1
|
Zhang Q, Wang Y, Zhu J, Zou M, Zhang Y, Wu H, Jin T. Specialized pro-resolving lipid mediators: a key player in resolving inflammation in autoimmune diseases. Sci Bull (Beijing) 2025:S2095-9273(24)00983-6. [PMID: 39837719 DOI: 10.1016/j.scib.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 01/23/2025]
Abstract
Uncontrolled hyperactivation of the immune system is the central mechanism underlying the pathogenesis of autoimmune diseases. Timely control of the inflammatory response is essential to prevent inflammation progression and organ damage. Specialized pro-resolving lipid mediators (SPMs) are autacoid molecules derived from essential polyunsaturated fatty acids during acute inflammatory responses. They promote the resolution of inflammation and orchestrate endogenous reparative responses. The SPM superfamily includes lipoxins, resolvins, protectins, and maresins, as well as novel conjugates involved in tissue regeneration. Much work has been done focusing on the actions of SPMs in autoimmunity and has identified their deficiencies and therapeutic effects in autoimmune diseases. In this review, we provide a brief introduction of SPMs, summarize their effects on key cells involved in innate and adaptive immunity, and highlight their role and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm 17176, Sweden
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Crotoxin Isolated from Crotalus durissus terrificus Venom Modulates the Functional Activity of Dendritic Cells via Formyl Peptide Receptors. J Immunol Res 2018; 2018:7873257. [PMID: 29967803 PMCID: PMC6008858 DOI: 10.1155/2018/7873257] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/08/2018] [Indexed: 02/07/2023] Open
Abstract
The Crotalus durissus terrificus rattlesnake venom, its main toxin, crotoxin (CTX), and its crotapotin (CA) and phospholipase A2 (CB) subunits modulate the immune system. Formyl peptide receptors (FPRs) and lipoxin A4 (LXA4) are involved in CTX's effect on macrophages and neutrophils. Dendritic cells (DCs) are plasticity cells involved in the induction of adaptive immunity and tolerance maintenance. Therefore, we evaluated the effect of CTX, CA or CB on the maturation of DCs derived from murine bone marrow (BM). According to data, CTX and CB-but not CA-induced an increase of MHC-II, but not costimulatory molecules on DCs. Furthermore, CTX and CB inhibited the expression of costimulatory and MHC-II molecules, secretion of proinflammatory cytokines and NF-κBp65 and p38/ERK1/2-MAPK signaling pathways by LPS-incubated DCs. Differently, CTX and CB induced IL-10, PGE2 and LXA4 secretion in LPS-incubated DCs. Lower proliferation and IL-2 secretion were verified in coculture of CD3+ cells and DCs incubated with LPS plus CTX or CB compared with LPS-incubated DCs. The effect of CTX and CB on DCs was abolished in cultures incubated with a FPRs antagonist. Hence, CTX and CB exert a modulation on functional activity of DCs; we also checked the involvement the FPR family on cell activities.
Collapse
|
3
|
Moreira-Souza ACA, Marinho Y, Correa G, Santoro GF, Coutinho CMLM, Vommaro RC, Coutinho-Silva R. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages. PLoS One 2015; 10:e0133502. [PMID: 26192447 PMCID: PMC4507979 DOI: 10.1371/journal.pone.0133502] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cells, Cultured
- Female
- Host-Parasite Interactions/drug effects
- Macrophages/metabolism
- Macrophages/parasitology
- Macrophages/ultrastructure
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/parasitology
- Macrophages, Peritoneal/ultrastructure
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Nitric Oxide/metabolism
- Purinergic P2Y Receptor Agonists/pharmacology
- Purinergic P2Y Receptor Antagonists/pharmacology
- Reactive Oxygen Species/metabolism
- Receptors, Purinergic P2Y/metabolism
- Suramin/pharmacology
- Toxoplasma/physiology
- Uridine Diphosphate/pharmacology
- Uridine Triphosphate/pharmacology
Collapse
Affiliation(s)
- Aline Cristina Abreu Moreira-Souza
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Ygor Marinho
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Gladys Correa
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Giani França Santoro
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Laboratório de Inovações, Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21.040–900, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
| | - Claudia Mara Lara Melo Coutinho
- Laboratório de Inovações, Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21.040–900, Brazil
- Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, 24020–140, Brazil
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brazil
- Instituto Nacional de Ciência e Tecnologia para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica (INPeTAm/UFRJ), Rio de Janeiro, RJ, 21941–902, Brazil
- * E-mail:
| |
Collapse
|
4
|
Deficiency of formyl peptide receptor 1 and 2 is associated with increased inflammation and enhanced liver injury after LPS-stimulation. PLoS One 2014; 9:e100522. [PMID: 24956481 PMCID: PMC4067326 DOI: 10.1371/journal.pone.0100522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
Introduction Formyl peptide-receptor 1 and 2 (FPR1 and FPR2) in mice were identified as receptors with contrary affinity for the PAMP fMLF. Formyl-methionyl-leucyl-phenylalanine is either part of the bacterial membrane and is secreted by the mitochondria of eukaryotic ceslls during apoptosis. Furthermore FPR1 and 2 are described as highly relevant factors for the chemotaxis of immune cells. Their role during the acute liver injury has not been investigated yet. Materials and Methods Constitutive knockout mice for FPR1 (mFPR1-/-), FPR2 (mFPR2-/-) and wild type (WT) mice were challenged with LPS i.p. for 3 h and 6 h. Liver and serum were sampled for further analysis. Results Liver transaminases were elevated in all mice 3 h and 6 h post LPS stimulation. Gene expression analysis displayed a reduced expression of the pro-inflammatory cytokines IL-6 and CXCL1 after 3 h in the mFPR1-/- compared to wild type and mFPR2-/- mice. After 6 h, IL-6, TNF-α and CXCL1 were significantly higher in mice lacking mFPR1 or 2. Consistent to these findings the numbers of CD11b+ and Ly6G+ immune cells were altered in the livers. The analysis of TLR2 and TLR4 revealed time and genotype specific changes in theirs gene expression. Additionally, the liver in mFPR1- and mFPR2-deficient mice seem to be more susceptible to apoptosis by showing a significant higher number of TUNEL+-cells in the liver than WT-mice and displayed less Ki67-positive nuclei in the liver. Conclusion The results suggest a prominent role of FPRs in the regulation of the hepatic inflammatory response after LPS induced liver injury. Deletion of mFPR1 or mFPR2 leads to deregulation of the inflammatory response compared to WT mice, associated with more severe liver injury represented by higher levels of transaminases, apoptotic cells and a reduced regenerative capacity.
