range of temporal differences. WMC-related individual differences in temporal discrimination were not eliminated by including a measure of fluid intelligence as a covariate. Results are discussed in terms of attention, working memory and other psychological constructs.
Collapse
Affiliation(s)
- James M Broadway
- Georgia Institute of Technology, Atlanta, Georgia, United States of America.
| | | |
Collapse
|
38
|
Taylor PCJ, Muggleton NG, Kalla R, Walsh V, Eimer M. TMS of the right angular gyrus modulates priming of pop-out in visual search: combined TMS-ERP evidence. J Neurophysiol 2011; 106:3001-9. [PMID: 21880940 DOI: 10.1152/jn.00121.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During priming of pop-out, performance at discriminating a pop-out feature target in visual search is affected by whether the target on the previous trial was defined by the same feature as on the upcoming trial. Recent studies suggest that priming of pop-out relies on attentional processes. With the use of simultaneous, combined transcranial magnetic stimulation and event-related potential recording (TMS-ERP), we tested for any critical role of the right angular gyrus (rANG) and left and right frontal eye fields (FEFs)-key attentional sites-in modulating both performance and the ERPs evoked by such visual events. Intertrial TMS trains were applied while participants discriminated the orientation of a color pop-out element in a visual search array. rANG TMS disrupted priming of pop-out, reducing reaction time costs on switch trials and speeding responses when the color of the pop-out target switched. rANG TMS caused a negativity in the ERP elicited in response to the visual stimulus array, starting 210 ms after stimulus onset. Both behavioral and ERP effects were apparent only after rANG TMS, on switch trials, and when the target in the visual search array was presented in the left visual field, with no effects after left or right FEF TMS. These results provide evidence for an attentional reorienting mechanism, which originates in the rANG and is modulated by the implicit memory of the previous trial. The rANG plays a causal role on switch trials during priming of pop-out by interacting with visual processing, particularly in the ipsilateral hemisphere representing the contralateral hemifield.
Collapse
Affiliation(s)
- Paul C J Taylor
- Department of Psychological Sciences, Birkbeck College, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Cieslik EC, Zilles K, Grefkes C, Eickhoff SB. Dynamic interactions in the fronto-parietal network during a manual stimulus-response compatibility task. Neuroimage 2011; 58:860-9. [PMID: 21708271 DOI: 10.1016/j.neuroimage.2011.05.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
Attentional orienting can be modulated by stimulus-driven bottom-up as well as task-dependent top-down processes. In a recent study we investigated the interaction of both processes in a manual stimulus-response compatibility task. Whereas the intraparietal sulcus (IPS) and the dorsal premotor cortex (dPMC) were involved in orienting towards the stimulus side facilitating congruent motor responses, the right temporoparietal junction (TPJ), right dorsolateral prefrontal cortex (DLPFC) as well as the preSMA sustained top-down control processes involved in voluntary reorienting. Here we used dynamic causal modelling to investigate the contributions and task-dependent interactions between these regions. Thirty-six models were tested, all of which included bilateral IPS, dPMC and primary motor cortex (M1) as a network transforming visual input into motor output as well as the right TPJ, right DLPFC and the preSMA as task-dependent top-down regions influencing the coupling within the dorsal network. Our data showed the right temporoparietal junction to play a mediating role during attentional reorienting processes by modulating the inter-hemispheric balance between both IPS. Analysis of connection strength supported the proposed role of the preSMA in controlling motor responses promoting or suppressing activity in primary motor cortex. As the results did not show a clear tendency towards a role of the right DLPFC, we propose this region, against the usual interpretation of an inhibitory influence in stimulus-response compatibility tasks, to subserve generic monitoring processes. Our DCM study hence provides evidence for context-dependent top-down control of right TPJ and DLPFC as well as the preSMA in stimulus-response compatibility.
