1
|
Guérin A, Moncada-Vélez M, Jackson K, Ogishi M, Rosain J, Mancini M, Langlais D, Nunez A, Webster S, Goyette J, Khan T, Marr N, Avery DT, Rao G, Waterboer T, Michels B, Neves E, Iracema Morais C, London J, Mestrallet S, Quartier dit Maire P, Neven B, Rapaport F, Seeleuthner Y, Lev A, Simon AJ, Montoya J, Barel O, Gómez-Rodríguez J, Orrego JC, L’Honneur AS, Soudée C, Rojas J, Velez AC, Sereti I, Terrier B, Marin N, García LF, Abel L, Boisson-Dupuis S, Reis J, Marinho A, Lisco A, Faria E, Goodnow CC, Vasconcelos J, Béziat V, Ma CS, Somech R, Casanova JL, Bustamante J, Franco JL, Tangye SG. Helper T cell immunity in humans with inherited CD4 deficiency. J Exp Med 2024; 221:e20231044. [PMID: 38557723 PMCID: PMC10983808 DOI: 10.1084/jem.20231044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
CD4+ T cells are vital for host defense and immune regulation. However, the fundamental role of CD4 itself remains enigmatic. We report seven patients aged 5-61 years from five families of four ancestries with autosomal recessive CD4 deficiency and a range of infections, including recalcitrant warts and Whipple's disease. All patients are homozygous for rare deleterious CD4 variants impacting expression of the canonical CD4 isoform. A shorter expressed isoform that interacts with LCK, but not HLA class II, is affected by only one variant. All patients lack CD4+ T cells and have increased numbers of TCRαβ+CD4-CD8- T cells, which phenotypically and transcriptionally resemble conventional Th cells. Finally, patient CD4-CD8- αβ T cells exhibit intact responses to HLA class II-restricted antigens and promote B cell differentiation in vitro. Thus, compensatory development of Th cells enables patients with inherited CD4 deficiency to acquire effective cellular and humoral immunity against an unexpectedly large range of pathogens. Nevertheless, CD4 is indispensable for protective immunity against at least human papillomaviruses and Trophyrema whipplei.
Collapse
Affiliation(s)
- Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | | | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - David Langlais
- Department of Human Genetics, McGill University, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill Research Centre on Complex Traits, McGill University, Montreal, Canada
| | - Andrea Nunez
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Samantha Webster
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jesse Goyette
- Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- The Jackson Laboratory, Farmington, CT, USA
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Danielle T. Avery
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Birgitta Michels
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Esmeralda Neves
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Cátia Iracema Morais
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Jonathan London
- Service of Internal Medicine, Diaconesse-Croix Saint Simon Hospital, Paris, France
| | - Stéphanie Mestrallet
- Department of Internal Medicine and Infectious Diseases, Manchester Hospital, Charleville-Mézières, France
| | - Pierre Quartier dit Maire
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Bénédicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Paris, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Atar Lev
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Amos J. Simon
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jorge Montoya
- San Vicente de Paul University Hospital, Medellin, Colombia
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Julio Gómez-Rodríguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julio C. Orrego
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Anne-Sophie L’Honneur
- Department of Virology, Paris Cité University and Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jessica Rojas
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Alejandra C. Velez
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Terrier
- Department of Internal Medicine, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Nancy Marin
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Luis F. García
- Cellular Immunology and Immunogenetics Group, University of Antioquia UdeA, Medellin, Colombia
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Joel Reis
- Dermatology Service, University Hospital Center of Porto, Porto, Portugal
| | - Antonio Marinho
- School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Department of Clinical Immunology, University Hospital Center of Porto, Porto, Portugal
| | - Andrea Lisco
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emilia Faria
- Allergy and Clinical Immunology Department, University Hospital Center of Coimbra, Coimbra, Portugal
| | - Christopher C. Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Julia Vasconcelos
- Immunology Department—Pathology, University Hospital Center of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Raz Somech
- Department of Pediatrics and Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Aviv School of Medicine, Tel Aviv, Israel
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia UdeA, Medellin, Colombia
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
5
|
Dinić J, Novaković M, Podolski-Renić A, Vajs V, Tešević V, Isaković A, Pešić M. Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells. Chem Biol Interact 2016; 249:36-45. [PMID: 26944434 DOI: 10.1016/j.cbi.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 12/21/2022]
Abstract
Diarylheptanoids represent a group of plant secondary metabolites that possess multiple biological properties and are increasingly recognized for their therapeutic potential. A comparative study was performed on structurally analogous diarylheptanoids isolated from the bark of green (Alnus viridis) and black alder (Alnus glutinosa) to address their biological effects and determine structure-activity relationship. The structures and configurations of all compounds were elucidated by NMR, HR-ESI-MS, UV and IR. Diarylheptanoids actions were studied in human non-small cell lung carcinoma cells (NCI-H460) and normal keratinocytes (HaCaT). A. viridis compounds 3v, 5v, 8v and 9v that possess a carbonyl group at C-3 were considerably more potent than compounds without this group. A. viridis/A. glutinosa analogue pairs, 5v/5g and 9v/9g, which differ in the presence of 3' and 3″-OH groups, were evaluated for anticancer activity and selectivity. 5v and 9v that do not possess 3' and 3″-OH groups showed significantly higher cytotoxicity compared to analogues 5g and 9g. In addition, these two A. viridis compounds induced a more prominent apoptosis in both cell lines and an increase in subG0 cell cycle phase, compared to their A. glutinosa analogues. 5v and 9v treatment triggered intracellular superoxide anion accumulation and notably decreased mitochondrial transmembrane potential. In HaCaT cells, 9v and 9g with a 4,5 double bond caused a more prominent loss of mitochondrial transmembrane potential compared to 5v and 5g which possess a 5-methoxy group instead. Although green alder diarylheptanoids 5v and 9v displayed higher cytotoxicity, their analogues from black alder 5g and 9g could be more favorable for therapeutic use since they were more active in cancer cells than in normal keratinocytes. These results indicate that minor differences in the chemical structure can greatly influence the effect of diarylheptanoids on apoptosis and redox status and determine their selectivity towards cancer cells.
Collapse
Affiliation(s)
- Jelena Dinić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia.
| | - Miroslav Novaković
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Ana Podolski-Renić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Vlatka Vajs
- Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Vele Tešević
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Aleksandra Isaković
- Faculty of Medicine, University of Belgrade, Doktora Subotića 8, Belgrade, Serbia
| | - Milica Pešić
- Institute for Biological Research, Department of Neurobiology, University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| |
Collapse
|