Collapse
|
5
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
12/15-lipoxygenase-dependent myeloid production of interleukin-12 is essential for resistance to chronic toxoplasmosis. Infect Immun 2009; 77:5690-700. [PMID: 19822654 DOI: 10.1128/iai.00560-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin-12 (IL-12) is critical for resistance to Toxoplasma gondii during both the acute and chronic stages of infection. However, the cellular and molecular pathways that regulate IL-12 production during chronic toxoplasmosis are incompletely defined. We recently discovered that 12/15-lipoxygenase (12/15-LOX), which oxidizes unsaturated lipids in macrophages, is a novel and selective regulator of IL-12 production. We now demonstrate the essential role of this enzyme in the chronic phase of toxoplasmosis. Although 12/15-LOX-deficient mice were resistant to acute T. gondii infection, 80% of 12/15-LOX-deficient mice died during chronic toxoplasmosis, compared to no deaths in wild-type controls. The morbidity of chronically infected 12/15-LOX mice was associated with an increase in brain inflammation and parasite burden. These data suggest that the evolution of the immune response to T. gondii is accompanied by an increasing requirement for 12/15-LOX-mediated signaling. Consistent with this conclusion, 12/15-LOX activity was enhanced during chronic, but not acute, toxoplasmosis. Furthermore, the enhanced susceptibility of 12/15-LOX-deficient mice to chronic toxoplasmosis was associated with reduced production of IL-12 and gamma interferon (IFN-gamma) that was not evident during acute infection. Importantly, ex vivo IFN-gamma production by 12/15-LOX-deficient splenocytes could be rescued by the addition of recombinant IL-12. These data establish that 12/15-LOX is a critical mediator of the chronic type 1 inflammatory response and that immune mediators can be subject to distinct cellular and/or molecular mechanisms of regulation at different stages of inflammation.
Collapse
|
7
|
Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O'Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 2005; 202:139-56. [PMID: 15546391 DOI: 10.1111/j.0105-2896.2004.00211.x] [Citation(s) in RCA: 395] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Produced in response to a variety of pathogenic organisms, interleukin (IL)-12 and IL-23 are key immunoregulatory cytokines that coordinate innate and adaptive immune responses. These dimeric cytokines share a subunit, designated p40, and bind to a common receptor chain, IL-12R beta 1. The receptor for IL-12 is composed of IL-12R beta 1 and IL-12R beta 2, whereas IL-23 binds to a receptor composed of IL-12R beta 1 and IL-23R. Both cytokines activate the Janus kinases Tyk2 and Jak2, the transcription factor signal transducer and activator of transcription 4 (STAT4), as well as other STATs. A major action of IL-12 is to promote the differentiation of naive CD4+ T cells into T-helper (Th) 1 cells, which produce interferon (IFN)-gamma, and deficiency of IL-12, IL-12R subunits or STAT4 is similar in many respects. In contrast, IL-23 promotes end-stage inflammation. Targeting IL-12, IL-23, and their downstream signaling elements would therefore be logical strategies for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Wendy T Watford
- Molecular Immunology & Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD 20892-1820, USA
| | | | | | | | | | | |
Collapse
|
8
|
Denkers EY. From cells to signaling cascades: manipulation of innate immunity by Toxoplasma gondii. ACTA ACUST UNITED AC 2004; 39:193-203. [PMID: 14642303 DOI: 10.1016/s0928-8244(03)00279-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intracellular opportunistic protozoan Toxoplasma gondii is a potent stimulus for cell-mediated immunity, and IL-12-dependent IFN-gamma induction is vital in resistance to the parasite. Dendritic cells, neutrophils and macrophages are important sources of IL-12 during infection. T. gondii possesses two mechanisms for triggering IL-12. One is dependent upon the common adaptor protein MyD88, and is likely to involve Toll-like receptors. The other is a more unusual pathway that involves triggering through CCR5 by a parasite cyclophilin molecule. Countering these potent pro-inflammatory activities, T. gondii has several mechanisms to down-regulate immunity. Intracellular infection causes a blockade in the NFkappaB macrophage signaling pathway, correlating with reduced capacity for IL-12 and TNF-alpha production. The parasite also prevents STAT1 activity, resulting in decreased levels of IFN-gamma-stimulated MHC surface antigen expression. Furthermore, infection also induces resistance to apoptosis through inhibition of caspase activity. Extracellular pathways of suppression involve soluble mediators such as IL-10 and lipoxins that have potent IL-12 down-regulatory effects. The balance of pro-inflammatory and anti-inflammatory signaling which T. gondii engages is likely dictated by requirements for a stable host-parasite interaction. First, there is a need for Toxoplasma to induce an immune response robust enough to allow host survival and establish long-term chronic infection. Second, the parasite must avoid immune-elimination and induction of pro-inflammatory pathology that can cause lethality if unchecked. The widespread distribution of T. gondii and the normally innocuous nature of infection indicate the skill with which the parasite achieves the two seemingly contrary goals.