Collapse
Affiliation(s)
- Edna C Cieslik
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich, Jülich, Germany.
| | | | | | | |
Collapse
|
40
|
Astle D, Nobre A, Scerif G. Attentional control constrains visual short-term memory: insights from developmental and individual differences. Q J Exp Psychol (Hove) 2011; 65:277-94. [PMID: 20680889 PMCID: PMC4152725 DOI: 10.1080/17470218.2010.492622] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The mechanisms by which attentional control biases mnemonic representations have attracted much interest but remain poorly understood. As attention and memory develop gradually over childhood and variably across individuals, assessing how participants of different ages and ability attend to mnemonic contents can elucidate their interplay. In Experiment 1, 7-year-olds, 10-year-olds, and adults were asked to report whether a probe item had been part of a previously presented four-item array. The initial array could either be uncued, be preceded ("precued"), or followed ("retrocued") by a spatial cue orienting attention to one of the potential item locations. Performance across groups was significantly improved by both cue types, and individual differences in children's retrospective attentional control predicted their visual short-term and working memory span, whereas their basic ability to remember in the absence of cues did not. Experiment 2 imposed a variable delay between the array and the subsequent orienting cue. Cueing benefits were greater in adults than in 10-year-olds, but they persisted even when cues followed the array by nearly 3 seconds, suggesting that orienting operated on durable short-term representations for both age groups. The findings indicate that there are substantial developmental and individual differences in the ability to control attention to memory and that in turn these differences constrain visual short-term memory capacity.
Collapse
Affiliation(s)
- D.E. Astle
- Department of Experimental Psychology University of Oxford
| | - A.C. Nobre
- Department of Experimental Psychology University of Oxford
| | - G. Scerif
- Department of Experimental Psychology University of Oxford
| |
Collapse
|
41
|
Starr CJ, Sawaki L, Wittenberg GF, Burdette JH, Oshiro Y, Quevedo AS, McHaffie JG, Coghill RC. The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions. ACTA ACUST UNITED AC 2011; 134:1987-2004. [PMID: 21616963 DOI: 10.1093/brain/awr117] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cerebral cortical activity is heavily influenced by interactions with the basal ganglia. These interactions occur via cortico-basal ganglia-thalamo-cortical loops. The putamen is one of the major sites of cortical input into basal ganglia loops and is frequently activated during pain. This activity has been typically associated with the processing of pain-related motor responses. However, the potential contribution of putamen to the processing of sensory aspects of pain remains poorly characterized. In order to more directly determine if the putamen can contribute to sensory aspects of pain, nine individuals with lesions involving the putamen underwent both psychophysical and functional imaging assessment of perceived pain and pain-related brain activation. These individuals exhibited intact tactile thresholds, but reduced heat pain sensitivity and widespread reductions in pain-related cortical activity in comparison with 14 age-matched healthy subjects. Using magnetic resonance imaging to assess structural connectivity in healthy subjects, we show that portions of the putamen activated during pain are connected not only with cortical regions involved in sensory-motor processing, but also regions involved in attention, memory and affect. Such a framework may allow cognitive information to flow from these brain areas to the putamen where it may be used to influence how nociceptive information is processed. Taken together, these findings indicate that the putamen and the basal ganglia may contribute importantly to the shaping of an individual subjective sensory experience by utilizing internal cognitive information to influence activity of large areas of the cerebral cortex.
Collapse
Affiliation(s)
- Christopher J Starr
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Broadway JM, Engle RW. Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychol (Amst) 2011; 137:115-26. [PMID: 21470583 DOI: 10.1016/j.actpsy.2011.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 03/08/2011] [Accepted: 03/14/2011] [Indexed: 11/15/2022] Open
Abstract
Working memory capacity (WMC) predicts individual differences in a wide range of mental abilities. In three experiments we examined whether WMC would predict temporal judgment. Low-WMC temporal reproductions were consistently too long for the shortest duration and too short for the longest, but were accurate (unbiased) for the intermediate. In contrast, high-WMC temporal reproductions were more accurate (unbiased) across the range. Thus low-WMC showed a classic "migration effect" (Vierordt's Law) to a greater extent than high-WMC. Furthermore reproduction errors depended more on temporal context than the absolute durations of "shortest," "longest," and "intermediate." Low-WMC reproductions were overall more variable than high-WMC. General fluid intelligence (gF) was also related to temporal bias and variability. However, WMC-related timing differences were only attenuated and not eliminated with gF as covariate. Results are discussed in terms of attention, memory, and other psychological constructs.
Collapse
Affiliation(s)
- James M Broadway
- School of Psychology, Georgia Institute of Technology, United States.
| | | |
Collapse
|
43
|
Spatial attention and conscious perception: the role of endogenous and exogenous orienting. Atten Percept Psychophys 2011; 73:1065-81. [DOI: 10.3758/s13414-010-0082-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Abstract
According to the "modular" hypothesis, reading is a serial feedforward process, with part of left ventral occipitotemporal cortex the earliest component tuned to familiar orthographic stimuli. Beyond this region, the model predicts no response to arrays of false font in reading-related neural pathways. An alternative "connectionist" hypothesis proposes that reading depends on interactions between feedforward projections from visual cortex and feedback projections from phonological and semantic systems, with no visual component exclusive to orthographic stimuli. This is compatible with automatic processing of false font throughout visual and heteromodal sensory pathways that support reading, in which responses to words may be greater than, but not exclusive of, responses to false font. This functional imaging study investigated these alternative hypotheses by using narrative texts and equivalent arrays of false font and varying the hemifield of presentation using rapid serial visual presentation. The "null" baseline comprised a decision on visually presented numbers. Preferential activity for narratives relative to false font, insensitive to hemifield of presentation, was distributed along the ventral left temporal lobe and along the extent of both superior temporal sulci. Throughout this system, activity during the false font conditions was significantly greater than during the number task, with activity specific to the number task confined to the intraparietal sulci. Therefore, both words and false font are extensively processed along the same temporal neocortical pathways, separate from the more dorsal pathways that process numbers. These results are incompatible with a serial, feedforward model of reading.
Collapse
|
45
|
Neurocognitive development of attention across genetic syndromes. PROGRESS IN BRAIN RESEARCH 2011; 189:285-301. [DOI: 10.1016/b978-0-444-53884-0.00030-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Urbanski M, Thiebaut de Schotten M, Rodrigo S, Oppenheim C, Touzé E, Méder JF, Moreau K, Loeper-Jeny C, Dubois B, Bartolomeo P. DTI-MR tractography of white matter damage in stroke patients with neglect. Exp Brain Res 2010; 208:491-505. [PMID: 21113581 DOI: 10.1007/s00221-010-2496-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Left visual neglect is a dramatic neurological condition that impairs awareness of left-sided events. Neglect has been classically reported after strokes in the territory of the right middle cerebral artery. However, the precise lesional correlates of neglect within this territory remain discussed. Recent evidence strongly suggests an implication of dysfunction of large-scale perisylvian networks in chronic neglect, but the quantitative relationships between neglect signs and damage to white matter (WM) tracts have never been explored. In this prospective study, we used diffusion tensor imaging (DTI) tractography in twelve patients with a vascular stroke in the right hemisphere. Six of these patients showed signs of neglect. Nonparametric voxel-based comparisons between neglect and controls on fractional anisotropy maps revealed clusters in the perisylvian WM and in the external capsule. Individual DTI tractography identified specific disconnections of the fronto-parietal and fronto-occipital pathways in the neglect group. Voxel-based correlation statistics highlighted correlations between patients' performance on two visual search tasks and damage to WM clusters. These clusters were located in the anterior limb of the internal capsule and in the WM underlying the inferior frontal gyrus, along the trajectory of the anterior segment of the arcuate fasciculus (asAF). These results indicate that chronic visual neglect can result from, and correlate with, damage to fronto-parietal connections in the right hemisphere, within large-scale cortical networks important for orienting of spatial attention, arousal and spatial working memory.
Collapse
Affiliation(s)
- M Urbanski
- INSERM-UPMC UMR S 975, G.H. Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kristjánsson A, Eyjólfsdóttir KÓ, Jónsdóttir A, Arnkelsson G. Temporal consistency is currency in shifts of transient visual attention. PLoS One 2010; 5:e13660. [PMID: 21060888 PMCID: PMC2965655 DOI: 10.1371/journal.pone.0013660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/01/2010] [Indexed: 11/21/2022] Open
Abstract
Background Observers respond more accurately to targets in visual search tasks that share properties with previously presented items, and transient attention can learn featural consistencies on a precue, irrespective of its absolute location. Methodology/Principal Findings We investigated whether such attentional benefits also apply to temporal consistencies. Would performance on a precued Vernier acuity discrimination task, followed by a mask, improve if the cue-lead times (CLTs; 50, 100, 150 or 200 ms) remained constant between trials compared to when they changed? The results showed that if CLTs remained constant for a few trials in a row, Vernier acuity performance gradually improved while changes in CLT from one trial to the next led to worse than average discrimination performance. The results show that transient attention can quickly adjust to temporal regularities, similarly to spatial and featural regularities. Further experiments show that this form of learning is not under voluntary control. Conclusions/Significance The results add to a growing literature showing how consistency in visual presentation improves visual performance, in this case temporal consistency.