Collapse
Affiliation(s)
- Eric Y Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853-6401, USA.
| |
Collapse
|
9
|
Watford WT, Moriguchi M, Morinobu A, O'Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 2003; 14:361-8. [PMID: 12948519 DOI: 10.1016/s1359-6101(03)00043-1] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of naïve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.
Collapse
Affiliation(s)
- Wendy T Watford
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Noverr MC, Erb-Downward JR, Huffnagle GB. Production of eicosanoids and other oxylipins by pathogenic eukaryotic microbes. Clin Microbiol Rev 2003; 16:517-33. [PMID: 12857780 PMCID: PMC164223 DOI: 10.1128/cmr.16.3.517-533.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxylipins are oxygenated metabolites of fatty acids. Eicosanoids are a subset of oxylipins and include the prostaglandins and leukotrienes, which are potent regulators of host immune responses. Host cells are one source of eicosanoids and oxylipins during infection; however, another potential source of eicosanoids is the pathogen itself. A broad range of pathogenic fungi, protozoa, and helminths produce eicosanoids and other oxylipins by novel synthesis pathways. Why do these organisms produce oxylipins? Accumulating data suggest that phase change and differentiation in these organisms are controlled by oxylipins, including prostaglandins and lipoxygenase products. The precise role of pathogen-derived eicosanoids in pathogenesis remains to be determined, but the potential link between pathogen eicosanoids and the development of TH2 responses in the host is intriguing. Mammalian prostaglandins and leukotrienes have been studied extensively, and these molecules can modulate Th1 versus Th2 immune responses, chemokine production, phagocytosis, lymphocyte proliferation, and leukocyte chemotaxis. Thus, eicosanoids and oxylipins (host or microbe) may be mediators of a direct host-pathogen "cross-talk" that promotes chronic infection and hypersensitivity disease, common features of infection by eukaryotic pathogens.
Collapse
Affiliation(s)
- Mairi C Noverr
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-0642, USA
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW It is now well established that cytokines play a critical role in the regulation of the immune system. Processes such as lymphoid development, differentiation, homeostasis, tolerance and memory are all regulated by cytokines that bind the type I family of cytokine receptors. Like the interferons, which bind receptors designated as the type II cytokine receptor family, type I cytokines also have essential functions in host defence. RECENT FINDINGS Recently, a number of new interleukins and their receptors have been discovered and their role in mounting an appropriate immune response is currently being studied. In this review we will describe the new interleukin-12 family of cytokines, which now includes two other members: interleukins 23 and 27. We will also review the newly discovered interleukins 28 and 29, also known as interferon-lambdas, which bind to the type II family of cytokine receptors, their structure and the structure of their receptors, their biological activities and modes of signalling. SUMMARY These new molecules will certainly be the focus of active research in the immediate future. Their discovery opens the door to new therapeutic approaches to the treatment of various diseases ranging from infections from intracellular pathogens to viral infections.
Collapse
Affiliation(s)
- Massimo Gadina
- Department of Microbiology and Immunology, School of Medicine, The Queen's University of Belfast, Belfast, Northern Ireland, UK.
| | | | | |
Collapse
|
12
|
Abstract
The spontaneously occurring autoantibodies that are associated with human diseases bear the hallmarks of a typical immune response. The repertoire of autoantibodies is surprisingly limited, however, and is the same in both humans and mice. Neither molecular mimicry nor immune dysregulation accounts for this unexpectedly narrow focus of specificities. Experimental data on the properties of the target autoantigens--such as their structure, catabolism, exposure to the immune system after cell death and recently described immunostimulatory effects on immature dendritic cells--indicate that these properties, in conjunction with the tissue microenvironment, help to select the autoantibody repertoire.
Collapse
Affiliation(s)
- Paul H Plotz
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-1820, USA.
| |
Collapse
|