Collapse
Affiliation(s)
- Arni Kristjánsson
- Department of Psychology, University of Iceland, Reykjavík, Iceland.
| | | | | | | |
Collapse
|
48
|
Fort A, Martin R, Jacquet-Andrieu A, Combe-Pangaud C, Foliot G, Daligault S, Delpuech C. Attentional demand and processing of relevant visual information during simulated driving: a MEG study. Brain Res 2010; 1363:117-27. [PMID: 20920486 DOI: 10.1016/j.brainres.2010.09.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/14/2010] [Accepted: 09/25/2010] [Indexed: 10/19/2022]
Abstract
It is a well-known fact that attention is crucial for driving a car. This innovative study aims to assess the impact of attentional workload modulation on cerebral activity during a simulated driving task using magnetoencephalography (MEG). A car simulator equipped with a steering wheel, turn indicators, an accelerator and a brake pedal has been specifically designed to be used with MEG. Attentional demand has been modulated using a radio broadcast. During half of the driving scenarios, subjects could ignore the broadcast (simple task, ST) and during the other half, they had to actively listen to it in order to answer 3 questions (dual task, DT). Evoked magnetic responses were computed in both conditions separately for two visual stimuli of interest: traffic lights (from green to amber) and direction signs (arrows to the right or to the left) shown on boards. The cortical sources of these activities have been estimated using a minimum-norm current estimates modeling technique. Results show the activation of a large distributed network similar in ST and DT and similar for both the traffic lights and the direction signs. This network mainly involves sensory visual areas as well as parietal and frontal regions known to play a role in selective attention and motor areas. The increase of attentional demand affects the neuronal processing of relevant visual information for driving, as early as the perceptual stage. By demonstrating the feasibility of recording MEG activity during an interactive simulated driving task, this study opens new possibilities for investigating issues regarding drivers' activity.
Collapse
|
49
|
Schilbach L, Eickhoff SB, Cieslik E, Shah NJ, Fink GR, Vogeley K. Eyes on me: an fMRI study of the effects of social gaze on action control. Soc Cogn Affect Neurosci 2010; 6:393-403. [PMID: 20705602 DOI: 10.1093/scan/nsq067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous evidence suggests that 'social gaze' can not only cause shifts in attention, but also can change the perception of objects located in the direction of gaze and how these objects will be manipulated by an observer. These findings implicate differences in the neural networks sub-serving action control driven by social cues as compared with nonsocial cues. Here, we sought to explore this hypothesis by using functional magnetic resonance imaging and a stimulus-response compatibility paradigm in which participants were asked to generate spatially congruent or incongruent motor responses to both social and nonsocial stimuli. Data analysis revealed recruitment of a dorsal frontoparietal network and the locus coeruleus for the generation of incongruent motor responses, areas previously implicated in controlling attention. As a correlate for the effect of 'social gaze' on action control, an interaction effect was observed for incongruent responses to social stimuli in sub-cortical structures, anterior cingulate and inferior frontal cortex. Our results, therefore, suggest that performing actions in a--albeit minimal--social context significantly changes the neural underpinnings of action control and recruits brain regions previously implicated in action monitoring, the reorienting of attention and social cognition.
Collapse
Affiliation(s)
- Leonhard Schilbach
- Department of Psychiatry, University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proc Natl Acad Sci U S A 2010; 107:13878-82. [PMID: 20643918 DOI: 10.1073/pnas.1002436107] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A central question in the field of attention is whether visual processing is a strictly limited resource, which must be allocated by selective attention. If this were the case, attentional enhancement of one stimulus should invariably lead to suppression of unattended distracter stimuli. Here we examine voluntary cued shifts of feature-selective attention to either one of two superimposed red or blue random dot kinematograms (RDKs) to test whether such a reciprocal relationship between enhancement of an attended and suppression of an unattended stimulus can be observed. The steady-state visual evoked potential (SSVEP), an oscillatory brain response elicited by the flickering RDKs, was measured in human EEG. Supporting limited resources, we observed both an enhancement of the attended and a suppression of the unattended RDK, but this observed reciprocity did not occur concurrently: enhancement of the attended RDK started at 220 ms after cue onset and preceded suppression of the unattended RDK by about 130 ms. Furthermore, we found that behavior was significantly correlated with the SSVEP time course of a measure of selectivity (attended minus unattended) but not with a measure of total activity (attended plus unattended). The significant deviations from a temporally synchronized reciprocity between enhancement and suppression suggest that the enhancement of the attended stimulus may cause the suppression of the unattended stimulus in the present experiment.
Collapse
|